// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/builtins/builtins.h" #include "src/builtins/builtins-utils.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // ES6 section 20.1 Number Objects // ES6 section 20.1.2.2 Number.isFinite ( number ) void Builtins::Generate_NumberIsFinite(CodeStubAssembler* assembler) { typedef CodeStubAssembler::Label Label; typedef compiler::Node Node; Node* number = assembler->Parameter(1); Label return_true(assembler), return_false(assembler); // Check if {number} is a Smi. assembler->GotoIf(assembler->WordIsSmi(number), &return_true); // Check if {number} is a HeapNumber. assembler->GotoUnless( assembler->WordEqual(assembler->LoadMap(number), assembler->HeapNumberMapConstant()), &return_false); // Check if {number} contains a finite, non-NaN value. Node* number_value = assembler->LoadHeapNumberValue(number); assembler->BranchIfFloat64IsNaN( assembler->Float64Sub(number_value, number_value), &return_false, &return_true); assembler->Bind(&return_true); assembler->Return(assembler->BooleanConstant(true)); assembler->Bind(&return_false); assembler->Return(assembler->BooleanConstant(false)); } // ES6 section 20.1.2.3 Number.isInteger ( number ) void Builtins::Generate_NumberIsInteger(CodeStubAssembler* assembler) { typedef CodeStubAssembler::Label Label; typedef compiler::Node Node; Node* number = assembler->Parameter(1); Label return_true(assembler), return_false(assembler); // Check if {number} is a Smi. assembler->GotoIf(assembler->WordIsSmi(number), &return_true); // Check if {number} is a HeapNumber. assembler->GotoUnless( assembler->WordEqual(assembler->LoadMap(number), assembler->HeapNumberMapConstant()), &return_false); // Load the actual value of {number}. Node* number_value = assembler->LoadHeapNumberValue(number); // Truncate the value of {number} to an integer (or an infinity). Node* integer = assembler->Float64Trunc(number_value); // Check if {number}s value matches the integer (ruling out the infinities). assembler->BranchIfFloat64Equal(assembler->Float64Sub(number_value, integer), assembler->Float64Constant(0.0), &return_true, &return_false); assembler->Bind(&return_true); assembler->Return(assembler->BooleanConstant(true)); assembler->Bind(&return_false); assembler->Return(assembler->BooleanConstant(false)); } // ES6 section 20.1.2.4 Number.isNaN ( number ) void Builtins::Generate_NumberIsNaN(CodeStubAssembler* assembler) { typedef CodeStubAssembler::Label Label; typedef compiler::Node Node; Node* number = assembler->Parameter(1); Label return_true(assembler), return_false(assembler); // Check if {number} is a Smi. assembler->GotoIf(assembler->WordIsSmi(number), &return_false); // Check if {number} is a HeapNumber. assembler->GotoUnless( assembler->WordEqual(assembler->LoadMap(number), assembler->HeapNumberMapConstant()), &return_false); // Check if {number} contains a NaN value. Node* number_value = assembler->LoadHeapNumberValue(number); assembler->BranchIfFloat64IsNaN(number_value, &return_true, &return_false); assembler->Bind(&return_true); assembler->Return(assembler->BooleanConstant(true)); assembler->Bind(&return_false); assembler->Return(assembler->BooleanConstant(false)); } // ES6 section 20.1.2.5 Number.isSafeInteger ( number ) void Builtins::Generate_NumberIsSafeInteger(CodeStubAssembler* assembler) { typedef CodeStubAssembler::Label Label; typedef compiler::Node Node; Node* number = assembler->Parameter(1); Label return_true(assembler), return_false(assembler); // Check if {number} is a Smi. assembler->GotoIf(assembler->WordIsSmi(number), &return_true); // Check if {number} is a HeapNumber. assembler->GotoUnless( assembler->WordEqual(assembler->LoadMap(number), assembler->HeapNumberMapConstant()), &return_false); // Load the actual value of {number}. Node* number_value = assembler->LoadHeapNumberValue(number); // Truncate the value of {number} to an integer (or an infinity). Node* integer = assembler->Float64Trunc(number_value); // Check if {number}s value matches the integer (ruling out the infinities). assembler->GotoUnless( assembler->Float64Equal(assembler->Float64Sub(number_value, integer), assembler->Float64Constant(0.0)), &return_false); // Check if the {integer} value is in safe integer range. assembler->BranchIfFloat64LessThanOrEqual( assembler->Float64Abs(integer), assembler->Float64Constant(kMaxSafeInteger), &return_true, &return_false); assembler->Bind(&return_true); assembler->Return(assembler->BooleanConstant(true)); assembler->Bind(&return_false); assembler->Return(assembler->BooleanConstant(false)); } // ES6 section 20.1.3.2 Number.prototype.toExponential ( fractionDigits ) BUILTIN(NumberPrototypeToExponential) { HandleScope scope(isolate); Handle<Object> value = args.at<Object>(0); Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle<JSValue>::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toExponential"))); } double const value_number = value->Number(); // Convert the {fraction_digits} to an integer first. ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits)); double const fraction_digits_number = fraction_digits->Number(); if (std::isnan(value_number)) return isolate->heap()->nan_string(); if (std::isinf(value_number)) { return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() : isolate->heap()->infinity_string(); } if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kNumberFormatRange, isolate->factory()->NewStringFromAsciiChecked( "toExponential()"))); } int const f = args.atOrUndefined(isolate, 1)->IsUndefined(isolate) ? -1 : static_cast<int>(fraction_digits_number); char* const str = DoubleToExponentialCString(value_number, f); Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } // ES6 section 20.1.3.3 Number.prototype.toFixed ( fractionDigits ) BUILTIN(NumberPrototypeToFixed) { HandleScope scope(isolate); Handle<Object> value = args.at<Object>(0); Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle<JSValue>::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toFixed"))); } double const value_number = value->Number(); // Convert the {fraction_digits} to an integer first. ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits)); double const fraction_digits_number = fraction_digits->Number(); // Check if the {fraction_digits} are in the supported range. if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kNumberFormatRange, isolate->factory()->NewStringFromAsciiChecked( "toFixed() digits"))); } if (std::isnan(value_number)) return isolate->heap()->nan_string(); if (std::isinf(value_number)) { return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() : isolate->heap()->infinity_string(); } char* const str = DoubleToFixedCString( value_number, static_cast<int>(fraction_digits_number)); Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } // ES6 section 20.1.3.4 Number.prototype.toLocaleString ( [ r1 [ , r2 ] ] ) BUILTIN(NumberPrototypeToLocaleString) { HandleScope scope(isolate); Handle<Object> value = args.at<Object>(0); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle<JSValue>::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toLocaleString"))); } // Turn the {value} into a String. return *isolate->factory()->NumberToString(value); } // ES6 section 20.1.3.5 Number.prototype.toPrecision ( precision ) BUILTIN(NumberPrototypeToPrecision) { HandleScope scope(isolate); Handle<Object> value = args.at<Object>(0); Handle<Object> precision = args.atOrUndefined(isolate, 1); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle<JSValue>::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toPrecision"))); } double const value_number = value->Number(); // If no {precision} was specified, just return ToString of {value}. if (precision->IsUndefined(isolate)) { return *isolate->factory()->NumberToString(value); } // Convert the {precision} to an integer first. ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, precision, Object::ToInteger(isolate, precision)); double const precision_number = precision->Number(); if (std::isnan(value_number)) return isolate->heap()->nan_string(); if (std::isinf(value_number)) { return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() : isolate->heap()->infinity_string(); } if (precision_number < 1.0 || precision_number > 21.0) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kToPrecisionFormatRange)); } char* const str = DoubleToPrecisionCString( value_number, static_cast<int>(precision_number)); Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } // ES6 section 20.1.3.6 Number.prototype.toString ( [ radix ] ) BUILTIN(NumberPrototypeToString) { HandleScope scope(isolate); Handle<Object> value = args.at<Object>(0); Handle<Object> radix = args.atOrUndefined(isolate, 1); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle<JSValue>::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toString"))); } double const value_number = value->Number(); // If no {radix} was specified, just return ToString of {value}. if (radix->IsUndefined(isolate)) { return *isolate->factory()->NumberToString(value); } // Convert the {radix} to an integer first. ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix, Object::ToInteger(isolate, radix)); double const radix_number = radix->Number(); // If {radix} is 10, just return ToString of {value}. if (radix_number == 10.0) return *isolate->factory()->NumberToString(value); // Make sure the {radix} is within the valid range. if (radix_number < 2.0 || radix_number > 36.0) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kToRadixFormatRange)); } // Fast case where the result is a one character string. if (IsUint32Double(value_number) && value_number < radix_number) { // Character array used for conversion. static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz"; return *isolate->factory()->LookupSingleCharacterStringFromCode( kCharTable[static_cast<uint32_t>(value_number)]); } // Slow case. if (std::isnan(value_number)) return isolate->heap()->nan_string(); if (std::isinf(value_number)) { return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() : isolate->heap()->infinity_string(); } char* const str = DoubleToRadixCString(value_number, static_cast<int>(radix_number)); Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } // ES6 section 20.1.3.7 Number.prototype.valueOf ( ) void Builtins::Generate_NumberPrototypeValueOf(CodeStubAssembler* assembler) { typedef compiler::Node Node; Node* receiver = assembler->Parameter(0); Node* context = assembler->Parameter(3); Node* result = assembler->ToThisValue( context, receiver, PrimitiveType::kNumber, "Number.prototype.valueOf"); assembler->Return(result); } } // namespace internal } // namespace v8