// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2014 the V8 project authors. All rights reserved. #include "src/v8.h" #if V8_TARGET_ARCH_PPC #include "src/base/bits.h" #include "src/base/cpu.h" #include "src/macro-assembler.h" #include "src/ppc/assembler-ppc-inl.h" #include "src/serialize.h" namespace v8 { namespace internal { // Get the CPU features enabled by the build. static unsigned CpuFeaturesImpliedByCompiler() { unsigned answer = 0; return answer; } void CpuFeatures::ProbeImpl(bool cross_compile) { supported_ |= CpuFeaturesImpliedByCompiler(); cache_line_size_ = 128; // Only use statically determined features for cross compile (snapshot). if (cross_compile) return; // Detect whether frim instruction is supported (POWER5+) // For now we will just check for processors we know do not // support it #ifndef USE_SIMULATOR // Probe for additional features at runtime. base::CPU cpu; #if V8_TARGET_ARCH_PPC64 if (cpu.part() == base::CPU::PPC_POWER8) { supported_ |= (1u << FPR_GPR_MOV); } #endif if (cpu.part() == base::CPU::PPC_POWER6 || cpu.part() == base::CPU::PPC_POWER7 || cpu.part() == base::CPU::PPC_POWER8) { supported_ |= (1u << LWSYNC); } #if V8_OS_LINUX if (!(cpu.part() == base::CPU::PPC_G5 || cpu.part() == base::CPU::PPC_G4)) { // Assume support supported_ |= (1u << FPU); } #elif V8_OS_AIX // Assume support FP support and default cache line size supported_ |= (1u << FPU); #endif #else // Simulator supported_ |= (1u << FPU); supported_ |= (1u << LWSYNC); #if V8_TARGET_ARCH_PPC64 supported_ |= (1u << FPR_GPR_MOV); #endif #endif } void CpuFeatures::PrintTarget() { const char* ppc_arch = NULL; #if V8_TARGET_ARCH_PPC64 ppc_arch = "ppc64"; #else ppc_arch = "ppc"; #endif printf("target %s\n", ppc_arch); } void CpuFeatures::PrintFeatures() { printf("FPU=%d\n", CpuFeatures::IsSupported(FPU)); } Register ToRegister(int num) { DCHECK(num >= 0 && num < kNumRegisters); const Register kRegisters[] = {r0, sp, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, ip, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, fp}; return kRegisters[num]; } const char* DoubleRegister::AllocationIndexToString(int index) { DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); const char* const names[] = { "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11", "d12", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"}; return names[index]; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE; bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially // coded. Being specially coded on PPC means that it is a lis/ori // instruction sequence or is an out of line constant pool entry, // and these are always the case inside code objects. return true; } bool RelocInfo::IsInConstantPool() { #if V8_OOL_CONSTANT_POOL return Assembler::IsConstantPoolLoadStart(pc_); #else return false; #endif } void RelocInfo::PatchCode(byte* instructions, int instruction_count) { // Patch the code at the current address with the supplied instructions. Instr* pc = reinterpret_cast(pc_); Instr* instr = reinterpret_cast(instructions); for (int i = 0; i < instruction_count; i++) { *(pc + i) = *(instr + i); } // Indicate that code has changed. CpuFeatures::FlushICache(pc_, instruction_count * Assembler::kInstrSize); } // Patch the code at the current PC with a call to the target address. // Additional guard instructions can be added if required. void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { // Patch the code at the current address with a call to the target. UNIMPLEMENTED(); } // ----------------------------------------------------------------------------- // Implementation of Operand and MemOperand // See assembler-ppc-inl.h for inlined constructors Operand::Operand(Handle handle) { AllowDeferredHandleDereference using_raw_address; rm_ = no_reg; // Verify all Objects referred by code are NOT in new space. Object* obj = *handle; if (obj->IsHeapObject()) { DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj)); imm_ = reinterpret_cast(handle.location()); rmode_ = RelocInfo::EMBEDDED_OBJECT; } else { // no relocation needed imm_ = reinterpret_cast(obj); rmode_ = kRelocInfo_NONEPTR; } } MemOperand::MemOperand(Register rn, int32_t offset) { ra_ = rn; rb_ = no_reg; offset_ = offset; } MemOperand::MemOperand(Register ra, Register rb) { ra_ = ra; rb_ = rb; offset_ = 0; } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. // Spare buffer. static const int kMinimalBufferSize = 4 * KB; Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size) : AssemblerBase(isolate, buffer, buffer_size), recorded_ast_id_(TypeFeedbackId::None()), #if V8_OOL_CONSTANT_POOL constant_pool_builder_(), #endif positions_recorder_(this) { reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_); no_trampoline_pool_before_ = 0; trampoline_pool_blocked_nesting_ = 0; // We leave space (kMaxBlockTrampolineSectionSize) // for BlockTrampolinePoolScope buffer. next_buffer_check_ = FLAG_force_long_branches ? kMaxInt : kMaxCondBranchReach - kMaxBlockTrampolineSectionSize; internal_trampoline_exception_ = false; last_bound_pos_ = 0; trampoline_emitted_ = FLAG_force_long_branches; unbound_labels_count_ = 0; ClearRecordedAstId(); } void Assembler::GetCode(CodeDesc* desc) { // Set up code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); desc->origin = this; } void Assembler::Align(int m) { #if V8_TARGET_ARCH_PPC64 DCHECK(m >= 4 && base::bits::IsPowerOfTwo64(m)); #else DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m)); #endif while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::CodeTargetAlign() { Align(8); } Condition Assembler::GetCondition(Instr instr) { switch (instr & kCondMask) { case BT: return eq; case BF: return ne; default: UNIMPLEMENTED(); } return al; } bool Assembler::IsLis(Instr instr) { return ((instr & kOpcodeMask) == ADDIS) && GetRA(instr).is(r0); } bool Assembler::IsLi(Instr instr) { return ((instr & kOpcodeMask) == ADDI) && GetRA(instr).is(r0); } bool Assembler::IsAddic(Instr instr) { return (instr & kOpcodeMask) == ADDIC; } bool Assembler::IsOri(Instr instr) { return (instr & kOpcodeMask) == ORI; } bool Assembler::IsBranch(Instr instr) { return ((instr & kOpcodeMask) == BCX); } Register Assembler::GetRA(Instr instr) { Register reg; reg.code_ = Instruction::RAValue(instr); return reg; } Register Assembler::GetRB(Instr instr) { Register reg; reg.code_ = Instruction::RBValue(instr); return reg; } #if V8_TARGET_ARCH_PPC64 // This code assumes a FIXED_SEQUENCE for 64bit loads (lis/ori) bool Assembler::Is64BitLoadIntoR12(Instr instr1, Instr instr2, Instr instr3, Instr instr4, Instr instr5) { // Check the instructions are indeed a five part load (into r12) // 3d800000 lis r12, 0 // 618c0000 ori r12, r12, 0 // 798c07c6 rldicr r12, r12, 32, 31 // 658c00c3 oris r12, r12, 195 // 618ccd40 ori r12, r12, 52544 return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c) && (instr3 == 0x798c07c6) && ((instr4 >> 16) == 0x658c) && ((instr5 >> 16) == 0x618c)); } #else // This code assumes a FIXED_SEQUENCE for 32bit loads (lis/ori) bool Assembler::Is32BitLoadIntoR12(Instr instr1, Instr instr2) { // Check the instruction is indeed a two part load (into r12) // 3d802553 lis r12, 9555 // 618c5000 ori r12, r12, 20480 return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c)); } #endif bool Assembler::IsCmpRegister(Instr instr) { return (((instr & kOpcodeMask) == EXT2) && ((instr & kExt2OpcodeMask) == CMP)); } bool Assembler::IsRlwinm(Instr instr) { return ((instr & kOpcodeMask) == RLWINMX); } #if V8_TARGET_ARCH_PPC64 bool Assembler::IsRldicl(Instr instr) { return (((instr & kOpcodeMask) == EXT5) && ((instr & kExt5OpcodeMask) == RLDICL)); } #endif bool Assembler::IsCmpImmediate(Instr instr) { return ((instr & kOpcodeMask) == CMPI); } bool Assembler::IsCrSet(Instr instr) { return (((instr & kOpcodeMask) == EXT1) && ((instr & kExt1OpcodeMask) == CREQV)); } Register Assembler::GetCmpImmediateRegister(Instr instr) { DCHECK(IsCmpImmediate(instr)); return GetRA(instr); } int Assembler::GetCmpImmediateRawImmediate(Instr instr) { DCHECK(IsCmpImmediate(instr)); return instr & kOff16Mask; } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the last // instruction using the label. // The link chain is terminated by a negative code position (must be aligned) const int kEndOfChain = -4; int Assembler::target_at(int pos) { Instr instr = instr_at(pos); // check which type of branch this is 16 or 26 bit offset int opcode = instr & kOpcodeMask; if (BX == opcode) { int imm26 = ((instr & kImm26Mask) << 6) >> 6; imm26 &= ~(kAAMask | kLKMask); // discard AA|LK bits if present if (imm26 == 0) return kEndOfChain; return pos + imm26; } else if (BCX == opcode) { int imm16 = SIGN_EXT_IMM16((instr & kImm16Mask)); imm16 &= ~(kAAMask | kLKMask); // discard AA|LK bits if present if (imm16 == 0) return kEndOfChain; return pos + imm16; } else if ((instr & ~kImm26Mask) == 0) { // Emitted link to a label, not part of a branch (regexp PushBacktrack). if (instr == 0) { return kEndOfChain; } else { int32_t imm26 = SIGN_EXT_IMM26(instr); return (imm26 + pos); } } PPCPORT_UNIMPLEMENTED(); DCHECK(false); return -1; } void Assembler::target_at_put(int pos, int target_pos) { Instr instr = instr_at(pos); int opcode = instr & kOpcodeMask; // check which type of branch this is 16 or 26 bit offset if (BX == opcode) { int imm26 = target_pos - pos; DCHECK((imm26 & (kAAMask | kLKMask)) == 0); instr &= ((~kImm26Mask) | kAAMask | kLKMask); DCHECK(is_int26(imm26)); instr_at_put(pos, instr | (imm26 & kImm26Mask)); return; } else if (BCX == opcode) { int imm16 = target_pos - pos; DCHECK((imm16 & (kAAMask | kLKMask)) == 0); instr &= ((~kImm16Mask) | kAAMask | kLKMask); DCHECK(is_int16(imm16)); instr_at_put(pos, instr | (imm16 & kImm16Mask)); return; } else if ((instr & ~kImm26Mask) == 0) { DCHECK(target_pos == kEndOfChain || target_pos >= 0); // Emitted link to a label, not part of a branch (regexp PushBacktrack). // Load the position of the label relative to the generated code object // pointer in a register. Register dst = r3; // we assume r3 for now DCHECK(IsNop(instr_at(pos + kInstrSize))); uint32_t target = target_pos + (Code::kHeaderSize - kHeapObjectTag); CodePatcher patcher(reinterpret_cast(buffer_ + pos), 2, CodePatcher::DONT_FLUSH); int target_hi = static_cast(target) >> 16; int target_lo = static_cast(target) & 0XFFFF; patcher.masm()->lis(dst, Operand(SIGN_EXT_IMM16(target_hi))); patcher.masm()->ori(dst, dst, Operand(target_lo)); return; } DCHECK(false); } int Assembler::max_reach_from(int pos) { Instr instr = instr_at(pos); int opcode = instr & kOpcodeMask; // check which type of branch this is 16 or 26 bit offset if (BX == opcode) { return 26; } else if (BCX == opcode) { return 16; } else if ((instr & ~kImm26Mask) == 0) { // Emitted label constant, not part of a branch (regexp PushBacktrack). return 26; } DCHECK(false); return 0; } void Assembler::bind_to(Label* L, int pos) { DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position int32_t trampoline_pos = kInvalidSlotPos; if (L->is_linked() && !trampoline_emitted_) { unbound_labels_count_--; next_buffer_check_ += kTrampolineSlotsSize; } while (L->is_linked()) { int fixup_pos = L->pos(); int32_t offset = pos - fixup_pos; int maxReach = max_reach_from(fixup_pos); next(L); // call next before overwriting link with target at fixup_pos if (is_intn(offset, maxReach) == false) { if (trampoline_pos == kInvalidSlotPos) { trampoline_pos = get_trampoline_entry(); CHECK(trampoline_pos != kInvalidSlotPos); target_at_put(trampoline_pos, pos); } target_at_put(fixup_pos, trampoline_pos); } else { target_at_put(fixup_pos, pos); } } L->bind_to(pos); // Keep track of the last bound label so we don't eliminate any instructions // before a bound label. if (pos > last_bound_pos_) last_bound_pos_ = pos; } void Assembler::bind(Label* L) { DCHECK(!L->is_bound()); // label can only be bound once bind_to(L, pc_offset()); } void Assembler::next(Label* L) { DCHECK(L->is_linked()); int link = target_at(L->pos()); if (link == kEndOfChain) { L->Unuse(); } else { DCHECK(link >= 0); L->link_to(link); } } bool Assembler::is_near(Label* L, Condition cond) { DCHECK(L->is_bound()); if (L->is_bound() == false) return false; int maxReach = ((cond == al) ? 26 : 16); int offset = L->pos() - pc_offset(); return is_intn(offset, maxReach); } void Assembler::a_form(Instr instr, DoubleRegister frt, DoubleRegister fra, DoubleRegister frb, RCBit r) { emit(instr | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 | r); } void Assembler::d_form(Instr instr, Register rt, Register ra, const intptr_t val, bool signed_disp) { if (signed_disp) { if (!is_int16(val)) { PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR "\n", val, val); } DCHECK(is_int16(val)); } else { if (!is_uint16(val)) { PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR ", is_unsigned_imm16(val)=%d, kImm16Mask=0x%x\n", val, val, is_uint16(val), kImm16Mask); } DCHECK(is_uint16(val)); } emit(instr | rt.code() * B21 | ra.code() * B16 | (kImm16Mask & val)); } void Assembler::x_form(Instr instr, Register ra, Register rs, Register rb, RCBit r) { emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | r); } void Assembler::xo_form(Instr instr, Register rt, Register ra, Register rb, OEBit o, RCBit r) { emit(instr | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | o | r); } void Assembler::md_form(Instr instr, Register ra, Register rs, int shift, int maskbit, RCBit r) { int sh0_4 = shift & 0x1f; int sh5 = (shift >> 5) & 0x1; int m0_4 = maskbit & 0x1f; int m5 = (maskbit >> 5) & 0x1; emit(instr | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 | m0_4 * B6 | m5 * B5 | sh5 * B1 | r); } void Assembler::mds_form(Instr instr, Register ra, Register rs, Register rb, int maskbit, RCBit r) { int m0_4 = maskbit & 0x1f; int m5 = (maskbit >> 5) & 0x1; emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | m0_4 * B6 | m5 * B5 | r); } // Returns the next free trampoline entry. int32_t Assembler::get_trampoline_entry() { int32_t trampoline_entry = kInvalidSlotPos; if (!internal_trampoline_exception_) { trampoline_entry = trampoline_.take_slot(); if (kInvalidSlotPos == trampoline_entry) { internal_trampoline_exception_ = true; } } return trampoline_entry; } int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { int target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link } else { // was: target_pos = kEndOfChain; // However, using branch to self to mark the first reference // should avoid most instances of branch offset overflow. See // target_at() for where this is converted back to kEndOfChain. target_pos = pc_offset(); if (!trampoline_emitted_) { unbound_labels_count_++; next_buffer_check_ -= kTrampolineSlotsSize; } } L->link_to(pc_offset()); } return target_pos - pc_offset(); } // Branch instructions. void Assembler::bclr(BOfield bo, LKBit lk) { positions_recorder()->WriteRecordedPositions(); emit(EXT1 | bo | BCLRX | lk); } void Assembler::bcctr(BOfield bo, LKBit lk) { positions_recorder()->WriteRecordedPositions(); emit(EXT1 | bo | BCCTRX | lk); } // Pseudo op - branch to link register void Assembler::blr() { bclr(BA, LeaveLK); } // Pseudo op - branch to count register -- used for "jump" void Assembler::bctr() { bcctr(BA, LeaveLK); } void Assembler::bctrl() { bcctr(BA, SetLK); } void Assembler::bc(int branch_offset, BOfield bo, int condition_bit, LKBit lk) { if (lk == SetLK) { positions_recorder()->WriteRecordedPositions(); } DCHECK(is_int16(branch_offset)); emit(BCX | bo | condition_bit * B16 | (kImm16Mask & branch_offset) | lk); } void Assembler::b(int branch_offset, LKBit lk) { if (lk == SetLK) { positions_recorder()->WriteRecordedPositions(); } DCHECK((branch_offset & 3) == 0); int imm26 = branch_offset; DCHECK(is_int26(imm26)); // todo add AA and LK bits emit(BX | (imm26 & kImm26Mask) | lk); } void Assembler::xori(Register dst, Register src, const Operand& imm) { d_form(XORI, src, dst, imm.imm_, false); } void Assembler::xoris(Register ra, Register rs, const Operand& imm) { d_form(XORIS, rs, ra, imm.imm_, false); } void Assembler::xor_(Register dst, Register src1, Register src2, RCBit rc) { x_form(EXT2 | XORX, dst, src1, src2, rc); } void Assembler::cntlzw_(Register ra, Register rs, RCBit rc) { x_form(EXT2 | CNTLZWX, ra, rs, r0, rc); } void Assembler::and_(Register ra, Register rs, Register rb, RCBit rc) { x_form(EXT2 | ANDX, ra, rs, rb, rc); } void Assembler::rlwinm(Register ra, Register rs, int sh, int mb, int me, RCBit rc) { sh &= 0x1f; mb &= 0x1f; me &= 0x1f; emit(RLWINMX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 | me << 1 | rc); } void Assembler::rlwnm(Register ra, Register rs, Register rb, int mb, int me, RCBit rc) { mb &= 0x1f; me &= 0x1f; emit(RLWNMX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | mb * B6 | me << 1 | rc); } void Assembler::rlwimi(Register ra, Register rs, int sh, int mb, int me, RCBit rc) { sh &= 0x1f; mb &= 0x1f; me &= 0x1f; emit(RLWIMIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 | me << 1 | rc); } void Assembler::slwi(Register dst, Register src, const Operand& val, RCBit rc) { DCHECK((32 > val.imm_) && (val.imm_ >= 0)); rlwinm(dst, src, val.imm_, 0, 31 - val.imm_, rc); } void Assembler::srwi(Register dst, Register src, const Operand& val, RCBit rc) { DCHECK((32 > val.imm_) && (val.imm_ >= 0)); rlwinm(dst, src, 32 - val.imm_, val.imm_, 31, rc); } void Assembler::clrrwi(Register dst, Register src, const Operand& val, RCBit rc) { DCHECK((32 > val.imm_) && (val.imm_ >= 0)); rlwinm(dst, src, 0, 0, 31 - val.imm_, rc); } void Assembler::clrlwi(Register dst, Register src, const Operand& val, RCBit rc) { DCHECK((32 > val.imm_) && (val.imm_ >= 0)); rlwinm(dst, src, 0, val.imm_, 31, rc); } void Assembler::srawi(Register ra, Register rs, int sh, RCBit r) { emit(EXT2 | SRAWIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | r); } void Assembler::srw(Register dst, Register src1, Register src2, RCBit r) { x_form(EXT2 | SRWX, dst, src1, src2, r); } void Assembler::slw(Register dst, Register src1, Register src2, RCBit r) { x_form(EXT2 | SLWX, dst, src1, src2, r); } void Assembler::sraw(Register ra, Register rs, Register rb, RCBit r) { x_form(EXT2 | SRAW, ra, rs, rb, r); } void Assembler::rotlw(Register ra, Register rs, Register rb, RCBit r) { rlwnm(ra, rs, rb, 0, 31, r); } void Assembler::rotlwi(Register ra, Register rs, int sh, RCBit r) { rlwinm(ra, rs, sh, 0, 31, r); } void Assembler::rotrwi(Register ra, Register rs, int sh, RCBit r) { rlwinm(ra, rs, 32 - sh, 0, 31, r); } void Assembler::subi(Register dst, Register src, const Operand& imm) { addi(dst, src, Operand(-(imm.imm_))); } void Assembler::addc(Register dst, Register src1, Register src2, OEBit o, RCBit r) { xo_form(EXT2 | ADDCX, dst, src1, src2, o, r); } void Assembler::addze(Register dst, Register src1, OEBit o, RCBit r) { // a special xo_form emit(EXT2 | ADDZEX | dst.code() * B21 | src1.code() * B16 | o | r); } void Assembler::sub(Register dst, Register src1, Register src2, OEBit o, RCBit r) { xo_form(EXT2 | SUBFX, dst, src2, src1, o, r); } void Assembler::subfc(Register dst, Register src1, Register src2, OEBit o, RCBit r) { xo_form(EXT2 | SUBFCX, dst, src2, src1, o, r); } void Assembler::subfic(Register dst, Register src, const Operand& imm) { d_form(SUBFIC, dst, src, imm.imm_, true); } void Assembler::add(Register dst, Register src1, Register src2, OEBit o, RCBit r) { xo_form(EXT2 | ADDX, dst, src1, src2, o, r); } // Multiply low word void Assembler::mullw(Register dst, Register src1, Register src2, OEBit o, RCBit r) { xo_form(EXT2 | MULLW, dst, src1, src2, o, r); } // Multiply hi word void Assembler::mulhw(Register dst, Register src1, Register src2, OEBit o, RCBit r) { xo_form(EXT2 | MULHWX, dst, src1, src2, o, r); } // Divide word void Assembler::divw(Register dst, Register src1, Register src2, OEBit o, RCBit r) { xo_form(EXT2 | DIVW, dst, src1, src2, o, r); } void Assembler::addi(Register dst, Register src, const Operand& imm) { DCHECK(!src.is(r0)); // use li instead to show intent d_form(ADDI, dst, src, imm.imm_, true); } void Assembler::addis(Register dst, Register src, const Operand& imm) { DCHECK(!src.is(r0)); // use lis instead to show intent d_form(ADDIS, dst, src, imm.imm_, true); } void Assembler::addic(Register dst, Register src, const Operand& imm) { d_form(ADDIC, dst, src, imm.imm_, true); } void Assembler::andi(Register ra, Register rs, const Operand& imm) { d_form(ANDIx, rs, ra, imm.imm_, false); } void Assembler::andis(Register ra, Register rs, const Operand& imm) { d_form(ANDISx, rs, ra, imm.imm_, false); } void Assembler::nor(Register dst, Register src1, Register src2, RCBit r) { x_form(EXT2 | NORX, dst, src1, src2, r); } void Assembler::notx(Register dst, Register src, RCBit r) { x_form(EXT2 | NORX, dst, src, src, r); } void Assembler::ori(Register ra, Register rs, const Operand& imm) { d_form(ORI, rs, ra, imm.imm_, false); } void Assembler::oris(Register dst, Register src, const Operand& imm) { d_form(ORIS, src, dst, imm.imm_, false); } void Assembler::orx(Register dst, Register src1, Register src2, RCBit rc) { x_form(EXT2 | ORX, dst, src1, src2, rc); } void Assembler::cmpi(Register src1, const Operand& src2, CRegister cr) { intptr_t imm16 = src2.imm_; #if V8_TARGET_ARCH_PPC64 int L = 1; #else int L = 0; #endif DCHECK(is_int16(imm16)); DCHECK(cr.code() >= 0 && cr.code() <= 7); imm16 &= kImm16Mask; emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16); } void Assembler::cmpli(Register src1, const Operand& src2, CRegister cr) { uintptr_t uimm16 = src2.imm_; #if V8_TARGET_ARCH_PPC64 int L = 1; #else int L = 0; #endif DCHECK(is_uint16(uimm16)); DCHECK(cr.code() >= 0 && cr.code() <= 7); uimm16 &= kImm16Mask; emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16); } void Assembler::cmp(Register src1, Register src2, CRegister cr) { #if V8_TARGET_ARCH_PPC64 int L = 1; #else int L = 0; #endif DCHECK(cr.code() >= 0 && cr.code() <= 7); emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 | src2.code() * B11); } void Assembler::cmpl(Register src1, Register src2, CRegister cr) { #if V8_TARGET_ARCH_PPC64 int L = 1; #else int L = 0; #endif DCHECK(cr.code() >= 0 && cr.code() <= 7); emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 | src2.code() * B11); } void Assembler::cmpwi(Register src1, const Operand& src2, CRegister cr) { intptr_t imm16 = src2.imm_; int L = 0; DCHECK(is_int16(imm16)); DCHECK(cr.code() >= 0 && cr.code() <= 7); imm16 &= kImm16Mask; emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16); } void Assembler::cmplwi(Register src1, const Operand& src2, CRegister cr) { uintptr_t uimm16 = src2.imm_; int L = 0; DCHECK(is_uint16(uimm16)); DCHECK(cr.code() >= 0 && cr.code() <= 7); uimm16 &= kImm16Mask; emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16); } void Assembler::cmpw(Register src1, Register src2, CRegister cr) { int L = 0; DCHECK(cr.code() >= 0 && cr.code() <= 7); emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 | src2.code() * B11); } void Assembler::cmplw(Register src1, Register src2, CRegister cr) { int L = 0; DCHECK(cr.code() >= 0 && cr.code() <= 7); emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 | src2.code() * B11); } // Pseudo op - load immediate void Assembler::li(Register dst, const Operand& imm) { d_form(ADDI, dst, r0, imm.imm_, true); } void Assembler::lis(Register dst, const Operand& imm) { d_form(ADDIS, dst, r0, imm.imm_, true); } // Pseudo op - move register void Assembler::mr(Register dst, Register src) { // actually or(dst, src, src) orx(dst, src, src); } void Assembler::lbz(Register dst, const MemOperand& src) { DCHECK(!src.ra_.is(r0)); d_form(LBZ, dst, src.ra(), src.offset(), true); } void Assembler::lbzx(Register rt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LBZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::lbzux(Register rt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LBZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::lhz(Register dst, const MemOperand& src) { DCHECK(!src.ra_.is(r0)); d_form(LHZ, dst, src.ra(), src.offset(), true); } void Assembler::lhzx(Register rt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LHZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::lhzux(Register rt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LHZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::lwz(Register dst, const MemOperand& src) { DCHECK(!src.ra_.is(r0)); d_form(LWZ, dst, src.ra(), src.offset(), true); } void Assembler::lwzu(Register dst, const MemOperand& src) { DCHECK(!src.ra_.is(r0)); d_form(LWZU, dst, src.ra(), src.offset(), true); } void Assembler::lwzx(Register rt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LWZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::lwzux(Register rt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LWZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::lwa(Register dst, const MemOperand& src) { #if V8_TARGET_ARCH_PPC64 int offset = src.offset(); DCHECK(!src.ra_.is(r0)); DCHECK(!(offset & 3) && is_int16(offset)); offset = kImm16Mask & offset; emit(LD | dst.code() * B21 | src.ra().code() * B16 | offset | 2); #else lwz(dst, src); #endif } void Assembler::stb(Register dst, const MemOperand& src) { DCHECK(!src.ra_.is(r0)); d_form(STB, dst, src.ra(), src.offset(), true); } void Assembler::stbx(Register rs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STBX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::stbux(Register rs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STBUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::sth(Register dst, const MemOperand& src) { DCHECK(!src.ra_.is(r0)); d_form(STH, dst, src.ra(), src.offset(), true); } void Assembler::sthx(Register rs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STHX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::sthux(Register rs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STHUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::stw(Register dst, const MemOperand& src) { DCHECK(!src.ra_.is(r0)); d_form(STW, dst, src.ra(), src.offset(), true); } void Assembler::stwu(Register dst, const MemOperand& src) { DCHECK(!src.ra_.is(r0)); d_form(STWU, dst, src.ra(), src.offset(), true); } void Assembler::stwx(Register rs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STWX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::stwux(Register rs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STWUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::extsb(Register rs, Register ra, RCBit rc) { emit(EXT2 | EXTSB | ra.code() * B21 | rs.code() * B16 | rc); } void Assembler::extsh(Register rs, Register ra, RCBit rc) { emit(EXT2 | EXTSH | ra.code() * B21 | rs.code() * B16 | rc); } void Assembler::neg(Register rt, Register ra, OEBit o, RCBit r) { emit(EXT2 | NEGX | rt.code() * B21 | ra.code() * B16 | o | r); } void Assembler::andc(Register dst, Register src1, Register src2, RCBit rc) { x_form(EXT2 | ANDCX, dst, src1, src2, rc); } #if V8_TARGET_ARCH_PPC64 // 64bit specific instructions void Assembler::ld(Register rd, const MemOperand& src) { int offset = src.offset(); DCHECK(!src.ra_.is(r0)); DCHECK(!(offset & 3) && is_int16(offset)); offset = kImm16Mask & offset; emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset); } void Assembler::ldx(Register rd, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LDX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11); } void Assembler::ldu(Register rd, const MemOperand& src) { int offset = src.offset(); DCHECK(!src.ra_.is(r0)); DCHECK(!(offset & 3) && is_int16(offset)); offset = kImm16Mask & offset; emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset | 1); } void Assembler::ldux(Register rd, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LDUX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11); } void Assembler::std(Register rs, const MemOperand& src) { int offset = src.offset(); DCHECK(!src.ra_.is(r0)); DCHECK(!(offset & 3) && is_int16(offset)); offset = kImm16Mask & offset; emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset); } void Assembler::stdx(Register rs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STDX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11); } void Assembler::stdu(Register rs, const MemOperand& src) { int offset = src.offset(); DCHECK(!src.ra_.is(r0)); DCHECK(!(offset & 3) && is_int16(offset)); offset = kImm16Mask & offset; emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset | 1); } void Assembler::stdux(Register rs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STDUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11); } void Assembler::rldic(Register ra, Register rs, int sh, int mb, RCBit r) { md_form(EXT5 | RLDIC, ra, rs, sh, mb, r); } void Assembler::rldicl(Register ra, Register rs, int sh, int mb, RCBit r) { md_form(EXT5 | RLDICL, ra, rs, sh, mb, r); } void Assembler::rldcl(Register ra, Register rs, Register rb, int mb, RCBit r) { mds_form(EXT5 | RLDCL, ra, rs, rb, mb, r); } void Assembler::rldicr(Register ra, Register rs, int sh, int me, RCBit r) { md_form(EXT5 | RLDICR, ra, rs, sh, me, r); } void Assembler::sldi(Register dst, Register src, const Operand& val, RCBit rc) { DCHECK((64 > val.imm_) && (val.imm_ >= 0)); rldicr(dst, src, val.imm_, 63 - val.imm_, rc); } void Assembler::srdi(Register dst, Register src, const Operand& val, RCBit rc) { DCHECK((64 > val.imm_) && (val.imm_ >= 0)); rldicl(dst, src, 64 - val.imm_, val.imm_, rc); } void Assembler::clrrdi(Register dst, Register src, const Operand& val, RCBit rc) { DCHECK((64 > val.imm_) && (val.imm_ >= 0)); rldicr(dst, src, 0, 63 - val.imm_, rc); } void Assembler::clrldi(Register dst, Register src, const Operand& val, RCBit rc) { DCHECK((64 > val.imm_) && (val.imm_ >= 0)); rldicl(dst, src, 0, val.imm_, rc); } void Assembler::rldimi(Register ra, Register rs, int sh, int mb, RCBit r) { md_form(EXT5 | RLDIMI, ra, rs, sh, mb, r); } void Assembler::sradi(Register ra, Register rs, int sh, RCBit r) { int sh0_4 = sh & 0x1f; int sh5 = (sh >> 5) & 0x1; emit(EXT2 | SRADIX | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 | sh5 * B1 | r); } void Assembler::srd(Register dst, Register src1, Register src2, RCBit r) { x_form(EXT2 | SRDX, dst, src1, src2, r); } void Assembler::sld(Register dst, Register src1, Register src2, RCBit r) { x_form(EXT2 | SLDX, dst, src1, src2, r); } void Assembler::srad(Register ra, Register rs, Register rb, RCBit r) { x_form(EXT2 | SRAD, ra, rs, rb, r); } void Assembler::rotld(Register ra, Register rs, Register rb, RCBit r) { rldcl(ra, rs, rb, 0, r); } void Assembler::rotldi(Register ra, Register rs, int sh, RCBit r) { rldicl(ra, rs, sh, 0, r); } void Assembler::rotrdi(Register ra, Register rs, int sh, RCBit r) { rldicl(ra, rs, 64 - sh, 0, r); } void Assembler::cntlzd_(Register ra, Register rs, RCBit rc) { x_form(EXT2 | CNTLZDX, ra, rs, r0, rc); } void Assembler::extsw(Register rs, Register ra, RCBit rc) { emit(EXT2 | EXTSW | ra.code() * B21 | rs.code() * B16 | rc); } void Assembler::mulld(Register dst, Register src1, Register src2, OEBit o, RCBit r) { xo_form(EXT2 | MULLD, dst, src1, src2, o, r); } void Assembler::divd(Register dst, Register src1, Register src2, OEBit o, RCBit r) { xo_form(EXT2 | DIVD, dst, src1, src2, o, r); } #endif void Assembler::fake_asm(enum FAKE_OPCODE_T fopcode) { DCHECK(fopcode < fLastFaker); emit(FAKE_OPCODE | FAKER_SUBOPCODE | fopcode); } void Assembler::marker_asm(int mcode) { if (::v8::internal::FLAG_trace_sim_stubs) { DCHECK(mcode < F_NEXT_AVAILABLE_STUB_MARKER); emit(FAKE_OPCODE | MARKER_SUBOPCODE | mcode); } } // Function descriptor for AIX. // Code address skips the function descriptor "header". // TOC and static chain are ignored and set to 0. void Assembler::function_descriptor() { #if ABI_USES_FUNCTION_DESCRIPTORS DCHECK(pc_offset() == 0); RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); emit_ptr(reinterpret_cast(pc_) + 3 * kPointerSize); emit_ptr(0); emit_ptr(0); #endif } #if ABI_USES_FUNCTION_DESCRIPTORS || V8_OOL_CONSTANT_POOL void Assembler::RelocateInternalReference(Address pc, intptr_t delta, Address code_start, ICacheFlushMode icache_flush_mode) { DCHECK(delta || code_start); #if ABI_USES_FUNCTION_DESCRIPTORS uintptr_t* fd = reinterpret_cast(pc); if (fd[1] == 0 && fd[2] == 0) { // Function descriptor if (delta) { fd[0] += delta; } else { fd[0] = reinterpret_cast(code_start) + 3 * kPointerSize; } return; } #endif #if V8_OOL_CONSTANT_POOL // mov for LoadConstantPoolPointerRegister ConstantPoolArray* constant_pool = NULL; if (delta) { code_start = target_address_at(pc, constant_pool) + delta; } set_target_address_at(pc, constant_pool, code_start, icache_flush_mode); #endif } int Assembler::DecodeInternalReference(Vector buffer, Address pc) { #if ABI_USES_FUNCTION_DESCRIPTORS uintptr_t* fd = reinterpret_cast(pc); if (fd[1] == 0 && fd[2] == 0) { // Function descriptor SNPrintF(buffer, "[%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR "]" " function descriptor", fd[0], fd[1], fd[2]); return kPointerSize * 3; } #endif return 0; } #endif int Assembler::instructions_required_for_mov(const Operand& x) const { #if V8_OOL_CONSTANT_POOL || DEBUG bool canOptimize = !(x.must_output_reloc_info(this) || is_trampoline_pool_blocked()); #endif #if V8_OOL_CONSTANT_POOL if (use_constant_pool_for_mov(x, canOptimize)) { // Current usage guarantees that all constant pool references can // use the same sequence. return kMovInstructionsConstantPool; } #endif DCHECK(!canOptimize); return kMovInstructionsNoConstantPool; } #if V8_OOL_CONSTANT_POOL bool Assembler::use_constant_pool_for_mov(const Operand& x, bool canOptimize) const { if (!is_ool_constant_pool_available() || is_constant_pool_full()) { // If there is no constant pool available, we must use a mov // immediate sequence. return false; } intptr_t value = x.immediate(); if (canOptimize && is_int16(value)) { // Prefer a single-instruction load-immediate. return false; } return true; } void Assembler::EnsureSpaceFor(int space_needed) { if (buffer_space() <= (kGap + space_needed)) { GrowBuffer(); } } #endif bool Operand::must_output_reloc_info(const Assembler* assembler) const { if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) { if (assembler != NULL && assembler->predictable_code_size()) return true; return assembler->serializer_enabled(); } else if (RelocInfo::IsNone(rmode_)) { return false; } return true; } // Primarily used for loading constants // This should really move to be in macro-assembler as it // is really a pseudo instruction // Some usages of this intend for a FIXED_SEQUENCE to be used // Todo - break this dependency so we can optimize mov() in general // and only use the generic version when we require a fixed sequence void Assembler::mov(Register dst, const Operand& src) { intptr_t value = src.immediate(); bool canOptimize; RelocInfo rinfo(pc_, src.rmode_, value, NULL); if (src.must_output_reloc_info(this)) { RecordRelocInfo(rinfo); } canOptimize = !(src.must_output_reloc_info(this) || is_trampoline_pool_blocked()); #if V8_OOL_CONSTANT_POOL if (use_constant_pool_for_mov(src, canOptimize)) { DCHECK(is_ool_constant_pool_available()); ConstantPoolAddEntry(rinfo); #if V8_TARGET_ARCH_PPC64 BlockTrampolinePoolScope block_trampoline_pool(this); // We are forced to use 2 instruction sequence since the constant // pool pointer is tagged. li(dst, Operand::Zero()); ldx(dst, MemOperand(kConstantPoolRegister, dst)); #else lwz(dst, MemOperand(kConstantPoolRegister, 0)); #endif return; } #endif if (canOptimize) { if (is_int16(value)) { li(dst, Operand(value)); } else { uint16_t u16; #if V8_TARGET_ARCH_PPC64 if (is_int32(value)) { #endif lis(dst, Operand(value >> 16)); #if V8_TARGET_ARCH_PPC64 } else { if (is_int48(value)) { li(dst, Operand(value >> 32)); } else { lis(dst, Operand(value >> 48)); u16 = ((value >> 32) & 0xffff); if (u16) { ori(dst, dst, Operand(u16)); } } sldi(dst, dst, Operand(32)); u16 = ((value >> 16) & 0xffff); if (u16) { oris(dst, dst, Operand(u16)); } } #endif u16 = (value & 0xffff); if (u16) { ori(dst, dst, Operand(u16)); } } return; } DCHECK(!canOptimize); { BlockTrampolinePoolScope block_trampoline_pool(this); #if V8_TARGET_ARCH_PPC64 int32_t hi_32 = static_cast(value >> 32); int32_t lo_32 = static_cast(value); int hi_word = static_cast(hi_32 >> 16); int lo_word = static_cast(hi_32 & 0xffff); lis(dst, Operand(SIGN_EXT_IMM16(hi_word))); ori(dst, dst, Operand(lo_word)); sldi(dst, dst, Operand(32)); hi_word = static_cast(((lo_32 >> 16) & 0xffff)); lo_word = static_cast(lo_32 & 0xffff); oris(dst, dst, Operand(hi_word)); ori(dst, dst, Operand(lo_word)); #else int hi_word = static_cast(value >> 16); int lo_word = static_cast(value & 0xffff); lis(dst, Operand(SIGN_EXT_IMM16(hi_word))); ori(dst, dst, Operand(lo_word)); #endif } } void Assembler::mov_label_offset(Register dst, Label* label) { if (label->is_bound()) { int target = label->pos(); mov(dst, Operand(target + Code::kHeaderSize - kHeapObjectTag)); } else { bool is_linked = label->is_linked(); // Emit the link to the label in the code stream followed by extra // nop instructions. DCHECK(dst.is(r3)); // target_at_put assumes r3 for now int link = is_linked ? label->pos() - pc_offset() : 0; label->link_to(pc_offset()); if (!is_linked && !trampoline_emitted_) { unbound_labels_count_++; next_buffer_check_ -= kTrampolineSlotsSize; } // When the label is bound, these instructions will be patched // with a 2 instruction mov sequence that will load the // destination register with the position of the label from the // beginning of the code. // // When the label gets bound: target_at extracts the link and // target_at_put patches the instructions. BlockTrampolinePoolScope block_trampoline_pool(this); emit(link); nop(); } } // Special register instructions void Assembler::crxor(int bt, int ba, int bb) { emit(EXT1 | CRXOR | bt * B21 | ba * B16 | bb * B11); } void Assembler::creqv(int bt, int ba, int bb) { emit(EXT1 | CREQV | bt * B21 | ba * B16 | bb * B11); } void Assembler::mflr(Register dst) { emit(EXT2 | MFSPR | dst.code() * B21 | 256 << 11); // Ignore RC bit } void Assembler::mtlr(Register src) { emit(EXT2 | MTSPR | src.code() * B21 | 256 << 11); // Ignore RC bit } void Assembler::mtctr(Register src) { emit(EXT2 | MTSPR | src.code() * B21 | 288 << 11); // Ignore RC bit } void Assembler::mtxer(Register src) { emit(EXT2 | MTSPR | src.code() * B21 | 32 << 11); } void Assembler::mcrfs(int bf, int bfa) { emit(EXT4 | MCRFS | bf * B23 | bfa * B18); } void Assembler::mfcr(Register dst) { emit(EXT2 | MFCR | dst.code() * B21); } #if V8_TARGET_ARCH_PPC64 void Assembler::mffprd(Register dst, DoubleRegister src) { emit(EXT2 | MFVSRD | src.code() * B21 | dst.code() * B16); } void Assembler::mffprwz(Register dst, DoubleRegister src) { emit(EXT2 | MFVSRWZ | src.code() * B21 | dst.code() * B16); } void Assembler::mtfprd(DoubleRegister dst, Register src) { emit(EXT2 | MTVSRD | dst.code() * B21 | src.code() * B16); } void Assembler::mtfprwz(DoubleRegister dst, Register src) { emit(EXT2 | MTVSRWZ | dst.code() * B21 | src.code() * B16); } void Assembler::mtfprwa(DoubleRegister dst, Register src) { emit(EXT2 | MTVSRWA | dst.code() * B21 | src.code() * B16); } #endif // Exception-generating instructions and debugging support. // Stops with a non-negative code less than kNumOfWatchedStops support // enabling/disabling and a counter feature. See simulator-ppc.h . void Assembler::stop(const char* msg, Condition cond, int32_t code, CRegister cr) { if (cond != al) { Label skip; b(NegateCondition(cond), &skip, cr); bkpt(0); bind(&skip); } else { bkpt(0); } } void Assembler::bkpt(uint32_t imm16) { emit(0x7d821008); } void Assembler::info(const char* msg, Condition cond, int32_t code, CRegister cr) { if (::v8::internal::FLAG_trace_sim_stubs) { emit(0x7d9ff808); #if V8_TARGET_ARCH_PPC64 uint64_t value = reinterpret_cast(msg); emit(static_cast(value >> 32)); emit(static_cast(value & 0xFFFFFFFF)); #else emit(reinterpret_cast(msg)); #endif } } void Assembler::dcbf(Register ra, Register rb) { emit(EXT2 | DCBF | ra.code() * B16 | rb.code() * B11); } void Assembler::sync() { emit(EXT2 | SYNC); } void Assembler::lwsync() { emit(EXT2 | SYNC | 1 * B21); } void Assembler::icbi(Register ra, Register rb) { emit(EXT2 | ICBI | ra.code() * B16 | rb.code() * B11); } void Assembler::isync() { emit(EXT1 | ISYNC); } // Floating point support void Assembler::lfd(const DoubleRegister frt, const MemOperand& src) { int offset = src.offset(); Register ra = src.ra(); DCHECK(is_int16(offset)); int imm16 = offset & kImm16Mask; // could be x_form instruction with some casting magic emit(LFD | frt.code() * B21 | ra.code() * B16 | imm16); } void Assembler::lfdu(const DoubleRegister frt, const MemOperand& src) { int offset = src.offset(); Register ra = src.ra(); DCHECK(is_int16(offset)); int imm16 = offset & kImm16Mask; // could be x_form instruction with some casting magic emit(LFDU | frt.code() * B21 | ra.code() * B16 | imm16); } void Assembler::lfdx(const DoubleRegister frt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LFDX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::lfdux(const DoubleRegister frt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LFDUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::lfs(const DoubleRegister frt, const MemOperand& src) { int offset = src.offset(); Register ra = src.ra(); DCHECK(is_int16(offset)); DCHECK(!ra.is(r0)); int imm16 = offset & kImm16Mask; // could be x_form instruction with some casting magic emit(LFS | frt.code() * B21 | ra.code() * B16 | imm16); } void Assembler::lfsu(const DoubleRegister frt, const MemOperand& src) { int offset = src.offset(); Register ra = src.ra(); DCHECK(is_int16(offset)); DCHECK(!ra.is(r0)); int imm16 = offset & kImm16Mask; // could be x_form instruction with some casting magic emit(LFSU | frt.code() * B21 | ra.code() * B16 | imm16); } void Assembler::lfsx(const DoubleRegister frt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LFSX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::lfsux(const DoubleRegister frt, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | LFSUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::stfd(const DoubleRegister frs, const MemOperand& src) { int offset = src.offset(); Register ra = src.ra(); DCHECK(is_int16(offset)); DCHECK(!ra.is(r0)); int imm16 = offset & kImm16Mask; // could be x_form instruction with some casting magic emit(STFD | frs.code() * B21 | ra.code() * B16 | imm16); } void Assembler::stfdu(const DoubleRegister frs, const MemOperand& src) { int offset = src.offset(); Register ra = src.ra(); DCHECK(is_int16(offset)); DCHECK(!ra.is(r0)); int imm16 = offset & kImm16Mask; // could be x_form instruction with some casting magic emit(STFDU | frs.code() * B21 | ra.code() * B16 | imm16); } void Assembler::stfdx(const DoubleRegister frs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STFDX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::stfdux(const DoubleRegister frs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STFDUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::stfs(const DoubleRegister frs, const MemOperand& src) { int offset = src.offset(); Register ra = src.ra(); DCHECK(is_int16(offset)); DCHECK(!ra.is(r0)); int imm16 = offset & kImm16Mask; // could be x_form instruction with some casting magic emit(STFS | frs.code() * B21 | ra.code() * B16 | imm16); } void Assembler::stfsu(const DoubleRegister frs, const MemOperand& src) { int offset = src.offset(); Register ra = src.ra(); DCHECK(is_int16(offset)); DCHECK(!ra.is(r0)); int imm16 = offset & kImm16Mask; // could be x_form instruction with some casting magic emit(STFSU | frs.code() * B21 | ra.code() * B16 | imm16); } void Assembler::stfsx(const DoubleRegister frs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STFSX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::stfsux(const DoubleRegister frs, const MemOperand& src) { Register ra = src.ra(); Register rb = src.rb(); DCHECK(!ra.is(r0)); emit(EXT2 | STFSUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 | LeaveRC); } void Assembler::fsub(const DoubleRegister frt, const DoubleRegister fra, const DoubleRegister frb, RCBit rc) { a_form(EXT4 | FSUB, frt, fra, frb, rc); } void Assembler::fadd(const DoubleRegister frt, const DoubleRegister fra, const DoubleRegister frb, RCBit rc) { a_form(EXT4 | FADD, frt, fra, frb, rc); } void Assembler::fmul(const DoubleRegister frt, const DoubleRegister fra, const DoubleRegister frc, RCBit rc) { emit(EXT4 | FMUL | frt.code() * B21 | fra.code() * B16 | frc.code() * B6 | rc); } void Assembler::fdiv(const DoubleRegister frt, const DoubleRegister fra, const DoubleRegister frb, RCBit rc) { a_form(EXT4 | FDIV, frt, fra, frb, rc); } void Assembler::fcmpu(const DoubleRegister fra, const DoubleRegister frb, CRegister cr) { DCHECK(cr.code() >= 0 && cr.code() <= 7); emit(EXT4 | FCMPU | cr.code() * B23 | fra.code() * B16 | frb.code() * B11); } void Assembler::fmr(const DoubleRegister frt, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FMR | frt.code() * B21 | frb.code() * B11 | rc); } void Assembler::fctiwz(const DoubleRegister frt, const DoubleRegister frb) { emit(EXT4 | FCTIWZ | frt.code() * B21 | frb.code() * B11); } void Assembler::fctiw(const DoubleRegister frt, const DoubleRegister frb) { emit(EXT4 | FCTIW | frt.code() * B21 | frb.code() * B11); } void Assembler::frim(const DoubleRegister frt, const DoubleRegister frb) { emit(EXT4 | FRIM | frt.code() * B21 | frb.code() * B11); } void Assembler::frsp(const DoubleRegister frt, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FRSP | frt.code() * B21 | frb.code() * B11 | rc); } void Assembler::fcfid(const DoubleRegister frt, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FCFID | frt.code() * B21 | frb.code() * B11 | rc); } void Assembler::fctid(const DoubleRegister frt, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FCTID | frt.code() * B21 | frb.code() * B11 | rc); } void Assembler::fctidz(const DoubleRegister frt, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FCTIDZ | frt.code() * B21 | frb.code() * B11 | rc); } void Assembler::fsel(const DoubleRegister frt, const DoubleRegister fra, const DoubleRegister frc, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FSEL | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 | frc.code() * B6 | rc); } void Assembler::fneg(const DoubleRegister frt, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FNEG | frt.code() * B21 | frb.code() * B11 | rc); } void Assembler::mtfsfi(int bf, int immediate, RCBit rc) { emit(EXT4 | MTFSFI | bf * B23 | immediate * B12 | rc); } void Assembler::mffs(const DoubleRegister frt, RCBit rc) { emit(EXT4 | MFFS | frt.code() * B21 | rc); } void Assembler::mtfsf(const DoubleRegister frb, bool L, int FLM, bool W, RCBit rc) { emit(EXT4 | MTFSF | frb.code() * B11 | W * B16 | FLM * B17 | L * B25 | rc); } void Assembler::fsqrt(const DoubleRegister frt, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FSQRT | frt.code() * B21 | frb.code() * B11 | rc); } void Assembler::fabs(const DoubleRegister frt, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FABS | frt.code() * B21 | frb.code() * B11 | rc); } void Assembler::fmadd(const DoubleRegister frt, const DoubleRegister fra, const DoubleRegister frc, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FMADD | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 | frc.code() * B6 | rc); } void Assembler::fmsub(const DoubleRegister frt, const DoubleRegister fra, const DoubleRegister frc, const DoubleRegister frb, RCBit rc) { emit(EXT4 | FMSUB | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 | frc.code() * B6 | rc); } // Pseudo instructions. void Assembler::nop(int type) { Register reg = r0; switch (type) { case NON_MARKING_NOP: reg = r0; break; case GROUP_ENDING_NOP: reg = r2; break; case DEBUG_BREAK_NOP: reg = r3; break; default: UNIMPLEMENTED(); } ori(reg, reg, Operand::Zero()); } bool Assembler::IsNop(Instr instr, int type) { int reg = 0; switch (type) { case NON_MARKING_NOP: reg = 0; break; case GROUP_ENDING_NOP: reg = 2; break; case DEBUG_BREAK_NOP: reg = 3; break; default: UNIMPLEMENTED(); } return instr == (ORI | reg * B21 | reg * B16); } // Debugging. void Assembler::RecordJSReturn() { positions_recorder()->WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::JS_RETURN); } void Assembler::RecordDebugBreakSlot() { positions_recorder()->WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); } void Assembler::RecordComment(const char* msg) { if (FLAG_code_comments) { CheckBuffer(); RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast(msg)); } } void Assembler::GrowBuffer() { if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // the new buffer if (buffer_size_ < 4 * KB) { desc.buffer_size = 4 * KB; } else if (buffer_size_ < 1 * MB) { desc.buffer_size = 2 * buffer_size_; } else { desc.buffer_size = buffer_size_ + 1 * MB; } CHECK_GT(desc.buffer_size, 0); // no overflow // Set up new buffer. desc.buffer = NewArray(desc.buffer_size); desc.instr_size = pc_offset(); desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); // Copy the data. intptr_t pc_delta = desc.buffer - buffer_; intptr_t rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); memmove(desc.buffer, buffer_, desc.instr_size); memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. DeleteArray(buffer_); buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // None of our relocation types are pc relative pointing outside the code // buffer nor pc absolute pointing inside the code buffer, so there is no need // to relocate any emitted relocation entries. #if ABI_USES_FUNCTION_DESCRIPTORS || V8_OOL_CONSTANT_POOL // Relocate runtime entries. for (RelocIterator it(desc); !it.done(); it.next()) { RelocInfo::Mode rmode = it.rinfo()->rmode(); if (rmode == RelocInfo::INTERNAL_REFERENCE) { RelocateInternalReference(it.rinfo()->pc(), pc_delta, 0); } } #if V8_OOL_CONSTANT_POOL constant_pool_builder_.Relocate(pc_delta); #endif #endif } void Assembler::db(uint8_t data) { CheckBuffer(); *reinterpret_cast(pc_) = data; pc_ += sizeof(uint8_t); } void Assembler::dd(uint32_t data) { CheckBuffer(); *reinterpret_cast(pc_) = data; pc_ += sizeof(uint32_t); } void Assembler::emit_ptr(uintptr_t data) { CheckBuffer(); *reinterpret_cast(pc_) = data; pc_ += sizeof(uintptr_t); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { RelocInfo rinfo(pc_, rmode, data, NULL); RecordRelocInfo(rinfo); } void Assembler::RecordRelocInfo(const RelocInfo& rinfo) { if (rinfo.rmode() >= RelocInfo::JS_RETURN && rinfo.rmode() <= RelocInfo::DEBUG_BREAK_SLOT) { // Adjust code for new modes. DCHECK(RelocInfo::IsDebugBreakSlot(rinfo.rmode()) || RelocInfo::IsJSReturn(rinfo.rmode()) || RelocInfo::IsComment(rinfo.rmode()) || RelocInfo::IsPosition(rinfo.rmode())); } if (!RelocInfo::IsNone(rinfo.rmode())) { // Don't record external references unless the heap will be serialized. if (rinfo.rmode() == RelocInfo::EXTERNAL_REFERENCE) { if (!serializer_enabled() && !emit_debug_code()) { return; } } DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here if (rinfo.rmode() == RelocInfo::CODE_TARGET_WITH_ID) { RelocInfo reloc_info_with_ast_id(rinfo.pc(), rinfo.rmode(), RecordedAstId().ToInt(), NULL); ClearRecordedAstId(); reloc_info_writer.Write(&reloc_info_with_ast_id); } else { reloc_info_writer.Write(&rinfo); } } } void Assembler::BlockTrampolinePoolFor(int instructions) { BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); } void Assembler::CheckTrampolinePool() { // Some small sequences of instructions must not be broken up by the // insertion of a trampoline pool; such sequences are protected by setting // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, // which are both checked here. Also, recursive calls to CheckTrampolinePool // are blocked by trampoline_pool_blocked_nesting_. if ((trampoline_pool_blocked_nesting_ > 0) || (pc_offset() < no_trampoline_pool_before_)) { // Emission is currently blocked; make sure we try again as soon as // possible. if (trampoline_pool_blocked_nesting_ > 0) { next_buffer_check_ = pc_offset() + kInstrSize; } else { next_buffer_check_ = no_trampoline_pool_before_; } return; } DCHECK(!trampoline_emitted_); DCHECK(unbound_labels_count_ >= 0); if (unbound_labels_count_ > 0) { // First we emit jump, then we emit trampoline pool. { BlockTrampolinePoolScope block_trampoline_pool(this); Label after_pool; b(&after_pool); int pool_start = pc_offset(); for (int i = 0; i < unbound_labels_count_; i++) { b(&after_pool); } bind(&after_pool); trampoline_ = Trampoline(pool_start, unbound_labels_count_); trampoline_emitted_ = true; // As we are only going to emit trampoline once, we need to prevent any // further emission. next_buffer_check_ = kMaxInt; } } else { // Number of branches to unbound label at this point is zero, so we can // move next buffer check to maximum. next_buffer_check_ = pc_offset() + kMaxCondBranchReach - kMaxBlockTrampolineSectionSize; } return; } Handle Assembler::NewConstantPool(Isolate* isolate) { #if V8_OOL_CONSTANT_POOL return constant_pool_builder_.New(isolate); #else // No out-of-line constant pool support. DCHECK(!FLAG_enable_ool_constant_pool); return isolate->factory()->empty_constant_pool_array(); #endif } void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) { #if V8_OOL_CONSTANT_POOL constant_pool_builder_.Populate(this, constant_pool); #else // No out-of-line constant pool support. DCHECK(!FLAG_enable_ool_constant_pool); #endif } #if V8_OOL_CONSTANT_POOL ConstantPoolBuilder::ConstantPoolBuilder() : size_(0), entries_(), current_section_(ConstantPoolArray::SMALL_SECTION) {} bool ConstantPoolBuilder::IsEmpty() { return entries_.size() == 0; } ConstantPoolArray::Type ConstantPoolBuilder::GetConstantPoolType( RelocInfo::Mode rmode) { #if V8_TARGET_ARCH_PPC64 // We don't support 32-bit entries at this time. if (!RelocInfo::IsGCRelocMode(rmode)) { return ConstantPoolArray::INT64; #else if (rmode == RelocInfo::NONE64) { return ConstantPoolArray::INT64; } else if (!RelocInfo::IsGCRelocMode(rmode)) { return ConstantPoolArray::INT32; #endif } else if (RelocInfo::IsCodeTarget(rmode)) { return ConstantPoolArray::CODE_PTR; } else { DCHECK(RelocInfo::IsGCRelocMode(rmode) && !RelocInfo::IsCodeTarget(rmode)); return ConstantPoolArray::HEAP_PTR; } } ConstantPoolArray::LayoutSection ConstantPoolBuilder::AddEntry( Assembler* assm, const RelocInfo& rinfo) { RelocInfo::Mode rmode = rinfo.rmode(); DCHECK(rmode != RelocInfo::COMMENT && rmode != RelocInfo::POSITION && rmode != RelocInfo::STATEMENT_POSITION && rmode != RelocInfo::CONST_POOL); // Try to merge entries which won't be patched. int merged_index = -1; ConstantPoolArray::LayoutSection entry_section = current_section_; if (RelocInfo::IsNone(rmode) || (!assm->serializer_enabled() && (rmode >= RelocInfo::CELL))) { size_t i; std::vector::const_iterator it; for (it = entries_.begin(), i = 0; it != entries_.end(); it++, i++) { if (RelocInfo::IsEqual(rinfo, it->rinfo_)) { // Merge with found entry. merged_index = i; entry_section = entries_[i].section_; break; } } } DCHECK(entry_section <= current_section_); entries_.push_back(ConstantPoolEntry(rinfo, entry_section, merged_index)); if (merged_index == -1) { // Not merged, so update the appropriate count. number_of_entries_[entry_section].increment(GetConstantPoolType(rmode)); } // Check if we still have room for another entry in the small section // given the limitations of the header's layout fields. if (current_section_ == ConstantPoolArray::SMALL_SECTION) { size_ = ConstantPoolArray::SizeFor(*small_entries()); if (!is_uint12(size_)) { current_section_ = ConstantPoolArray::EXTENDED_SECTION; } } else { size_ = ConstantPoolArray::SizeForExtended(*small_entries(), *extended_entries()); } return entry_section; } void ConstantPoolBuilder::Relocate(intptr_t pc_delta) { for (std::vector::iterator entry = entries_.begin(); entry != entries_.end(); entry++) { DCHECK(entry->rinfo_.rmode() != RelocInfo::JS_RETURN); entry->rinfo_.set_pc(entry->rinfo_.pc() + pc_delta); } } Handle ConstantPoolBuilder::New(Isolate* isolate) { if (IsEmpty()) { return isolate->factory()->empty_constant_pool_array(); } else if (extended_entries()->is_empty()) { return isolate->factory()->NewConstantPoolArray(*small_entries()); } else { DCHECK(current_section_ == ConstantPoolArray::EXTENDED_SECTION); return isolate->factory()->NewExtendedConstantPoolArray( *small_entries(), *extended_entries()); } } void ConstantPoolBuilder::Populate(Assembler* assm, ConstantPoolArray* constant_pool) { DCHECK_EQ(extended_entries()->is_empty(), !constant_pool->is_extended_layout()); DCHECK(small_entries()->equals(ConstantPoolArray::NumberOfEntries( constant_pool, ConstantPoolArray::SMALL_SECTION))); if (constant_pool->is_extended_layout()) { DCHECK(extended_entries()->equals(ConstantPoolArray::NumberOfEntries( constant_pool, ConstantPoolArray::EXTENDED_SECTION))); } // Set up initial offsets. int offsets[ConstantPoolArray::NUMBER_OF_LAYOUT_SECTIONS] [ConstantPoolArray::NUMBER_OF_TYPES]; for (int section = 0; section <= constant_pool->final_section(); section++) { int section_start = (section == ConstantPoolArray::EXTENDED_SECTION) ? small_entries()->total_count() : 0; for (int i = 0; i < ConstantPoolArray::NUMBER_OF_TYPES; i++) { ConstantPoolArray::Type type = static_cast(i); if (number_of_entries_[section].count_of(type) != 0) { offsets[section][type] = constant_pool->OffsetOfElementAt( number_of_entries_[section].base_of(type) + section_start); } } } for (std::vector::iterator entry = entries_.begin(); entry != entries_.end(); entry++) { RelocInfo rinfo = entry->rinfo_; RelocInfo::Mode rmode = entry->rinfo_.rmode(); ConstantPoolArray::Type type = GetConstantPoolType(rmode); // Update constant pool if necessary and get the entry's offset. int offset; if (entry->merged_index_ == -1) { offset = offsets[entry->section_][type]; offsets[entry->section_][type] += ConstantPoolArray::entry_size(type); if (type == ConstantPoolArray::INT64) { #if V8_TARGET_ARCH_PPC64 constant_pool->set_at_offset(offset, rinfo.data()); #else constant_pool->set_at_offset(offset, rinfo.data64()); } else if (type == ConstantPoolArray::INT32) { constant_pool->set_at_offset(offset, static_cast(rinfo.data())); #endif } else if (type == ConstantPoolArray::CODE_PTR) { constant_pool->set_at_offset(offset, reinterpret_cast
(rinfo.data())); } else { DCHECK(type == ConstantPoolArray::HEAP_PTR); constant_pool->set_at_offset(offset, reinterpret_cast(rinfo.data())); } offset -= kHeapObjectTag; entry->merged_index_ = offset; // Stash offset for merged entries. } else { DCHECK(entry->merged_index_ < (entry - entries_.begin())); offset = entries_[entry->merged_index_].merged_index_; } // Patch load instruction with correct offset. Assembler::SetConstantPoolOffset(rinfo.pc(), offset); } } #endif } } // namespace v8::internal #endif // V8_TARGET_ARCH_PPC