// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/platform/time.h" #if V8_OS_POSIX #include <fcntl.h> // for O_RDONLY #include <sys/time.h> #include <unistd.h> #endif #if V8_OS_DARWIN #include <mach/mach.h> #include <mach/mach_time.h> #include <pthread.h> #endif #if V8_OS_FUCHSIA #include <threads.h> #include <zircon/syscalls.h> #include <zircon/threads.h> #endif #include <cstring> #include <ostream> #if V8_OS_WIN #include <windows.h> // This has to come after windows.h. #include <mmsystem.h> // For timeGetTime(). #include <atomic> #include "src/base/lazy-instance.h" #include "src/base/win32-headers.h" #endif #include "src/base/cpu.h" #include "src/base/logging.h" #include "src/base/platform/platform.h" #if V8_OS_STARBOARD #include "starboard/time.h" #endif namespace { #if V8_OS_DARWIN int64_t ComputeThreadTicks() { mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; thread_basic_info_data_t thread_info_data; kern_return_t kr = thread_info( pthread_mach_thread_np(pthread_self()), THREAD_BASIC_INFO, reinterpret_cast<thread_info_t>(&thread_info_data), &thread_info_count); CHECK_EQ(kr, KERN_SUCCESS); // We can add the seconds into a {int64_t} without overflow. CHECK_LE(thread_info_data.user_time.seconds, std::numeric_limits<int64_t>::max() - thread_info_data.system_time.seconds); int64_t seconds = thread_info_data.user_time.seconds + thread_info_data.system_time.seconds; // Multiplying the seconds by {kMicrosecondsPerSecond}, and adding something // in [0, 2 * kMicrosecondsPerSecond) must result in a valid {int64_t}. static constexpr int64_t kSecondsLimit = (std::numeric_limits<int64_t>::max() / v8::base::Time::kMicrosecondsPerSecond) - 2; CHECK_GT(kSecondsLimit, seconds); int64_t micros = seconds * v8::base::Time::kMicrosecondsPerSecond; micros += (thread_info_data.user_time.microseconds + thread_info_data.system_time.microseconds); return micros; } #elif V8_OS_FUCHSIA V8_INLINE int64_t GetFuchsiaThreadTicks() { zx_info_thread_stats_t info; zx_status_t status = zx_object_get_info(thrd_get_zx_handle(thrd_current()), ZX_INFO_THREAD_STATS, &info, sizeof(info), nullptr, nullptr); CHECK_EQ(status, ZX_OK); return info.total_runtime / v8::base::Time::kNanosecondsPerMicrosecond; } #elif V8_OS_POSIX // Helper function to get results from clock_gettime() and convert to a // microsecond timebase. Minimum requirement is MONOTONIC_CLOCK to be supported // on the system. FreeBSD 6 has CLOCK_MONOTONIC but defines // _POSIX_MONOTONIC_CLOCK to -1. V8_INLINE int64_t ClockNow(clockid_t clk_id) { #if (defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \ defined(V8_OS_BSD) || defined(V8_OS_ANDROID) #if defined(V8_OS_AIX) // On AIX clock_gettime for CLOCK_THREAD_CPUTIME_ID outputs time with // resolution of 10ms. thread_cputime API provides the time in ns. if (clk_id == CLOCK_THREAD_CPUTIME_ID) { #if defined(__PASE__) // CLOCK_THREAD_CPUTIME_ID clock not supported on IBMi return 0; #else thread_cputime_t tc; if (thread_cputime(-1, &tc) != 0) { UNREACHABLE(); } return (tc.stime / v8::base::Time::kNanosecondsPerMicrosecond) + (tc.utime / v8::base::Time::kNanosecondsPerMicrosecond); #endif // defined(__PASE__) } #endif // defined(V8_OS_AIX) struct timespec ts; if (clock_gettime(clk_id, &ts) != 0) { UNREACHABLE(); } // Multiplying the seconds by {kMicrosecondsPerSecond}, and adding something // in [0, kMicrosecondsPerSecond) must result in a valid {int64_t}. static constexpr int64_t kSecondsLimit = (std::numeric_limits<int64_t>::max() / v8::base::Time::kMicrosecondsPerSecond) - 1; CHECK_GT(kSecondsLimit, ts.tv_sec); int64_t result = int64_t{ts.tv_sec} * v8::base::Time::kMicrosecondsPerSecond; result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond); return result; #else // Monotonic clock not supported. return 0; #endif } V8_INLINE int64_t NanosecondsNow() { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return int64_t{ts.tv_sec} * v8::base::Time::kNanosecondsPerSecond + ts.tv_nsec; } inline bool IsHighResolutionTimer(clockid_t clk_id) { // Currently this is only needed for CLOCK_MONOTONIC. If other clocks need // to be checked, care must be taken to support all platforms correctly; // see ClockNow() above for precedent. DCHECK_EQ(clk_id, CLOCK_MONOTONIC); int64_t previous = NanosecondsNow(); // There should be enough attempts to make the loop run for more than one // microsecond if the early return is not taken -- the elapsed time can't // be measured in that situation, so we have to estimate it offline. constexpr int kAttempts = 100; for (int i = 0; i < kAttempts; i++) { int64_t next = NanosecondsNow(); int64_t delta = next - previous; if (delta == 0) continue; // We expect most systems to take this branch on the first iteration. if (delta <= v8::base::Time::kNanosecondsPerMicrosecond) { return true; } previous = next; } // As of 2022, we expect that the loop above has taken at least 2 μs (on // a fast desktop). If we still haven't seen a non-zero clock increment // in sub-microsecond range, assume a low resolution timer. return false; } #elif V8_OS_WIN // Returns the current value of the performance counter. V8_INLINE uint64_t QPCNowRaw() { LARGE_INTEGER perf_counter_now = {}; // According to the MSDN documentation for QueryPerformanceCounter(), this // will never fail on systems that run XP or later. // https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx BOOL result = ::QueryPerformanceCounter(&perf_counter_now); DCHECK(result); USE(result); return perf_counter_now.QuadPart; } #endif // V8_OS_DARWIN } // namespace namespace v8 { namespace base { int TimeDelta::InDays() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int>::max(); } return static_cast<int>(delta_ / Time::kMicrosecondsPerDay); } int TimeDelta::InHours() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int>::max(); } return static_cast<int>(delta_ / Time::kMicrosecondsPerHour); } int TimeDelta::InMinutes() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int>::max(); } return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute); } double TimeDelta::InSecondsF() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<double>::infinity(); } return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond; } int64_t TimeDelta::InSeconds() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return delta_ / Time::kMicrosecondsPerSecond; } double TimeDelta::InMillisecondsF() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<double>::infinity(); } return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InMilliseconds() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return delta_ / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InMillisecondsRoundedUp() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return (delta_ + Time::kMicrosecondsPerMillisecond - 1) / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InMicroseconds() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return delta_; } int64_t TimeDelta::InNanoseconds() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return delta_ * Time::kNanosecondsPerMicrosecond; } #if V8_OS_DARWIN TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); } struct mach_timespec TimeDelta::ToMachTimespec() const { struct mach_timespec ts; DCHECK_GE(delta_, 0); ts.tv_sec = static_cast<unsigned>(delta_ / Time::kMicrosecondsPerSecond); ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * Time::kNanosecondsPerMicrosecond; return ts; } #endif // V8_OS_DARWIN #if V8_OS_POSIX TimeDelta TimeDelta::FromTimespec(struct timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); } struct timespec TimeDelta::ToTimespec() const { struct timespec ts; ts.tv_sec = static_cast<time_t>(delta_ / Time::kMicrosecondsPerSecond); ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * Time::kNanosecondsPerMicrosecond; return ts; } #endif // V8_OS_POSIX #if V8_OS_WIN // We implement time using the high-resolution timers so that we can get // timeouts which are smaller than 10-15ms. To avoid any drift, we // periodically resync the internal clock to the system clock. class Clock final { public: Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {} Time Now() { // Time between resampling the un-granular clock for this API (1 minute). const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1); MutexGuard lock_guard(&mutex_); // Determine current time and ticks. TimeTicks ticks = GetSystemTicks(); Time time = GetSystemTime(); // Check if we need to synchronize with the system clock due to a backwards // time change or the amount of time elapsed. TimeDelta elapsed = ticks - initial_ticks_; if (time < initial_time_ || elapsed > kMaxElapsedTime) { initial_ticks_ = ticks; initial_time_ = time; return time; } return initial_time_ + elapsed; } Time NowFromSystemTime() { MutexGuard lock_guard(&mutex_); initial_ticks_ = GetSystemTicks(); initial_time_ = GetSystemTime(); return initial_time_; } private: static TimeTicks GetSystemTicks() { return TimeTicks::Now(); } static Time GetSystemTime() { FILETIME ft; ::GetSystemTimeAsFileTime(&ft); return Time::FromFiletime(ft); } TimeTicks initial_ticks_; Time initial_time_; Mutex mutex_; }; namespace { DEFINE_LAZY_LEAKY_OBJECT_GETTER(Clock, GetClock) } // namespace Time Time::Now() { return GetClock()->Now(); } Time Time::NowFromSystemTime() { return GetClock()->NowFromSystemTime(); } // Time between windows epoch and standard epoch. static const int64_t kTimeToEpochInMicroseconds = int64_t{11644473600000000}; Time Time::FromFiletime(FILETIME ft) { if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { return Time(); } if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) { return Max(); } int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) + (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10; return Time(us - kTimeToEpochInMicroseconds); } FILETIME Time::ToFiletime() const { DCHECK_GE(us_, 0); FILETIME ft; if (IsNull()) { ft.dwLowDateTime = 0; ft.dwHighDateTime = 0; return ft; } if (IsMax()) { ft.dwLowDateTime = std::numeric_limits<DWORD>::max(); ft.dwHighDateTime = std::numeric_limits<DWORD>::max(); return ft; } uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; ft.dwLowDateTime = static_cast<DWORD>(us); ft.dwHighDateTime = static_cast<DWORD>(us >> 32); return ft; } #elif V8_OS_POSIX Time Time::Now() { struct timeval tv; int result = gettimeofday(&tv, nullptr); DCHECK_EQ(0, result); USE(result); return FromTimeval(tv); } Time Time::NowFromSystemTime() { return Now(); } Time Time::FromTimespec(struct timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, kNanosecondsPerSecond); if (ts.tv_nsec == 0 && ts.tv_sec == 0) { return Time(); } if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT ts.tv_sec == std::numeric_limits<time_t>::max()) { return Max(); } return Time(ts.tv_sec * kMicrosecondsPerSecond + ts.tv_nsec / kNanosecondsPerMicrosecond); } struct timespec Time::ToTimespec() const { struct timespec ts; if (IsNull()) { ts.tv_sec = 0; ts.tv_nsec = 0; return ts; } if (IsMax()) { ts.tv_sec = std::numeric_limits<time_t>::max(); ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1); // NOLINT return ts; } ts.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond); ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond; return ts; } Time Time::FromTimeval(struct timeval tv) { DCHECK_GE(tv.tv_usec, 0); DCHECK(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond)); if (tv.tv_usec == 0 && tv.tv_sec == 0) { return Time(); } if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) && tv.tv_sec == std::numeric_limits<time_t>::max()) { return Max(); } return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec); } struct timeval Time::ToTimeval() const { struct timeval tv; if (IsNull()) { tv.tv_sec = 0; tv.tv_usec = 0; return tv; } if (IsMax()) { tv.tv_sec = std::numeric_limits<time_t>::max(); tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1); return tv; } tv.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond); tv.tv_usec = us_ % kMicrosecondsPerSecond; return tv; } #elif V8_OS_STARBOARD Time Time::Now() { return Time(SbTimeToPosix(SbTimeGetNow())); } Time Time::NowFromSystemTime() { return Now(); } #endif // V8_OS_STARBOARD Time Time::FromJsTime(double ms_since_epoch) { // The epoch is a valid time, so this constructor doesn't interpret // 0 as the null time. if (ms_since_epoch == std::numeric_limits<double>::max()) { return Max(); } return Time( static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond)); } double Time::ToJsTime() const { if (IsNull()) { // Preserve 0 so the invalid result doesn't depend on the platform. return 0; } if (IsMax()) { // Preserve max without offset to prevent overflow. return std::numeric_limits<double>::max(); } return static_cast<double>(us_) / kMicrosecondsPerMillisecond; } std::ostream& operator<<(std::ostream& os, const Time& time) { return os << time.ToJsTime(); } #if V8_OS_WIN namespace { // We define a wrapper to adapt between the __stdcall and __cdecl call of the // mock function, and to avoid a static constructor. Assigning an import to a // function pointer directly would require setup code to fetch from the IAT. DWORD timeGetTimeWrapper() { return timeGetTime(); } DWORD (*g_tick_function)(void) = &timeGetTimeWrapper; // A structure holding the most significant bits of "last seen" and a // "rollover" counter. union LastTimeAndRolloversState { // The state as a single 32-bit opaque value. int32_t as_opaque_32; // The state as usable values. struct { // The top 8-bits of the "last" time. This is enough to check for rollovers // and the small bit-size means fewer CompareAndSwap operations to store // changes in state, which in turn makes for fewer retries. uint8_t last_8; // A count of the number of detected rollovers. Using this as bits 47-32 // of the upper half of a 64-bit value results in a 48-bit tick counter. // This extends the total rollover period from about 49 days to about 8800 // years while still allowing it to be stored with last_8 in a single // 32-bit value. uint16_t rollovers; } as_values; }; std::atomic<int32_t> g_last_time_and_rollovers{0}; static_assert(sizeof(LastTimeAndRolloversState) <= sizeof(g_last_time_and_rollovers), "LastTimeAndRolloversState does not fit in a single atomic word"); // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic // because it returns the number of milliseconds since Windows has started, // which will roll over the 32-bit value every ~49 days. We try to track // rollover ourselves, which works if TimeTicks::Now() is called at least every // 48.8 days (not 49 days because only changes in the top 8 bits get noticed). TimeTicks RolloverProtectedNow() { LastTimeAndRolloversState state; DWORD now; // DWORD is always unsigned 32 bits. // Fetch the "now" and "last" tick values, updating "last" with "now" and // incrementing the "rollovers" counter if the tick-value has wrapped back // around. Atomic operations ensure that both "last" and "rollovers" are // always updated together. int32_t original = g_last_time_and_rollovers.load(std::memory_order_acquire); while (true) { state.as_opaque_32 = original; now = g_tick_function(); uint8_t now_8 = static_cast<uint8_t>(now >> 24); if (now_8 < state.as_values.last_8) ++state.as_values.rollovers; state.as_values.last_8 = now_8; // If the state hasn't changed, exit the loop. if (state.as_opaque_32 == original) break; // Save the changed state. If the existing value is unchanged from the // original, exit the loop. if (g_last_time_and_rollovers.compare_exchange_weak( original, state.as_opaque_32, std::memory_order_acq_rel)) { break; } // Another thread has done something in between so retry from the top. // {original} has been updated by the {compare_exchange_weak}. } return TimeTicks() + TimeDelta::FromMilliseconds( now + (static_cast<uint64_t>(state.as_values.rollovers) << 32)); } // Discussion of tick counter options on Windows: // // (1) CPU cycle counter. (Retrieved via RDTSC) // The CPU counter provides the highest resolution time stamp and is the least // expensive to retrieve. However, on older CPUs, two issues can affect its // reliability: First it is maintained per processor and not synchronized // between processors. Also, the counters will change frequency due to thermal // and power changes, and stop in some states. // // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- // resolution (<1 microsecond) time stamp. On most hardware running today, it // auto-detects and uses the constant-rate RDTSC counter to provide extremely // efficient and reliable time stamps. // // On older CPUs where RDTSC is unreliable, it falls back to using more // expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI // PM timer, and can involve system calls; and all this is up to the HAL (with // some help from ACPI). According to // http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the // worst case, it gets the counter from the rollover interrupt on the // programmable interrupt timer. In best cases, the HAL may conclude that the // RDTSC counter runs at a constant frequency, then it uses that instead. On // multiprocessor machines, it will try to verify the values returned from // RDTSC on each processor are consistent with each other, and apply a handful // of workarounds for known buggy hardware. In other words, QPC is supposed to // give consistent results on a multiprocessor computer, but for older CPUs it // can be unreliable due bugs in BIOS or HAL. // // (3) System time. The system time provides a low-resolution (from ~1 to ~15.6 // milliseconds) time stamp but is comparatively less expensive to retrieve and // more reliable. Time::EnableHighResolutionTimer() and // Time::ActivateHighResolutionTimer() can be called to alter the resolution of // this timer; and also other Windows applications can alter it, affecting this // one. TimeTicks InitialTimeTicksNowFunction(); // See "threading notes" in InitializeNowFunctionPointer() for details on how // concurrent reads/writes to these globals has been made safe. using TimeTicksNowFunction = decltype(&TimeTicks::Now); TimeTicksNowFunction g_time_ticks_now_function = &InitialTimeTicksNowFunction; int64_t g_qpc_ticks_per_second = 0; TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) { // Ensure that the assignment to |g_qpc_ticks_per_second|, made in // InitializeNowFunctionPointer(), has happened by this point. std::atomic_thread_fence(std::memory_order_acquire); DCHECK_GT(g_qpc_ticks_per_second, 0); // If the QPC Value is below the overflow threshold, we proceed with // simple multiply and divide. if (qpc_value < TimeTicks::kQPCOverflowThreshold) { return TimeDelta::FromMicroseconds( qpc_value * TimeTicks::kMicrosecondsPerSecond / g_qpc_ticks_per_second); } // Otherwise, calculate microseconds in a round about manner to avoid // overflow and precision issues. int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second; int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second); return TimeDelta::FromMicroseconds( (whole_seconds * TimeTicks::kMicrosecondsPerSecond) + ((leftover_ticks * TimeTicks::kMicrosecondsPerSecond) / g_qpc_ticks_per_second)); } TimeTicks QPCNow() { return TimeTicks() + QPCValueToTimeDelta(QPCNowRaw()); } void InitializeTimeTicksNowFunctionPointer() { LARGE_INTEGER ticks_per_sec = {}; if (!QueryPerformanceFrequency(&ticks_per_sec)) ticks_per_sec.QuadPart = 0; // If Windows cannot provide a QPC implementation, TimeTicks::Now() must use // the low-resolution clock. // // If the QPC implementation is expensive and/or unreliable, TimeTicks::Now() // will still use the low-resolution clock. A CPU lacking a non-stop time // counter will cause Windows to provide an alternate QPC implementation that // works, but is expensive to use. Certain Athlon CPUs are known to make the // QPC implementation unreliable. // // Otherwise, Now uses the high-resolution QPC clock. As of 21 August 2015, // ~72% of users fall within this category. TimeTicksNowFunction now_function; CPU cpu; if (ticks_per_sec.QuadPart <= 0 || !cpu.has_non_stop_time_stamp_counter()) { now_function = &RolloverProtectedNow; } else { now_function = &QPCNow; } // Threading note 1: In an unlikely race condition, it's possible for two or // more threads to enter InitializeNowFunctionPointer() in parallel. This is // not a problem since all threads should end up writing out the same values // to the global variables. // // Threading note 2: A release fence is placed here to ensure, from the // perspective of other threads using the function pointers, that the // assignment to |g_qpc_ticks_per_second| happens before the function pointers // are changed. g_qpc_ticks_per_second = ticks_per_sec.QuadPart; std::atomic_thread_fence(std::memory_order_release); g_time_ticks_now_function = now_function; } TimeTicks InitialTimeTicksNowFunction() { InitializeTimeTicksNowFunctionPointer(); return g_time_ticks_now_function(); } } // namespace // static TimeTicks TimeTicks::Now() { // Make sure we never return 0 here. TimeTicks ticks(g_time_ticks_now_function()); DCHECK(!ticks.IsNull()); return ticks; } // static bool TimeTicks::IsHighResolution() { if (g_time_ticks_now_function == &InitialTimeTicksNowFunction) InitializeTimeTicksNowFunctionPointer(); return g_time_ticks_now_function == &QPCNow; } #else // V8_OS_WIN TimeTicks TimeTicks::Now() { int64_t ticks; #if V8_OS_DARWIN static struct mach_timebase_info info; if (info.denom == 0) { kern_return_t result = mach_timebase_info(&info); DCHECK_EQ(KERN_SUCCESS, result); USE(result); } ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond * info.numer / info.denom); #elif V8_OS_SOLARIS ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond); #elif V8_OS_FUCHSIA ticks = zx_clock_get_monotonic() / Time::kNanosecondsPerMicrosecond; #elif V8_OS_POSIX ticks = ClockNow(CLOCK_MONOTONIC); #elif V8_OS_STARBOARD ticks = SbTimeGetMonotonicNow(); #else #error platform does not implement TimeTicks::Now. #endif // V8_OS_DARWIN // Make sure we never return 0 here. return TimeTicks(ticks + 1); } // static bool TimeTicks::IsHighResolution() { #if V8_OS_DARWIN return true; #elif V8_OS_FUCHSIA return true; #elif V8_OS_POSIX static const bool is_high_resolution = IsHighResolutionTimer(CLOCK_MONOTONIC); return is_high_resolution; #else return true; #endif } #endif // V8_OS_WIN bool ThreadTicks::IsSupported() { #if V8_OS_STARBOARD #if SB_API_VERSION >= 12 return SbTimeIsTimeThreadNowSupported(); #elif SB_HAS(TIME_THREAD_NOW) return true; #else return false; #endif #elif defined(__PASE__) // Thread CPU time accounting is unavailable in PASE return false; #elif(defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ defined(V8_OS_DARWIN) || defined(V8_OS_ANDROID) || defined(V8_OS_SOLARIS) return true; #elif defined(V8_OS_WIN) return IsSupportedWin(); #else return false; #endif } ThreadTicks ThreadTicks::Now() { #if V8_OS_STARBOARD #if SB_API_VERSION >= 12 if (SbTimeIsTimeThreadNowSupported()) return ThreadTicks(SbTimeGetMonotonicThreadNow()); UNREACHABLE(); #elif SB_HAS(TIME_THREAD_NOW) return ThreadTicks(SbTimeGetMonotonicThreadNow()); #else UNREACHABLE(); #endif #elif V8_OS_DARWIN return ThreadTicks(ComputeThreadTicks()); #elif V8_OS_FUCHSIA return ThreadTicks(GetFuchsiaThreadTicks()); #elif(defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ defined(V8_OS_ANDROID) return ThreadTicks(ClockNow(CLOCK_THREAD_CPUTIME_ID)); #elif V8_OS_SOLARIS return ThreadTicks(gethrvtime() / Time::kNanosecondsPerMicrosecond); #elif V8_OS_WIN return ThreadTicks::GetForThread(::GetCurrentThread()); #else UNREACHABLE(); #endif } #if V8_OS_WIN ThreadTicks ThreadTicks::GetForThread(const HANDLE& thread_handle) { DCHECK(IsSupported()); // Get the number of TSC ticks used by the current thread. ULONG64 thread_cycle_time = 0; ::QueryThreadCycleTime(thread_handle, &thread_cycle_time); // Get the frequency of the TSC. double tsc_ticks_per_second = TSCTicksPerSecond(); if (tsc_ticks_per_second == 0) return ThreadTicks(); // Return the CPU time of the current thread. double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second; return ThreadTicks( static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond)); } // static bool ThreadTicks::IsSupportedWin() { static bool is_supported = base::CPU().has_non_stop_time_stamp_counter(); return is_supported; } // static void ThreadTicks::WaitUntilInitializedWin() { while (TSCTicksPerSecond() == 0) ::Sleep(10); } #ifdef V8_HOST_ARCH_ARM64 #define ReadCycleCounter() _ReadStatusReg(ARM64_PMCCNTR_EL0) #else #define ReadCycleCounter() __rdtsc() #endif double ThreadTicks::TSCTicksPerSecond() { DCHECK(IsSupported()); // The value returned by QueryPerformanceFrequency() cannot be used as the TSC // frequency, because there is no guarantee that the TSC frequency is equal to // the performance counter frequency. // The TSC frequency is cached in a static variable because it takes some time // to compute it. static double tsc_ticks_per_second = 0; if (tsc_ticks_per_second != 0) return tsc_ticks_per_second; // Increase the thread priority to reduces the chances of having a context // switch during a reading of the TSC and the performance counter. int previous_priority = ::GetThreadPriority(::GetCurrentThread()); ::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST); // The first time that this function is called, make an initial reading of the // TSC and the performance counter. static const uint64_t tsc_initial = ReadCycleCounter(); static const uint64_t perf_counter_initial = QPCNowRaw(); // Make a another reading of the TSC and the performance counter every time // that this function is called. uint64_t tsc_now = ReadCycleCounter(); uint64_t perf_counter_now = QPCNowRaw(); // Reset the thread priority. ::SetThreadPriority(::GetCurrentThread(), previous_priority); // Make sure that at least 50 ms elapsed between the 2 readings. The first // time that this function is called, we don't expect this to be the case. // Note: The longer the elapsed time between the 2 readings is, the more // accurate the computed TSC frequency will be. The 50 ms value was // chosen because local benchmarks show that it allows us to get a // stddev of less than 1 tick/us between multiple runs. // Note: According to the MSDN documentation for QueryPerformanceFrequency(), // this will never fail on systems that run XP or later. // https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx LARGE_INTEGER perf_counter_frequency = {}; ::QueryPerformanceFrequency(&perf_counter_frequency); DCHECK_GE(perf_counter_now, perf_counter_initial); uint64_t perf_counter_ticks = perf_counter_now - perf_counter_initial; double elapsed_time_seconds = perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart); const double kMinimumEvaluationPeriodSeconds = 0.05; if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds) return 0; // Compute the frequency of the TSC. DCHECK_GE(tsc_now, tsc_initial); uint64_t tsc_ticks = tsc_now - tsc_initial; tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds; return tsc_ticks_per_second; } #undef ReadCycleCounter #endif // V8_OS_WIN } // namespace base } // namespace v8