// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_PPC #include "src/codegen.h" #include "src/ic/ic.h" #include "src/ic/ic-compiler.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type, Label* global_object) { // Register usage: // type: holds the receiver instance type on entry. __ cmpi(type, Operand(JS_GLOBAL_OBJECT_TYPE)); __ beq(global_object); __ cmpi(type, Operand(JS_BUILTINS_OBJECT_TYPE)); __ beq(global_object); __ cmpi(type, Operand(JS_GLOBAL_PROXY_TYPE)); __ beq(global_object); } // Helper function used from LoadIC GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // result: Register for the result. It is only updated if a jump to the miss // label is not done. Can be the same as elements or name clobbering // one of these in the case of not jumping to the miss label. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss, Register elements, Register name, Register result, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry check that the value is a normal // property. __ bind(&done); // scratch2 == elements + 4 * index const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ mr(r0, scratch2); __ LoadSmiLiteral(scratch2, Smi::FromInt(PropertyDetails::TypeField::kMask)); __ and_(scratch2, scratch1, scratch2, SetRC); __ bne(miss, cr0); __ mr(scratch2, r0); // Get the value at the masked, scaled index and return. __ LoadP(result, FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize)); } // Helper function used from StoreIC::GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // value: The value to store. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss, Register elements, Register name, Register value, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry in the dictionary check that the value // is a normal property that is not read only. __ bind(&done); // scratch2 == elements + 4 * index const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; int kTypeAndReadOnlyMask = PropertyDetails::TypeField::kMask | PropertyDetails::AttributesField::encode(READ_ONLY); __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ mr(r0, scratch2); __ LoadSmiLiteral(scratch2, Smi::FromInt(kTypeAndReadOnlyMask)); __ and_(scratch2, scratch1, scratch2, SetRC); __ bne(miss, cr0); __ mr(scratch2, r0); // Store the value at the masked, scaled index and return. const int kValueOffset = kElementsStartOffset + kPointerSize; __ addi(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag)); __ StoreP(value, MemOperand(scratch2)); // Update the write barrier. Make sure not to clobber the value. __ mr(scratch1, value); __ RecordWrite(elements, scratch2, scratch1, kLRHasNotBeenSaved, kDontSaveFPRegs); } // Checks the receiver for special cases (value type, slow case bits). // Falls through for regular JS object. static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, Register receiver, Register map, Register scratch, int interceptor_bit, Label* slow) { // Check that the object isn't a smi. __ JumpIfSmi(receiver, slow); // Get the map of the receiver. __ LoadP(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check bit field. __ lbz(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); DCHECK(((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)) < 0x8000); __ andi(r0, scratch, Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit))); __ bne(slow, cr0); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing into string // objects work as intended. DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ lbz(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ cmpi(scratch, Operand(JS_OBJECT_TYPE)); __ blt(slow); } // Loads an indexed element from a fast case array. static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register elements, Register scratch1, Register scratch2, Register result, Label* slow, LanguageMode language_mode) { // Register use: // // receiver - holds the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // result - holds the result on exit if the load succeeded. // Allowed to be the the same as 'receiver' or 'key'. // Unchanged on bailout so 'receiver' and 'key' can be safely // used by further computation. // // Scratch registers: // // elements - holds the elements of the receiver and its protoypes. // // scratch1 - used to hold elements length, bit fields, base addresses. // // scratch2 - used to hold maps, prototypes, and the loaded value. Label check_prototypes, check_next_prototype; Label done, in_bounds, absent; __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ AssertFastElements(elements); // Check that the key (index) is within bounds. __ LoadP(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ cmpl(key, scratch1); __ blt(&in_bounds); // Out-of-bounds. Check the prototype chain to see if we can just return // 'undefined'. __ cmpi(key, Operand::Zero()); __ blt(slow); // Negative keys can't take the fast OOB path. __ bind(&check_prototypes); __ LoadP(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ bind(&check_next_prototype); __ LoadP(scratch2, FieldMemOperand(scratch2, Map::kPrototypeOffset)); // scratch2: current prototype __ CompareRoot(scratch2, Heap::kNullValueRootIndex); __ beq(&absent); __ LoadP(elements, FieldMemOperand(scratch2, JSObject::kElementsOffset)); __ LoadP(scratch2, FieldMemOperand(scratch2, HeapObject::kMapOffset)); // elements: elements of current prototype // scratch2: map of current prototype __ CompareInstanceType(scratch2, scratch1, JS_OBJECT_TYPE); __ blt(slow); __ lbz(scratch1, FieldMemOperand(scratch2, Map::kBitFieldOffset)); __ andi(r0, scratch1, Operand((1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor))); __ bne(slow, cr0); __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); __ bne(slow); __ jmp(&check_next_prototype); __ bind(&absent); if (is_strong(language_mode)) { // Strong mode accesses must throw in this case, so call the runtime. __ jmp(slow); } else { __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); } __ bind(&in_bounds); // Fast case: Do the load. __ addi(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // The key is a smi. __ SmiToPtrArrayOffset(scratch2, key); __ LoadPX(scratch2, MemOperand(scratch2, scratch1)); __ CompareRoot(scratch2, Heap::kTheHoleValueRootIndex); // In case the loaded value is the_hole we have to check the prototype chain. __ beq(&check_prototypes); __ mr(result, scratch2); __ bind(&done); } // Checks whether a key is an array index string or a unique name. // Falls through if a key is a unique name. static void GenerateKeyNameCheck(MacroAssembler* masm, Register key, Register map, Register hash, Label* index_string, Label* not_unique) { // The key is not a smi. Label unique; // Is it a name? __ CompareObjectType(key, map, hash, LAST_UNIQUE_NAME_TYPE); __ bgt(not_unique); STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE); __ beq(&unique); // Is the string an array index, with cached numeric value? __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ mov(r8, Operand(Name::kContainsCachedArrayIndexMask)); __ and_(r0, hash, r8, SetRC); __ beq(index_string, cr0); // Is the string internalized? We know it's a string, so a single // bit test is enough. // map: key map __ lbz(hash, FieldMemOperand(map, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0); __ andi(r0, hash, Operand(kIsNotInternalizedMask)); __ bne(not_unique, cr0); __ bind(&unique); } void LoadIC::GenerateNormal(MacroAssembler* masm, LanguageMode language_mode) { Register dictionary = r3; DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister())); DCHECK(!dictionary.is(LoadDescriptor::NameRegister())); Label slow; __ LoadP(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(), JSObject::kPropertiesOffset)); GenerateDictionaryLoad(masm, &slow, dictionary, LoadDescriptor::NameRegister(), r3, r6, r7); __ Ret(); // Dictionary load failed, go slow (but don't miss). __ bind(&slow); GenerateRuntimeGetProperty(masm, language_mode); } // A register that isn't one of the parameters to the load ic. static const Register LoadIC_TempRegister() { return r6; } static void LoadIC_PushArgs(MacroAssembler* masm) { Register receiver = LoadDescriptor::ReceiverRegister(); Register name = LoadDescriptor::NameRegister(); Register slot = LoadDescriptor::SlotRegister(); Register vector = LoadWithVectorDescriptor::VectorRegister(); __ Push(receiver, name, slot, vector); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is in lr. Isolate* isolate = masm->isolate(); DCHECK(!AreAliased(r7, r8, LoadWithVectorDescriptor::SlotRegister(), LoadWithVectorDescriptor::VectorRegister())); __ IncrementCounter(isolate->counters()->load_miss(), 1, r7, r8); LoadIC_PushArgs(masm); // Perform tail call to the entry. int arg_count = 4; __ TailCallRuntime(Runtime::kLoadIC_Miss, arg_count, 1); } void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm, LanguageMode language_mode) { // The return address is in lr. __ mr(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister()); __ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister()); // Do tail-call to runtime routine. __ TailCallRuntime(is_strong(language_mode) ? Runtime::kGetPropertyStrong : Runtime::kGetProperty, 2, 1); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is in lr. Isolate* isolate = masm->isolate(); DCHECK(!AreAliased(r7, r8, LoadWithVectorDescriptor::SlotRegister(), LoadWithVectorDescriptor::VectorRegister())); __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, r7, r8); LoadIC_PushArgs(masm); // Perform tail call to the entry. int arg_count = 4; __ TailCallRuntime(Runtime::kKeyedLoadIC_Miss, arg_count, 1); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm, LanguageMode language_mode) { // The return address is in lr. __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister()); // Do tail-call to runtime routine. __ TailCallRuntime(is_strong(language_mode) ? Runtime::kKeyedGetPropertyStrong : Runtime::kKeyedGetProperty, 2, 1); } void KeyedLoadIC::GenerateMegamorphic(MacroAssembler* masm, LanguageMode language_mode) { // The return address is in lr. Label slow, check_name, index_smi, index_name, property_array_property; Label probe_dictionary, check_number_dictionary; Register key = LoadDescriptor::NameRegister(); Register receiver = LoadDescriptor::ReceiverRegister(); DCHECK(key.is(r5)); DCHECK(receiver.is(r4)); Isolate* isolate = masm->isolate(); // Check that the key is a smi. __ JumpIfNotSmi(key, &check_name); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from below // where a numeric string is converted to a smi. GenerateKeyedLoadReceiverCheck(masm, receiver, r3, r6, Map::kHasIndexedInterceptor, &slow); // Check the receiver's map to see if it has fast elements. __ CheckFastElements(r3, r6, &check_number_dictionary); GenerateFastArrayLoad(masm, receiver, key, r3, r6, r7, r3, &slow, language_mode); __ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, r7, r6); __ Ret(); __ bind(&check_number_dictionary); __ LoadP(r7, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ LoadP(r6, FieldMemOperand(r7, JSObject::kMapOffset)); // Check whether the elements is a number dictionary. // r6: elements map // r7: elements __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r6, ip); __ bne(&slow); __ SmiUntag(r3, key); __ LoadFromNumberDictionary(&slow, r7, key, r3, r3, r6, r8); __ Ret(); // Slow case, key and receiver still in r3 and r4. __ bind(&slow); __ IncrementCounter(isolate->counters()->keyed_load_generic_slow(), 1, r7, r6); GenerateRuntimeGetProperty(masm, language_mode); __ bind(&check_name); GenerateKeyNameCheck(masm, key, r3, r6, &index_name, &slow); GenerateKeyedLoadReceiverCheck(masm, receiver, r3, r6, Map::kHasNamedInterceptor, &slow); // If the receiver is a fast-case object, check the stub cache. Otherwise // probe the dictionary. __ LoadP(r6, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ LoadP(r7, FieldMemOperand(r6, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r7, ip); __ beq(&probe_dictionary); // The handlers in the stub cache expect a vector and slot. Since we won't // change the IC from any downstream misses, a dummy vector can be used. Register vector = LoadWithVectorDescriptor::VectorRegister(); Register slot = LoadWithVectorDescriptor::SlotRegister(); DCHECK(!AreAliased(vector, slot, r7, r8, r9, r10)); Handle<TypeFeedbackVector> dummy_vector = TypeFeedbackVector::DummyVector(masm->isolate()); int slot_index = dummy_vector->GetIndex( FeedbackVectorICSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot)); __ LoadRoot(vector, Heap::kDummyVectorRootIndex); __ LoadSmiLiteral(slot, Smi::FromInt(slot_index)); Code::Flags flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::LOAD_IC)); masm->isolate()->stub_cache()->GenerateProbe( masm, Code::KEYED_LOAD_IC, flags, false, receiver, key, r7, r8, r9, r10); // Cache miss. GenerateMiss(masm); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); // r6: elements __ LoadP(r3, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); GenerateGlobalInstanceTypeCheck(masm, r3, &slow); // Load the property to r3. GenerateDictionaryLoad(masm, &slow, r6, key, r3, r8, r7); __ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1, r7, r6); __ Ret(); __ bind(&index_name); __ IndexFromHash(r6, key); // Now jump to the place where smi keys are handled. __ b(&index_smi); } static void StoreIC_PushArgs(MacroAssembler* masm) { if (FLAG_vector_stores) { __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(), StoreDescriptor::ValueRegister(), VectorStoreICDescriptor::SlotRegister(), VectorStoreICDescriptor::VectorRegister()); } else { __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(), StoreDescriptor::ValueRegister()); } } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { StoreIC_PushArgs(masm); int args = FLAG_vector_stores ? 5 : 3; __ TailCallRuntime(Runtime::kKeyedStoreIC_Miss, args, 1); } static void KeyedStoreGenerateMegamorphicHelper( MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow, KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length, Register value, Register key, Register receiver, Register receiver_map, Register elements_map, Register elements) { Label transition_smi_elements; Label finish_object_store, non_double_value, transition_double_elements; Label fast_double_without_map_check; // Fast case: Do the store, could be either Object or double. __ bind(fast_object); Register scratch_value = r7; Register address = r8; if (check_map == kCheckMap) { __ LoadP(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ mov(scratch_value, Operand(masm->isolate()->factory()->fixed_array_map())); __ cmp(elements_map, scratch_value); __ bne(fast_double); } // HOLECHECK: guards "A[i] = V" // We have to go to the runtime if the current value is the hole because // there may be a callback on the element Label holecheck_passed1; __ addi(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiToPtrArrayOffset(scratch_value, key); __ LoadPX(scratch_value, MemOperand(address, scratch_value)); __ Cmpi(scratch_value, Operand(masm->isolate()->factory()->the_hole_value()), r0); __ bne(&holecheck_passed1); __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value, slow); __ bind(&holecheck_passed1); // Smi stores don't require further checks. Label non_smi_value; __ JumpIfNotSmi(value, &non_smi_value); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ AddSmiLiteral(scratch_value, key, Smi::FromInt(1), r0); __ StoreP(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); } // It's irrelevant whether array is smi-only or not when writing a smi. __ addi(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiToPtrArrayOffset(scratch_value, key); __ StorePX(value, MemOperand(address, scratch_value)); __ Ret(); __ bind(&non_smi_value); // Escape to elements kind transition case. __ CheckFastObjectElements(receiver_map, scratch_value, &transition_smi_elements); // Fast elements array, store the value to the elements backing store. __ bind(&finish_object_store); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ AddSmiLiteral(scratch_value, key, Smi::FromInt(1), r0); __ StoreP(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); } __ addi(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiToPtrArrayOffset(scratch_value, key); __ StorePUX(value, MemOperand(address, scratch_value)); // Update write barrier for the elements array address. __ mr(scratch_value, value); // Preserve the value which is returned. __ RecordWrite(elements, address, scratch_value, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Ret(); __ bind(fast_double); if (check_map == kCheckMap) { // Check for fast double array case. If this fails, call through to the // runtime. __ CompareRoot(elements_map, Heap::kFixedDoubleArrayMapRootIndex); __ bne(slow); } // HOLECHECK: guards "A[i] double hole?" // We have to see if the double version of the hole is present. If so // go to the runtime. __ addi(address, elements, Operand((FixedDoubleArray::kHeaderSize + Register::kExponentOffset - kHeapObjectTag))); __ SmiToDoubleArrayOffset(scratch_value, key); __ lwzx(scratch_value, MemOperand(address, scratch_value)); __ Cmpi(scratch_value, Operand(kHoleNanUpper32), r0); __ bne(&fast_double_without_map_check); __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value, slow); __ bind(&fast_double_without_map_check); __ StoreNumberToDoubleElements(value, key, elements, r6, d0, &transition_double_elements); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ AddSmiLiteral(scratch_value, key, Smi::FromInt(1), r0); __ StoreP(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); } __ Ret(); __ bind(&transition_smi_elements); // Transition the array appropriately depending on the value type. __ LoadP(r7, FieldMemOperand(value, HeapObject::kMapOffset)); __ CompareRoot(r7, Heap::kHeapNumberMapRootIndex); __ bne(&non_double_value); // Value is a double. Transition FAST_SMI_ELEMENTS -> // FAST_DOUBLE_ELEMENTS and complete the store. __ LoadTransitionedArrayMapConditional( FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, r7, slow); AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS); ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value, receiver_map, mode, slow); __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ b(&fast_double_without_map_check); __ bind(&non_double_value); // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, receiver_map, r7, slow); mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateMapChangeElementsTransition( masm, receiver, key, value, receiver_map, mode, slow); __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ b(&finish_object_store); __ bind(&transition_double_elements); // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS, receiver_map, r7, slow); mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateDoubleToObject( masm, receiver, key, value, receiver_map, mode, slow); __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ b(&finish_object_store); } void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm, LanguageMode language_mode) { // ---------- S t a t e -------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // ----------------------------------- Label slow, fast_object, fast_object_grow; Label fast_double, fast_double_grow; Label array, extra, check_if_double_array, maybe_name_key, miss; // Register usage. Register value = StoreDescriptor::ValueRegister(); Register key = StoreDescriptor::NameRegister(); Register receiver = StoreDescriptor::ReceiverRegister(); DCHECK(receiver.is(r4)); DCHECK(key.is(r5)); DCHECK(value.is(r3)); Register receiver_map = r6; Register elements_map = r9; Register elements = r10; // Elements array of the receiver. // r7 and r8 are used as general scratch registers. // Check that the key is a smi. __ JumpIfNotSmi(key, &maybe_name_key); // Check that the object isn't a smi. __ JumpIfSmi(receiver, &slow); // Get the map of the object. __ LoadP(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check that the receiver does not require access checks and is not observed. // The generic stub does not perform map checks or handle observed objects. __ lbz(ip, FieldMemOperand(receiver_map, Map::kBitFieldOffset)); __ andi(r0, ip, Operand(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved)); __ bne(&slow, cr0); // Check if the object is a JS array or not. __ lbz(r7, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset)); __ cmpi(r7, Operand(JS_ARRAY_TYPE)); __ beq(&array); // Check that the object is some kind of JSObject. __ cmpi(r7, Operand(FIRST_JS_OBJECT_TYPE)); __ blt(&slow); // Object case: Check key against length in the elements array. __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check array bounds. Both the key and the length of FixedArray are smis. __ LoadP(ip, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ cmpl(key, ip); __ blt(&fast_object); // Slow case, handle jump to runtime. __ bind(&slow); // Entry registers are intact. // r3: value. // r4: key. // r5: receiver. PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode); // Never returns to here. __ bind(&maybe_name_key); __ LoadP(r7, FieldMemOperand(key, HeapObject::kMapOffset)); __ lbz(r7, FieldMemOperand(r7, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(r7, &slow); if (FLAG_vector_stores) { // The handlers in the stub cache expect a vector and slot. Since we won't // change the IC from any downstream misses, a dummy vector can be used. Register vector = VectorStoreICDescriptor::VectorRegister(); Register slot = VectorStoreICDescriptor::SlotRegister(); DCHECK(!AreAliased(vector, slot, r6, r7, r8, r9)); Handle<TypeFeedbackVector> dummy_vector = TypeFeedbackVector::DummyVector(masm->isolate()); int slot_index = dummy_vector->GetIndex( FeedbackVectorICSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot)); __ LoadRoot(vector, Heap::kDummyVectorRootIndex); __ LoadSmiLiteral(slot, Smi::FromInt(slot_index)); } Code::Flags flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::STORE_IC)); masm->isolate()->stub_cache()->GenerateProbe( masm, Code::STORE_IC, flags, false, receiver, key, r6, r7, r8, r9); // Cache miss. __ b(&miss); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // Condition code from comparing key and array length is still available. __ bne(&slow); // Only support writing to writing to array[array.length]. // Check for room in the elements backing store. // Both the key and the length of FixedArray are smis. __ LoadP(ip, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ cmpl(key, ip); __ bge(&slow); __ LoadP(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ mov(ip, Operand(masm->isolate()->factory()->fixed_array_map())); __ cmp(elements_map, ip); // PPC - I think I can re-use ip here __ bne(&check_if_double_array); __ b(&fast_object_grow); __ bind(&check_if_double_array); __ mov(ip, Operand(masm->isolate()->factory()->fixed_double_array_map())); __ cmp(elements_map, ip); // PPC - another ip re-use __ bne(&slow); __ b(&fast_double_grow); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode (and writable); if it // is the length is always a smi. __ bind(&array); __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check the key against the length in the array. __ LoadP(ip, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ cmpl(key, ip); __ bge(&extra); KeyedStoreGenerateMegamorphicHelper( masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength, value, key, receiver, receiver_map, elements_map, elements); KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow, &fast_double_grow, &slow, kDontCheckMap, kIncrementLength, value, key, receiver, receiver_map, elements_map, elements); __ bind(&miss); GenerateMiss(masm); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); DCHECK(receiver.is(r4)); DCHECK(name.is(r5)); DCHECK(StoreDescriptor::ValueRegister().is(r3)); // Get the receiver from the stack and probe the stub cache. Code::Flags flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::STORE_IC)); masm->isolate()->stub_cache()->GenerateProbe( masm, Code::STORE_IC, flags, false, receiver, name, r6, r7, r8, r9); // Cache miss: Jump to runtime. GenerateMiss(masm); } void StoreIC::GenerateMiss(MacroAssembler* masm) { StoreIC_PushArgs(masm); // Perform tail call to the entry. int args = FLAG_vector_stores ? 5 : 3; __ TailCallRuntime(Runtime::kStoreIC_Miss, args, 1); } void StoreIC::GenerateNormal(MacroAssembler* masm) { Label miss; Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); Register dictionary = r6; DCHECK(receiver.is(r4)); DCHECK(name.is(r5)); DCHECK(value.is(r3)); __ LoadP(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); GenerateDictionaryStore(masm, &miss, dictionary, name, value, r7, r8); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->store_normal_hit(), 1, r7, r8); __ Ret(); __ bind(&miss); __ IncrementCounter(counters->store_normal_miss(), 1, r7, r8); GenerateMiss(masm); } #undef __ Condition CompareIC::ComputeCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } bool CompareIC::HasInlinedSmiCode(Address address) { // The address of the instruction following the call. Address cmp_instruction_address = Assembler::return_address_from_call_start(address); // If the instruction following the call is not a cmp rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(cmp_instruction_address); return Assembler::IsCmpImmediate(instr); } // // This code is paired with the JumpPatchSite class in full-codegen-ppc.cc // void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) { Address cmp_instruction_address = Assembler::return_address_from_call_start(address); // If the instruction following the call is not a cmp rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(cmp_instruction_address); if (!Assembler::IsCmpImmediate(instr)) { return; } // The delta to the start of the map check instruction and the // condition code uses at the patched jump. int delta = Assembler::GetCmpImmediateRawImmediate(instr); delta += Assembler::GetCmpImmediateRegister(instr).code() * kOff16Mask; // If the delta is 0 the instruction is cmp r0, #0 which also signals that // nothing was inlined. if (delta == 0) { return; } if (FLAG_trace_ic) { PrintF("[ patching ic at %p, cmp=%p, delta=%d\n", address, cmp_instruction_address, delta); } Address patch_address = cmp_instruction_address - delta * Instruction::kInstrSize; Instr instr_at_patch = Assembler::instr_at(patch_address); Instr branch_instr = Assembler::instr_at(patch_address + Instruction::kInstrSize); // This is patching a conditional "jump if not smi/jump if smi" site. // Enabling by changing from // cmp cr0, rx, rx // to // rlwinm(r0, value, 0, 31, 31, SetRC); // bc(label, BT/BF, 2) // and vice-versa to be disabled again. CodePatcher patcher(patch_address, 2); Register reg = Assembler::GetRA(instr_at_patch); if (check == ENABLE_INLINED_SMI_CHECK) { DCHECK(Assembler::IsCmpRegister(instr_at_patch)); DCHECK_EQ(Assembler::GetRA(instr_at_patch).code(), Assembler::GetRB(instr_at_patch).code()); patcher.masm()->TestIfSmi(reg, r0); } else { DCHECK(check == DISABLE_INLINED_SMI_CHECK); DCHECK(Assembler::IsAndi(instr_at_patch)); patcher.masm()->cmp(reg, reg, cr0); } DCHECK(Assembler::IsBranch(branch_instr)); // Invert the logic of the branch if (Assembler::GetCondition(branch_instr) == eq) { patcher.EmitCondition(ne); } else { DCHECK(Assembler::GetCondition(branch_instr) == ne); patcher.EmitCondition(eq); } } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_PPC