// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <limits.h> // For LONG_MIN, LONG_MAX. #if V8_TARGET_ARCH_MIPS #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/cpu-profiler.h" #include "src/debug/debug.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) : Assembler(arg_isolate, buffer, size), generating_stub_(false), has_frame_(false), has_double_zero_reg_set_(false) { if (isolate() != NULL) { code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), isolate()); } } void MacroAssembler::Load(Register dst, const MemOperand& src, Representation r) { DCHECK(!r.IsDouble()); if (r.IsInteger8()) { lb(dst, src); } else if (r.IsUInteger8()) { lbu(dst, src); } else if (r.IsInteger16()) { lh(dst, src); } else if (r.IsUInteger16()) { lhu(dst, src); } else { lw(dst, src); } } void MacroAssembler::Store(Register src, const MemOperand& dst, Representation r) { DCHECK(!r.IsDouble()); if (r.IsInteger8() || r.IsUInteger8()) { sb(src, dst); } else if (r.IsInteger16() || r.IsUInteger16()) { sh(src, dst); } else { if (r.IsHeapObject()) { AssertNotSmi(src); } else if (r.IsSmi()) { AssertSmi(src); } sw(src, dst); } } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { lw(destination, MemOperand(s6, index << kPointerSizeLog2)); } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index, Condition cond, Register src1, const Operand& src2) { Branch(2, NegateCondition(cond), src1, src2); lw(destination, MemOperand(s6, index << kPointerSizeLog2)); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) { DCHECK(Heap::RootCanBeWrittenAfterInitialization(index)); sw(source, MemOperand(s6, index << kPointerSizeLog2)); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index, Condition cond, Register src1, const Operand& src2) { DCHECK(Heap::RootCanBeWrittenAfterInitialization(index)); Branch(2, NegateCondition(cond), src1, src2); sw(source, MemOperand(s6, index << kPointerSizeLog2)); } // Push and pop all registers that can hold pointers. void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of kNumSafepointRegisters values on the // stack, so adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; DCHECK(num_unsaved >= 0); if (num_unsaved > 0) { Subu(sp, sp, Operand(num_unsaved * kPointerSize)); } MultiPush(kSafepointSavedRegisters); } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; MultiPop(kSafepointSavedRegisters); if (num_unsaved > 0) { Addu(sp, sp, Operand(num_unsaved * kPointerSize)); } } void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { sw(src, SafepointRegisterSlot(dst)); } void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { lw(dst, SafepointRegisterSlot(src)); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the highest encoding, // which means that lowest encodings are closest to the stack pointer. return kSafepointRegisterStackIndexMap[reg_code]; } MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); } MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { UNIMPLEMENTED_MIPS(); // General purpose registers are pushed last on the stack. int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize; int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; return MemOperand(sp, doubles_size + register_offset); } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc, Label* branch) { DCHECK(cc == eq || cc == ne); And(scratch, object, Operand(ExternalReference::new_space_mask(isolate()))); Branch(branch, cc, scratch, Operand(ExternalReference::new_space_start(isolate()))); } // Clobbers object, dst, value, and ra, if (ra_status == kRAHasBeenSaved) // The register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register dst, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { DCHECK(!AreAliased(value, dst, t8, object)); // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); Addu(dst, object, Operand(offset - kHeapObjectTag)); if (emit_debug_code()) { Label ok; And(t8, dst, Operand((1 << kPointerSizeLog2) - 1)); Branch(&ok, eq, t8, Operand(zero_reg)); stop("Unaligned cell in write barrier"); bind(&ok); } RecordWrite(object, dst, value, ra_status, save_fp, remembered_set_action, OMIT_SMI_CHECK, pointers_to_here_check_for_value); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { li(value, Operand(bit_cast<int32_t>(kZapValue + 4))); li(dst, Operand(bit_cast<int32_t>(kZapValue + 8))); } } // Clobbers object, dst, map, and ra, if (ra_status == kRAHasBeenSaved) void MacroAssembler::RecordWriteForMap(Register object, Register map, Register dst, RAStatus ra_status, SaveFPRegsMode fp_mode) { if (emit_debug_code()) { DCHECK(!dst.is(at)); lw(dst, FieldMemOperand(map, HeapObject::kMapOffset)); Check(eq, kWrongAddressOrValuePassedToRecordWrite, dst, Operand(isolate()->factory()->meta_map())); } if (!FLAG_incremental_marking) { return; } if (emit_debug_code()) { lw(at, FieldMemOperand(object, HeapObject::kMapOffset)); Check(eq, kWrongAddressOrValuePassedToRecordWrite, map, Operand(at)); } Label done; // A single check of the map's pages interesting flag suffices, since it is // only set during incremental collection, and then it's also guaranteed that // the from object's page's interesting flag is also set. This optimization // relies on the fact that maps can never be in new space. CheckPageFlag(map, map, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); Addu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag)); if (emit_debug_code()) { Label ok; And(at, dst, Operand((1 << kPointerSizeLog2) - 1)); Branch(&ok, eq, at, Operand(zero_reg)); stop("Unaligned cell in write barrier"); bind(&ok); } // Record the actual write. if (ra_status == kRAHasNotBeenSaved) { push(ra); } RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET, fp_mode); CallStub(&stub); if (ra_status == kRAHasNotBeenSaved) { pop(ra); } bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, dst); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { li(dst, Operand(bit_cast<int32_t>(kZapValue + 12))); li(map, Operand(bit_cast<int32_t>(kZapValue + 16))); } } // Clobbers object, address, value, and ra, if (ra_status == kRAHasBeenSaved) // The register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWrite( Register object, Register address, Register value, RAStatus ra_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { DCHECK(!AreAliased(object, address, value, t8)); DCHECK(!AreAliased(object, address, value, t9)); if (emit_debug_code()) { lw(at, MemOperand(address)); Assert( eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value)); } if (remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) { return; } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == INLINE_SMI_CHECK) { DCHECK_EQ(0, kSmiTag); JumpIfSmi(value, &done); } if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); } CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); // Record the actual write. if (ra_status == kRAHasNotBeenSaved) { push(ra); } RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, fp_mode); CallStub(&stub); if (ra_status == kRAHasNotBeenSaved) { pop(ra); } bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, value); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { li(address, Operand(bit_cast<int32_t>(kZapValue + 12))); li(value, Operand(bit_cast<int32_t>(kZapValue + 16))); } } void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. Register address, Register scratch, SaveFPRegsMode fp_mode, RememberedSetFinalAction and_then) { Label done; if (emit_debug_code()) { Label ok; JumpIfNotInNewSpace(object, scratch, &ok); stop("Remembered set pointer is in new space"); bind(&ok); } // Load store buffer top. ExternalReference store_buffer = ExternalReference::store_buffer_top(isolate()); li(t8, Operand(store_buffer)); lw(scratch, MemOperand(t8)); // Store pointer to buffer and increment buffer top. sw(address, MemOperand(scratch)); Addu(scratch, scratch, kPointerSize); // Write back new top of buffer. sw(scratch, MemOperand(t8)); // Call stub on end of buffer. // Check for end of buffer. And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit)); if (and_then == kFallThroughAtEnd) { Branch(&done, eq, t8, Operand(zero_reg)); } else { DCHECK(and_then == kReturnAtEnd); Ret(eq, t8, Operand(zero_reg)); } push(ra); StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode); CallStub(&store_buffer_overflow); pop(ra); bind(&done); if (and_then == kReturnAtEnd) { Ret(); } } // ----------------------------------------------------------------------------- // Allocation support. void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss) { Label same_contexts; DCHECK(!holder_reg.is(scratch)); DCHECK(!holder_reg.is(at)); DCHECK(!scratch.is(at)); // Load current lexical context from the stack frame. lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); // In debug mode, make sure the lexical context is set. #ifdef DEBUG Check(ne, kWeShouldNotHaveAnEmptyLexicalContext, scratch, Operand(zero_reg)); #endif // Load the native context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; lw(scratch, FieldMemOperand(scratch, offset)); lw(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); // Check the context is a native context. if (emit_debug_code()) { push(holder_reg); // Temporarily save holder on the stack. // Read the first word and compare to the native_context_map. lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); LoadRoot(at, Heap::kNativeContextMapRootIndex); Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext, holder_reg, Operand(at)); pop(holder_reg); // Restore holder. } // Check if both contexts are the same. lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); Branch(&same_contexts, eq, scratch, Operand(at)); // Check the context is a native context. if (emit_debug_code()) { push(holder_reg); // Temporarily save holder on the stack. mov(holder_reg, at); // Move at to its holding place. LoadRoot(at, Heap::kNullValueRootIndex); Check(ne, kJSGlobalProxyContextShouldNotBeNull, holder_reg, Operand(at)); lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); LoadRoot(at, Heap::kNativeContextMapRootIndex); Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext, holder_reg, Operand(at)); // Restore at is not needed. at is reloaded below. pop(holder_reg); // Restore holder. // Restore at to holder's context. lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); } // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; lw(scratch, FieldMemOperand(scratch, token_offset)); lw(at, FieldMemOperand(at, token_offset)); Branch(miss, ne, scratch, Operand(at)); bind(&same_contexts); } // Compute the hash code from the untagged key. This must be kept in sync with // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in // code-stub-hydrogen.cc void MacroAssembler::GetNumberHash(Register reg0, Register scratch) { // First of all we assign the hash seed to scratch. LoadRoot(scratch, Heap::kHashSeedRootIndex); SmiUntag(scratch); // Xor original key with a seed. xor_(reg0, reg0, scratch); // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); nor(scratch, reg0, zero_reg); sll(at, reg0, 15); addu(reg0, scratch, at); // hash = hash ^ (hash >> 12); srl(at, reg0, 12); xor_(reg0, reg0, at); // hash = hash + (hash << 2); sll(at, reg0, 2); addu(reg0, reg0, at); // hash = hash ^ (hash >> 4); srl(at, reg0, 4); xor_(reg0, reg0, at); // hash = hash * 2057; sll(scratch, reg0, 11); sll(at, reg0, 3); addu(reg0, reg0, at); addu(reg0, reg0, scratch); // hash = hash ^ (hash >> 16); srl(at, reg0, 16); xor_(reg0, reg0, at); And(reg0, reg0, Operand(0x3fffffff)); } void MacroAssembler::LoadFromNumberDictionary(Label* miss, Register elements, Register key, Register result, Register reg0, Register reg1, Register reg2) { // Register use: // // elements - holds the slow-case elements of the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // // result - holds the result on exit if the load succeeded. // Allowed to be the same as 'key' or 'result'. // Unchanged on bailout so 'key' or 'result' can be used // in further computation. // // Scratch registers: // // reg0 - holds the untagged key on entry and holds the hash once computed. // // reg1 - Used to hold the capacity mask of the dictionary. // // reg2 - Used for the index into the dictionary. // at - Temporary (avoid MacroAssembler instructions also using 'at'). Label done; GetNumberHash(reg0, reg1); // Compute the capacity mask. lw(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset)); sra(reg1, reg1, kSmiTagSize); Subu(reg1, reg1, Operand(1)); // Generate an unrolled loop that performs a few probes before giving up. for (int i = 0; i < kNumberDictionaryProbes; i++) { // Use reg2 for index calculations and keep the hash intact in reg0. mov(reg2, reg0); // Compute the masked index: (hash + i + i * i) & mask. if (i > 0) { Addu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i))); } and_(reg2, reg2, reg1); // Scale the index by multiplying by the element size. DCHECK(SeededNumberDictionary::kEntrySize == 3); sll(at, reg2, 1); // 2x. addu(reg2, reg2, at); // reg2 = reg2 * 3. // Check if the key is identical to the name. sll(at, reg2, kPointerSizeLog2); addu(reg2, elements, at); lw(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset)); if (i != kNumberDictionaryProbes - 1) { Branch(&done, eq, key, Operand(at)); } else { Branch(miss, ne, key, Operand(at)); } } bind(&done); // Check that the value is a field property. // reg2: elements + (index * kPointerSize). const int kDetailsOffset = SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; lw(reg1, FieldMemOperand(reg2, kDetailsOffset)); DCHECK_EQ(DATA, 0); And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask))); Branch(miss, ne, at, Operand(zero_reg)); // Get the value at the masked, scaled index and return. const int kValueOffset = SeededNumberDictionary::kElementsStartOffset + kPointerSize; lw(result, FieldMemOperand(reg2, kValueOffset)); } // --------------------------------------------------------------------------- // Instruction macros. void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { addu(rd, rs, rt.rm()); } else { if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { addiu(rd, rs, rt.imm32_); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); addu(rd, rs, at); } } } void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { subu(rd, rs, rt.rm()); } else { if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm). } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); subu(rd, rs, at); } } } void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (IsMipsArchVariant(kLoongson)) { mult(rs, rt.rm()); mflo(rd); } else { mul(rd, rs, rt.rm()); } } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); if (IsMipsArchVariant(kLoongson)) { mult(rs, at); mflo(rd); } else { mul(rd, rs, at); } } } void MacroAssembler::Mul(Register rd_hi, Register rd_lo, Register rs, const Operand& rt) { if (rt.is_reg()) { if (!IsMipsArchVariant(kMips32r6)) { mult(rs, rt.rm()); mflo(rd_lo); mfhi(rd_hi); } else { if (rd_lo.is(rs)) { DCHECK(!rd_hi.is(rs)); DCHECK(!rd_hi.is(rt.rm()) && !rd_lo.is(rt.rm())); muh(rd_hi, rs, rt.rm()); mul(rd_lo, rs, rt.rm()); } else { DCHECK(!rd_hi.is(rt.rm()) && !rd_lo.is(rt.rm())); mul(rd_lo, rs, rt.rm()); muh(rd_hi, rs, rt.rm()); } } } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); if (!IsMipsArchVariant(kMips32r6)) { mult(rs, at); mflo(rd_lo); mfhi(rd_hi); } else { if (rd_lo.is(rs)) { DCHECK(!rd_hi.is(rs)); DCHECK(!rd_hi.is(at) && !rd_lo.is(at)); muh(rd_hi, rs, at); mul(rd_lo, rs, at); } else { DCHECK(!rd_hi.is(at) && !rd_lo.is(at)); mul(rd_lo, rs, at); muh(rd_hi, rs, at); } } } } void MacroAssembler::Mulh(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (!IsMipsArchVariant(kMips32r6)) { mult(rs, rt.rm()); mfhi(rd); } else { muh(rd, rs, rt.rm()); } } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); if (!IsMipsArchVariant(kMips32r6)) { mult(rs, at); mfhi(rd); } else { muh(rd, rs, at); } } } void MacroAssembler::Mult(Register rs, const Operand& rt) { if (rt.is_reg()) { mult(rs, rt.rm()); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); mult(rs, at); } } void MacroAssembler::Mulhu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (!IsMipsArchVariant(kMips32r6)) { multu(rs, rt.rm()); mfhi(rd); } else { muhu(rd, rs, rt.rm()); } } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); if (!IsMipsArchVariant(kMips32r6)) { multu(rs, at); mfhi(rd); } else { muhu(rd, rs, at); } } } void MacroAssembler::Multu(Register rs, const Operand& rt) { if (rt.is_reg()) { multu(rs, rt.rm()); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); multu(rs, at); } } void MacroAssembler::Div(Register rs, const Operand& rt) { if (rt.is_reg()) { div(rs, rt.rm()); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); div(rs, at); } } void MacroAssembler::Div(Register rem, Register res, Register rs, const Operand& rt) { if (rt.is_reg()) { if (!IsMipsArchVariant(kMips32r6)) { div(rs, rt.rm()); mflo(res); mfhi(rem); } else { div(res, rs, rt.rm()); mod(rem, rs, rt.rm()); } } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); if (!IsMipsArchVariant(kMips32r6)) { div(rs, at); mflo(res); mfhi(rem); } else { div(res, rs, at); mod(rem, rs, at); } } } void MacroAssembler::Div(Register res, Register rs, const Operand& rt) { if (rt.is_reg()) { if (!IsMipsArchVariant(kMips32r6)) { div(rs, rt.rm()); mflo(res); } else { div(res, rs, rt.rm()); } } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); if (!IsMipsArchVariant(kMips32r6)) { div(rs, at); mflo(res); } else { div(res, rs, at); } } } void MacroAssembler::Mod(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (!IsMipsArchVariant(kMips32r6)) { div(rs, rt.rm()); mfhi(rd); } else { mod(rd, rs, rt.rm()); } } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); if (!IsMipsArchVariant(kMips32r6)) { div(rs, at); mfhi(rd); } else { mod(rd, rs, at); } } } void MacroAssembler::Modu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (!IsMipsArchVariant(kMips32r6)) { divu(rs, rt.rm()); mfhi(rd); } else { modu(rd, rs, rt.rm()); } } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); if (!IsMipsArchVariant(kMips32r6)) { divu(rs, at); mfhi(rd); } else { modu(rd, rs, at); } } } void MacroAssembler::Divu(Register rs, const Operand& rt) { if (rt.is_reg()) { divu(rs, rt.rm()); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); divu(rs, at); } } void MacroAssembler::Divu(Register res, Register rs, const Operand& rt) { if (rt.is_reg()) { if (!IsMipsArchVariant(kMips32r6)) { divu(rs, rt.rm()); mflo(res); } else { divu(res, rs, rt.rm()); } } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); if (!IsMipsArchVariant(kMips32r6)) { divu(rs, at); mflo(res); } else { divu(res, rs, at); } } } void MacroAssembler::And(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { and_(rd, rs, rt.rm()); } else { if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { andi(rd, rs, rt.imm32_); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); and_(rd, rs, at); } } } void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { or_(rd, rs, rt.rm()); } else { if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { ori(rd, rs, rt.imm32_); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); or_(rd, rs, at); } } } void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { xor_(rd, rs, rt.rm()); } else { if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { xori(rd, rs, rt.imm32_); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); xor_(rd, rs, at); } } } void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { nor(rd, rs, rt.rm()); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); nor(rd, rs, at); } } void MacroAssembler::Neg(Register rs, const Operand& rt) { DCHECK(rt.is_reg()); DCHECK(!at.is(rs)); DCHECK(!at.is(rt.rm())); li(at, -1); xor_(rs, rt.rm(), at); } void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { slt(rd, rs, rt.rm()); } else { if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { slti(rd, rs, rt.imm32_); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); slt(rd, rs, at); } } } void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { sltu(rd, rs, rt.rm()); } else { if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { sltiu(rd, rs, rt.imm32_); } else { // li handles the relocation. DCHECK(!rs.is(at)); li(at, rt); sltu(rd, rs, at); } } } void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) { if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { if (rt.is_reg()) { rotrv(rd, rs, rt.rm()); } else { rotr(rd, rs, rt.imm32_); } } else { if (rt.is_reg()) { subu(at, zero_reg, rt.rm()); sllv(at, rs, at); srlv(rd, rs, rt.rm()); or_(rd, rd, at); } else { if (rt.imm32_ == 0) { srl(rd, rs, 0); } else { srl(at, rs, rt.imm32_); sll(rd, rs, (0x20 - rt.imm32_) & 0x1f); or_(rd, rd, at); } } } } void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) { if (IsMipsArchVariant(kLoongson)) { lw(zero_reg, rs); } else { pref(hint, rs); } } // ------------Pseudo-instructions------------- void MacroAssembler::Ulw(Register rd, const MemOperand& rs) { lwr(rd, rs); lwl(rd, MemOperand(rs.rm(), rs.offset() + 3)); } void MacroAssembler::Usw(Register rd, const MemOperand& rs) { swr(rd, rs); swl(rd, MemOperand(rs.rm(), rs.offset() + 3)); } void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) { AllowDeferredHandleDereference smi_check; if (value->IsSmi()) { li(dst, Operand(value), mode); } else { DCHECK(value->IsHeapObject()); if (isolate()->heap()->InNewSpace(*value)) { Handle<Cell> cell = isolate()->factory()->NewCell(value); li(dst, Operand(cell)); lw(dst, FieldMemOperand(dst, Cell::kValueOffset)); } else { li(dst, Operand(value)); } } } void MacroAssembler::li(Register rd, Operand j, LiFlags mode) { DCHECK(!j.is_reg()); BlockTrampolinePoolScope block_trampoline_pool(this); if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) { // Normal load of an immediate value which does not need Relocation Info. if (is_int16(j.imm32_)) { addiu(rd, zero_reg, j.imm32_); } else if (!(j.imm32_ & kHiMask)) { ori(rd, zero_reg, j.imm32_); } else if (!(j.imm32_ & kImm16Mask)) { lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); } else { lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); ori(rd, rd, (j.imm32_ & kImm16Mask)); } } else { if (MustUseReg(j.rmode_)) { RecordRelocInfo(j.rmode_, j.imm32_); } // We always need the same number of instructions as we may need to patch // this code to load another value which may need 2 instructions to load. lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); ori(rd, rd, (j.imm32_ & kImm16Mask)); } } void MacroAssembler::MultiPush(RegList regs) { int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kPointerSize; Subu(sp, sp, Operand(stack_offset)); for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kPointerSize; sw(ToRegister(i), MemOperand(sp, stack_offset)); } } } void MacroAssembler::MultiPushReversed(RegList regs) { int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kPointerSize; Subu(sp, sp, Operand(stack_offset)); for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { stack_offset -= kPointerSize; sw(ToRegister(i), MemOperand(sp, stack_offset)); } } } void MacroAssembler::MultiPop(RegList regs) { int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { lw(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } addiu(sp, sp, stack_offset); } void MacroAssembler::MultiPopReversed(RegList regs) { int16_t stack_offset = 0; for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { lw(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } addiu(sp, sp, stack_offset); } void MacroAssembler::MultiPushFPU(RegList regs) { int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kDoubleSize; Subu(sp, sp, Operand(stack_offset)); for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kDoubleSize; sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); } } } void MacroAssembler::MultiPushReversedFPU(RegList regs) { int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kDoubleSize; Subu(sp, sp, Operand(stack_offset)); for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { stack_offset -= kDoubleSize; sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); } } } void MacroAssembler::MultiPopFPU(RegList regs) { int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); stack_offset += kDoubleSize; } } addiu(sp, sp, stack_offset); } void MacroAssembler::MultiPopReversedFPU(RegList regs) { int16_t stack_offset = 0; for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); stack_offset += kDoubleSize; } } addiu(sp, sp, stack_offset); } void MacroAssembler::FlushICache(Register address, unsigned instructions) { RegList saved_regs = kJSCallerSaved | ra.bit(); MultiPush(saved_regs); AllowExternalCallThatCantCauseGC scope(this); // Save to a0 in case address == t0. Move(a0, address); PrepareCallCFunction(2, t0); li(a1, instructions * kInstrSize); CallCFunction(ExternalReference::flush_icache_function(isolate()), 2); MultiPop(saved_regs); } void MacroAssembler::Ext(Register rt, Register rs, uint16_t pos, uint16_t size) { DCHECK(pos < 32); DCHECK(pos + size < 33); if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { ext_(rt, rs, pos, size); } else { // Move rs to rt and shift it left then right to get the // desired bitfield on the right side and zeroes on the left. int shift_left = 32 - (pos + size); sll(rt, rs, shift_left); // Acts as a move if shift_left == 0. int shift_right = 32 - size; if (shift_right > 0) { srl(rt, rt, shift_right); } } } void MacroAssembler::Ins(Register rt, Register rs, uint16_t pos, uint16_t size) { DCHECK(pos < 32); DCHECK(pos + size <= 32); DCHECK(size != 0); if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { ins_(rt, rs, pos, size); } else { DCHECK(!rt.is(t8) && !rs.is(t8)); Subu(at, zero_reg, Operand(1)); srl(at, at, 32 - size); and_(t8, rs, at); sll(t8, t8, pos); sll(at, at, pos); nor(at, at, zero_reg); and_(at, rt, at); or_(rt, t8, at); } } void MacroAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch) { // Move the data from fs to t8. mfc1(t8, fs); Cvt_d_uw(fd, t8, scratch); } void MacroAssembler::Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch) { // Convert rs to a FP value in fd (and fd + 1). // We do this by converting rs minus the MSB to avoid sign conversion, // then adding 2^31 to the result (if needed). DCHECK(!fd.is(scratch)); DCHECK(!rs.is(t9)); DCHECK(!rs.is(at)); // Save rs's MSB to t9. Ext(t9, rs, 31, 1); // Remove rs's MSB. Ext(at, rs, 0, 31); // Move the result to fd. mtc1(at, fd); // Convert fd to a real FP value. cvt_d_w(fd, fd); Label conversion_done; // If rs's MSB was 0, it's done. // Otherwise we need to add that to the FP register. Branch(&conversion_done, eq, t9, Operand(zero_reg)); // Load 2^31 into f20 as its float representation. li(at, 0x41E00000); mtc1(zero_reg, scratch); Mthc1(at, scratch); // Add it to fd. add_d(fd, fd, scratch); bind(&conversion_done); } void MacroAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch) { Trunc_uw_d(fs, t8, scratch); mtc1(t8, fd); } void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) { if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { Mfhc1(t8, fs); trunc_w_d(fd, fs); Mthc1(t8, fs); } else { trunc_w_d(fd, fs); } } void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) { if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { Mfhc1(t8, fs); round_w_d(fd, fs); Mthc1(t8, fs); } else { round_w_d(fd, fs); } } void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) { if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { Mfhc1(t8, fs); floor_w_d(fd, fs); Mthc1(t8, fs); } else { floor_w_d(fd, fs); } } void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) { if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { Mfhc1(t8, fs); ceil_w_d(fd, fs); Mthc1(t8, fs); } else { ceil_w_d(fd, fs); } } void MacroAssembler::Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch) { DCHECK(!fd.is(scratch)); DCHECK(!rs.is(at)); // Load 2^31 into scratch as its float representation. li(at, 0x41E00000); mtc1(zero_reg, scratch); Mthc1(at, scratch); // Test if scratch > fd. // If fd < 2^31 we can convert it normally. Label simple_convert; BranchF(&simple_convert, NULL, lt, fd, scratch); // First we subtract 2^31 from fd, then trunc it to rs // and add 2^31 to rs. sub_d(scratch, fd, scratch); trunc_w_d(scratch, scratch); mfc1(rs, scratch); Or(rs, rs, 1 << 31); Label done; Branch(&done); // Simple conversion. bind(&simple_convert); trunc_w_d(scratch, fd); mfc1(rs, scratch); bind(&done); } void MacroAssembler::Mthc1(Register rt, FPURegister fs) { if (IsFp64Mode()) { mthc1(rt, fs); } else { mtc1(rt, fs.high()); } } void MacroAssembler::Mfhc1(Register rt, FPURegister fs) { if (IsFp64Mode()) { mfhc1(rt, fs); } else { mfc1(rt, fs.high()); } } void MacroAssembler::BranchFCommon(SecondaryField sizeField, Label* target, Label* nan, Condition cond, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd) { { BlockTrampolinePoolScope block_trampoline_pool(this); if (cond == al) { Branch(bd, target); return; } if (IsMipsArchVariant(kMips32r6)) { sizeField = sizeField == D ? L : W; } DCHECK(nan || target); // Check for unordered (NaN) cases. if (nan) { bool long_branch = nan->is_bound() ? is_near(nan) : is_trampoline_emitted(); if (!IsMipsArchVariant(kMips32r6)) { if (long_branch) { Label skip; c(UN, D, cmp1, cmp2); bc1f(&skip); nop(); Jr(nan, bd); bind(&skip); } else { c(UN, D, cmp1, cmp2); bc1t(nan); if (bd == PROTECT) { nop(); } } } else { // Use kDoubleCompareReg for comparison result. It has to be unavailable // to lithium register allocator. DCHECK(!cmp1.is(kDoubleCompareReg) && !cmp2.is(kDoubleCompareReg)); if (long_branch) { Label skip; cmp(UN, L, kDoubleCompareReg, cmp1, cmp2); bc1eqz(&skip, kDoubleCompareReg); nop(); Jr(nan, bd); bind(&skip); } else { cmp(UN, L, kDoubleCompareReg, cmp1, cmp2); bc1nez(nan, kDoubleCompareReg); if (bd == PROTECT) { nop(); } } } } if (target) { bool long_branch = target->is_bound() ? is_near(target) : is_trampoline_emitted(); if (long_branch) { Label skip; Condition neg_cond = NegateFpuCondition(cond); BranchShortF(sizeField, &skip, neg_cond, cmp1, cmp2, bd); Jr(target, bd); bind(&skip); } else { BranchShortF(sizeField, target, cond, cmp1, cmp2, bd); } } } } void MacroAssembler::BranchShortF(SecondaryField sizeField, Label* target, Condition cc, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd) { if (!IsMipsArchVariant(kMips32r6)) { BlockTrampolinePoolScope block_trampoline_pool(this); if (target) { // Here NaN cases were either handled by this function or are assumed to // have been handled by the caller. switch (cc) { case lt: c(OLT, sizeField, cmp1, cmp2); bc1t(target); break; case ult: c(ULT, sizeField, cmp1, cmp2); bc1t(target); break; case gt: c(ULE, sizeField, cmp1, cmp2); bc1f(target); break; case ugt: c(OLE, sizeField, cmp1, cmp2); bc1f(target); break; case ge: c(ULT, sizeField, cmp1, cmp2); bc1f(target); break; case uge: c(OLT, sizeField, cmp1, cmp2); bc1f(target); break; case le: c(OLE, sizeField, cmp1, cmp2); bc1t(target); break; case ule: c(ULE, sizeField, cmp1, cmp2); bc1t(target); break; case eq: c(EQ, sizeField, cmp1, cmp2); bc1t(target); break; case ueq: c(UEQ, sizeField, cmp1, cmp2); bc1t(target); break; case ne: // Unordered or not equal. c(EQ, sizeField, cmp1, cmp2); bc1f(target); break; case ogl: c(UEQ, sizeField, cmp1, cmp2); bc1f(target); break; default: CHECK(0); } } } else { BlockTrampolinePoolScope block_trampoline_pool(this); if (target) { // Here NaN cases were either handled by this function or are assumed to // have been handled by the caller. // Unsigned conditions are treated as their signed counterpart. // Use kDoubleCompareReg for comparison result, it is // valid in fp64 (FR = 1) mode which is implied for mips32r6. DCHECK(!cmp1.is(kDoubleCompareReg) && !cmp2.is(kDoubleCompareReg)); switch (cc) { case lt: cmp(OLT, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1nez(target, kDoubleCompareReg); break; case ult: cmp(ULT, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1nez(target, kDoubleCompareReg); break; case gt: cmp(ULE, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1eqz(target, kDoubleCompareReg); break; case ugt: cmp(OLE, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1eqz(target, kDoubleCompareReg); break; case ge: cmp(ULT, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1eqz(target, kDoubleCompareReg); break; case uge: cmp(OLT, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1eqz(target, kDoubleCompareReg); break; case le: cmp(OLE, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1nez(target, kDoubleCompareReg); break; case ule: cmp(ULE, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1nez(target, kDoubleCompareReg); break; case eq: cmp(EQ, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1nez(target, kDoubleCompareReg); break; case ueq: cmp(UEQ, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1nez(target, kDoubleCompareReg); break; case ne: cmp(EQ, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1eqz(target, kDoubleCompareReg); break; case ogl: cmp(UEQ, sizeField, kDoubleCompareReg, cmp1, cmp2); bc1eqz(target, kDoubleCompareReg); break; default: CHECK(0); } } } if (bd == PROTECT) { nop(); } } void MacroAssembler::FmoveLow(FPURegister dst, Register src_low) { if (IsFp64Mode()) { DCHECK(!src_low.is(at)); mfhc1(at, dst); mtc1(src_low, dst); mthc1(at, dst); } else { mtc1(src_low, dst); } } void MacroAssembler::Move(FPURegister dst, float imm) { li(at, Operand(bit_cast<int32_t>(imm))); mtc1(at, dst); } void MacroAssembler::Move(FPURegister dst, double imm) { static const DoubleRepresentation minus_zero(-0.0); static const DoubleRepresentation zero(0.0); DoubleRepresentation value_rep(imm); // Handle special values first. if (value_rep == zero && has_double_zero_reg_set_) { mov_d(dst, kDoubleRegZero); } else if (value_rep == minus_zero && has_double_zero_reg_set_) { neg_d(dst, kDoubleRegZero); } else { uint32_t lo, hi; DoubleAsTwoUInt32(imm, &lo, &hi); // Move the low part of the double into the lower of the corresponding FPU // register of FPU register pair. if (lo != 0) { li(at, Operand(lo)); mtc1(at, dst); } else { mtc1(zero_reg, dst); } // Move the high part of the double into the higher of the corresponding FPU // register of FPU register pair. if (hi != 0) { li(at, Operand(hi)); Mthc1(at, dst); } else { Mthc1(zero_reg, dst); } if (dst.is(kDoubleRegZero)) has_double_zero_reg_set_ = true; } } void MacroAssembler::Movz(Register rd, Register rs, Register rt) { if (IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r6)) { Label done; Branch(&done, ne, rt, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movz(rd, rs, rt); } } void MacroAssembler::Movn(Register rd, Register rs, Register rt) { if (IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r6)) { Label done; Branch(&done, eq, rt, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movn(rd, rs, rt); } } void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) { if (IsMipsArchVariant(kLoongson)) { // Tests an FP condition code and then conditionally move rs to rd. // We do not currently use any FPU cc bit other than bit 0. DCHECK(cc == 0); DCHECK(!(rs.is(t8) || rd.is(t8))); Label done; Register scratch = t8; // For testing purposes we need to fetch content of the FCSR register and // than test its cc (floating point condition code) bit (for cc = 0, it is // 24. bit of the FCSR). cfc1(scratch, FCSR); // For the MIPS I, II and III architectures, the contents of scratch is // UNPREDICTABLE for the instruction immediately following CFC1. nop(); srl(scratch, scratch, 16); andi(scratch, scratch, 0x0080); Branch(&done, eq, scratch, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movt(rd, rs, cc); } } void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) { if (IsMipsArchVariant(kLoongson)) { // Tests an FP condition code and then conditionally move rs to rd. // We do not currently use any FPU cc bit other than bit 0. DCHECK(cc == 0); DCHECK(!(rs.is(t8) || rd.is(t8))); Label done; Register scratch = t8; // For testing purposes we need to fetch content of the FCSR register and // than test its cc (floating point condition code) bit (for cc = 0, it is // 24. bit of the FCSR). cfc1(scratch, FCSR); // For the MIPS I, II and III architectures, the contents of scratch is // UNPREDICTABLE for the instruction immediately following CFC1. nop(); srl(scratch, scratch, 16); andi(scratch, scratch, 0x0080); Branch(&done, ne, scratch, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movf(rd, rs, cc); } } void MacroAssembler::Clz(Register rd, Register rs) { if (IsMipsArchVariant(kLoongson)) { DCHECK(!(rd.is(t8) || rd.is(t9)) && !(rs.is(t8) || rs.is(t9))); Register mask = t8; Register scratch = t9; Label loop, end; mov(at, rs); mov(rd, zero_reg); lui(mask, 0x8000); bind(&loop); and_(scratch, at, mask); Branch(&end, ne, scratch, Operand(zero_reg)); addiu(rd, rd, 1); Branch(&loop, ne, mask, Operand(zero_reg), USE_DELAY_SLOT); srl(mask, mask, 1); bind(&end); } else { clz(rd, rs); } } void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode, Register result, DoubleRegister double_input, Register scratch, DoubleRegister double_scratch, Register except_flag, CheckForInexactConversion check_inexact) { DCHECK(!result.is(scratch)); DCHECK(!double_input.is(double_scratch)); DCHECK(!except_flag.is(scratch)); Label done; // Clear the except flag (0 = no exception) mov(except_flag, zero_reg); // Test for values that can be exactly represented as a signed 32-bit integer. cvt_w_d(double_scratch, double_input); mfc1(result, double_scratch); cvt_d_w(double_scratch, double_scratch); BranchF(&done, NULL, eq, double_input, double_scratch); int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions. if (check_inexact == kDontCheckForInexactConversion) { // Ignore inexact exceptions. except_mask &= ~kFCSRInexactFlagMask; } // Save FCSR. cfc1(scratch, FCSR); // Disable FPU exceptions. ctc1(zero_reg, FCSR); // Do operation based on rounding mode. switch (rounding_mode) { case kRoundToNearest: Round_w_d(double_scratch, double_input); break; case kRoundToZero: Trunc_w_d(double_scratch, double_input); break; case kRoundToPlusInf: Ceil_w_d(double_scratch, double_input); break; case kRoundToMinusInf: Floor_w_d(double_scratch, double_input); break; } // End of switch-statement. // Retrieve FCSR. cfc1(except_flag, FCSR); // Restore FCSR. ctc1(scratch, FCSR); // Move the converted value into the result register. mfc1(result, double_scratch); // Check for fpu exceptions. And(except_flag, except_flag, Operand(except_mask)); bind(&done); } void MacroAssembler::TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input, Label* done) { DoubleRegister single_scratch = kLithiumScratchDouble.low(); Register scratch = at; Register scratch2 = t9; // Clear cumulative exception flags and save the FCSR. cfc1(scratch2, FCSR); ctc1(zero_reg, FCSR); // Try a conversion to a signed integer. trunc_w_d(single_scratch, double_input); mfc1(result, single_scratch); // Retrieve and restore the FCSR. cfc1(scratch, FCSR); ctc1(scratch2, FCSR); // Check for overflow and NaNs. And(scratch, scratch, kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); // If we had no exceptions we are done. Branch(done, eq, scratch, Operand(zero_reg)); } void MacroAssembler::TruncateDoubleToI(Register result, DoubleRegister double_input) { Label done; TryInlineTruncateDoubleToI(result, double_input, &done); // If we fell through then inline version didn't succeed - call stub instead. push(ra); Subu(sp, sp, Operand(kDoubleSize)); // Put input on stack. sdc1(double_input, MemOperand(sp, 0)); DoubleToIStub stub(isolate(), sp, result, 0, true, true); CallStub(&stub); Addu(sp, sp, Operand(kDoubleSize)); pop(ra); bind(&done); } void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { Label done; DoubleRegister double_scratch = f12; DCHECK(!result.is(object)); ldc1(double_scratch, MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag)); TryInlineTruncateDoubleToI(result, double_scratch, &done); // If we fell through then inline version didn't succeed - call stub instead. push(ra); DoubleToIStub stub(isolate(), object, result, HeapNumber::kValueOffset - kHeapObjectTag, true, true); CallStub(&stub); pop(ra); bind(&done); } void MacroAssembler::TruncateNumberToI(Register object, Register result, Register heap_number_map, Register scratch, Label* not_number) { Label done; DCHECK(!result.is(object)); UntagAndJumpIfSmi(result, object, &done); JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number); TruncateHeapNumberToI(result, object); bind(&done); } void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits) { Ext(dst, src, kSmiTagSize, num_least_bits); } void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src, int num_least_bits) { And(dst, src, Operand((1 << num_least_bits) - 1)); } // Emulated condtional branches do not emit a nop in the branch delay slot. // // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. #define BRANCH_ARGS_CHECK(cond, rs, rt) DCHECK( \ (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \ (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg)))) void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) { BranchShort(offset, bdslot); } void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BranchShort(offset, cond, rs, rt, bdslot); } void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchShort(L, bdslot); } else { Jr(L, bdslot); } } else { if (is_trampoline_emitted()) { Jr(L, bdslot); } else { BranchShort(L, bdslot); } } } void MacroAssembler::Branch(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchShort(L, cond, rs, rt, bdslot); } else { if (cond != cc_always) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jr(L, bdslot); bind(&skip); } else { Jr(L, bdslot); } } } else { if (is_trampoline_emitted()) { if (cond != cc_always) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jr(L, bdslot); bind(&skip); } else { Jr(L, bdslot); } } else { BranchShort(L, cond, rs, rt, bdslot); } } } void MacroAssembler::Branch(Label* L, Condition cond, Register rs, Heap::RootListIndex index, BranchDelaySlot bdslot) { LoadRoot(at, index); Branch(L, cond, rs, Operand(at), bdslot); } void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) { b(offset); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); DCHECK(!rs.is(zero_reg)); Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or // rt. BlockTrampolinePoolScope block_trampoline_pool(this); r2 = rt.rm_; switch (cond) { case cc_always: b(offset); break; case eq: beq(rs, r2, offset); break; case ne: bne(rs, r2, offset); break; // Signed comparison. case greater: if (r2.is(zero_reg)) { bgtz(rs, offset); } else { slt(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case greater_equal: if (r2.is(zero_reg)) { bgez(rs, offset); } else { slt(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case less: if (r2.is(zero_reg)) { bltz(rs, offset); } else { slt(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case less_equal: if (r2.is(zero_reg)) { blez(rs, offset); } else { slt(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; // Unsigned comparison. case Ugreater: if (r2.is(zero_reg)) { bne(rs, zero_reg, offset); } else { sltu(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (r2.is(zero_reg)) { b(offset); } else { sltu(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case Uless: if (r2.is(zero_reg)) { // No code needs to be emitted. return; } else { sltu(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (r2.is(zero_reg)) { beq(rs, zero_reg, offset); } else { sltu(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } else { // Be careful to always use shifted_branch_offset only just before the // branch instruction, as the location will be remember for patching the // target. BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: b(offset); break; case eq: if (rt.imm32_ == 0) { beq(rs, zero_reg, offset); } else { // We don't want any other register but scratch clobbered. DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); beq(rs, r2, offset); } break; case ne: if (rt.imm32_ == 0) { bne(rs, zero_reg, offset); } else { // We don't want any other register but scratch clobbered. DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); bne(rs, r2, offset); } break; // Signed comparison. case greater: if (rt.imm32_ == 0) { bgtz(rs, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case greater_equal: if (rt.imm32_ == 0) { bgez(rs, offset); } else if (is_int16(rt.imm32_)) { slti(scratch, rs, rt.imm32_); beq(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case less: if (rt.imm32_ == 0) { bltz(rs, offset); } else if (is_int16(rt.imm32_)) { slti(scratch, rs, rt.imm32_); bne(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case less_equal: if (rt.imm32_ == 0) { blez(rs, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; // Unsigned comparison. case Ugreater: if (rt.imm32_ == 0) { bne(rs, zero_reg, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (rt.imm32_ == 0) { b(offset); } else if (is_int16(rt.imm32_)) { sltiu(scratch, rs, rt.imm32_); beq(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case Uless: if (rt.imm32_ == 0) { // No code needs to be emitted. return; } else if (is_int16(rt.imm32_)) { sltiu(scratch, rs, rt.imm32_); bne(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (rt.imm32_ == 0) { beq(rs, zero_reg, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) { // We use branch_offset as an argument for the branch instructions to be sure // it is called just before generating the branch instruction, as needed. b(shifted_branch_offset(L, false)); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); int32_t offset = 0; Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { BlockTrampolinePoolScope block_trampoline_pool(this); r2 = rt.rm_; // Be careful to always use shifted_branch_offset only just before the // branch instruction, as the location will be remember for patching the // target. switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); b(offset); break; case eq: offset = shifted_branch_offset(L, false); beq(rs, r2, offset); break; case ne: offset = shifted_branch_offset(L, false); bne(rs, r2, offset); break; // Signed comparison. case greater: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgtz(rs, offset); } else { slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case greater_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else { slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case less: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bltz(rs, offset); } else { slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case less_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); blez(rs, offset); } else { slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; // Unsigned comparison. case Ugreater: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bne(rs, zero_reg, offset); } else { sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); b(offset); } else { sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case Uless: if (r2.is(zero_reg)) { // No code needs to be emitted. return; } else { sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); beq(rs, zero_reg, offset); } else { sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } else { // Be careful to always use shifted_branch_offset only just before the // branch instruction, as the location will be remember for patching the // target. BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); b(offset); break; case eq: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); beq(rs, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); offset = shifted_branch_offset(L, false); beq(rs, r2, offset); } break; case ne: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bne(rs, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); offset = shifted_branch_offset(L, false); bne(rs, r2, offset); } break; // Signed comparison. case greater: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bgtz(rs, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case greater_equal: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else if (is_int16(rt.imm32_)) { slti(scratch, rs, rt.imm32_); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case less: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bltz(rs, offset); } else if (is_int16(rt.imm32_)) { slti(scratch, rs, rt.imm32_); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case less_equal: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); blez(rs, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; // Unsigned comparison. case Ugreater: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bne(rs, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); b(offset); } else if (is_int16(rt.imm32_)) { sltiu(scratch, rs, rt.imm32_); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case Uless: if (rt.imm32_ == 0) { // No code needs to be emitted. return; } else if (is_int16(rt.imm32_)) { sltiu(scratch, rs, rt.imm32_); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); beq(rs, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } // Check that offset could actually hold on an int16_t. DCHECK(is_int16(offset)); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) { BranchAndLinkShort(offset, bdslot); } void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BranchAndLinkShort(offset, cond, rs, rt, bdslot); } void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchAndLinkShort(L, bdslot); } else { Jalr(L, bdslot); } } else { if (is_trampoline_emitted()) { Jalr(L, bdslot); } else { BranchAndLinkShort(L, bdslot); } } } void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchAndLinkShort(L, cond, rs, rt, bdslot); } else { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jalr(L, bdslot); bind(&skip); } } else { if (is_trampoline_emitted()) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jalr(L, bdslot); bind(&skip); } else { BranchAndLinkShort(L, cond, rs, rt, bdslot); } } } // We need to use a bgezal or bltzal, but they can't be used directly with the // slt instructions. We could use sub or add instead but we would miss overflow // cases, so we keep slt and add an intermediate third instruction. void MacroAssembler::BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot) { bal(offset); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { r2 = rt.rm_; } else if (cond != cc_always) { r2 = scratch; li(r2, rt); } if (!IsMipsArchVariant(kMips32r6)) { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: bal(offset); break; case eq: bne(rs, r2, 2); nop(); bal(offset); break; case ne: beq(rs, r2, 2); nop(); bal(offset); break; // Signed comparison. case greater: slt(scratch, r2, rs); addiu(scratch, scratch, -1); bgezal(scratch, offset); break; case greater_equal: slt(scratch, rs, r2); addiu(scratch, scratch, -1); bltzal(scratch, offset); break; case less: slt(scratch, rs, r2); addiu(scratch, scratch, -1); bgezal(scratch, offset); break; case less_equal: slt(scratch, r2, rs); addiu(scratch, scratch, -1); bltzal(scratch, offset); break; // Unsigned comparison. case Ugreater: sltu(scratch, r2, rs); addiu(scratch, scratch, -1); bgezal(scratch, offset); break; case Ugreater_equal: sltu(scratch, rs, r2); addiu(scratch, scratch, -1); bltzal(scratch, offset); break; case Uless: sltu(scratch, rs, r2); addiu(scratch, scratch, -1); bgezal(scratch, offset); break; case Uless_equal: sltu(scratch, r2, rs); addiu(scratch, scratch, -1); bltzal(scratch, offset); break; default: UNREACHABLE(); } } else { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: bal(offset); break; case eq: bne(rs, r2, 2); nop(); bal(offset); break; case ne: beq(rs, r2, 2); nop(); bal(offset); break; // Signed comparison. case greater: // rs > rt slt(scratch, r2, rs); beq(scratch, zero_reg, 2); nop(); bal(offset); break; case greater_equal: // rs >= rt slt(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); bal(offset); break; case less: // rs < r2 slt(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); bal(offset); break; case less_equal: // rs <= r2 slt(scratch, r2, rs); bne(scratch, zero_reg, 2); nop(); bal(offset); break; // Unsigned comparison. case Ugreater: // rs > rt sltu(scratch, r2, rs); beq(scratch, zero_reg, 2); nop(); bal(offset); break; case Ugreater_equal: // rs >= rt sltu(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); bal(offset); break; case Uless: // rs < r2 sltu(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); bal(offset); break; case Uless_equal: // rs <= r2 sltu(scratch, r2, rs); bne(scratch, zero_reg, 2); nop(); bal(offset); break; default: UNREACHABLE(); } } // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) { bal(shifted_branch_offset(L, false)); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); int32_t offset = 0; Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { r2 = rt.rm_; } else if (cond != cc_always) { r2 = scratch; li(r2, rt); } if (!IsMipsArchVariant(kMips32r6)) { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); bal(offset); break; case eq: bne(rs, r2, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case ne: beq(rs, r2, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; // Signed comparison. case greater: slt(scratch, r2, rs); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bgezal(scratch, offset); break; case greater_equal: slt(scratch, rs, r2); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bltzal(scratch, offset); break; case less: slt(scratch, rs, r2); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bgezal(scratch, offset); break; case less_equal: slt(scratch, r2, rs); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bltzal(scratch, offset); break; // Unsigned comparison. case Ugreater: sltu(scratch, r2, rs); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bgezal(scratch, offset); break; case Ugreater_equal: sltu(scratch, rs, r2); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bltzal(scratch, offset); break; case Uless: sltu(scratch, rs, r2); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bgezal(scratch, offset); break; case Uless_equal: sltu(scratch, r2, rs); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bltzal(scratch, offset); break; default: UNREACHABLE(); } } else { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); bal(offset); break; case eq: bne(rs, r2, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case ne: beq(rs, r2, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; // Signed comparison. case greater: // rs > rt slt(scratch, r2, rs); beq(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case greater_equal: // rs >= rt slt(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case less: // rs < r2 slt(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case less_equal: // rs <= r2 slt(scratch, r2, rs); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; // Unsigned comparison. case Ugreater: // rs > rt sltu(scratch, r2, rs); beq(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case Ugreater_equal: // rs >= rt sltu(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case Uless: // rs < r2 sltu(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case Uless_equal: // rs <= r2 sltu(scratch, r2, rs); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; default: UNREACHABLE(); } } // Check that offset could actually hold on an int16_t. DCHECK(is_int16(offset)); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::Jump(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); if (cond == cc_always) { jr(target); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jr(target); } // Emit a nop in the branch delay slot if required. if (bd == PROTECT) nop(); } void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { Label skip; if (cond != cc_always) { Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt); } // The first instruction of 'li' may be placed in the delay slot. // This is not an issue, t9 is expected to be clobbered anyway. li(t9, Operand(target, rmode)); Jump(t9, al, zero_reg, Operand(zero_reg), bd); bind(&skip); } void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { DCHECK(!RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd); } void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { DCHECK(RelocInfo::IsCodeTarget(rmode)); AllowDeferredHandleDereference embedding_raw_address; Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd); } int MacroAssembler::CallSize(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { int size = 0; if (cond == cc_always) { size += 1; } else { size += 3; } if (bd == PROTECT) size += 1; return size * kInstrSize; } // Note: To call gcc-compiled C code on mips, you must call thru t9. void MacroAssembler::Call(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); if (cond == cc_always) { jalr(target); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jalr(target); } // Emit a nop in the branch delay slot if required. if (bd == PROTECT) nop(); DCHECK_EQ(CallSize(target, cond, rs, rt, bd), SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { int size = CallSize(t9, cond, rs, rt, bd); return size + 2 * kInstrSize; } void MacroAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); int32_t target_int = reinterpret_cast<int32_t>(target); // Must record previous source positions before the // li() generates a new code target. positions_recorder()->WriteRecordedPositions(); li(t9, Operand(target_int, rmode), CONSTANT_SIZE); Call(t9, cond, rs, rt, bd); DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd), SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { AllowDeferredHandleDereference using_raw_address; return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd); } void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); DCHECK(RelocInfo::IsCodeTarget(rmode)); if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { SetRecordedAstId(ast_id); rmode = RelocInfo::CODE_TARGET_WITH_ID; } AllowDeferredHandleDereference embedding_raw_address; Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd); DCHECK_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd), SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::Ret(Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { Jump(ra, cond, rs, rt, bd); } void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) { BlockTrampolinePoolScope block_trampoline_pool(this); uint32_t imm32; imm32 = jump_address(L); { BlockGrowBufferScope block_buf_growth(this); // Buffer growth (and relocation) must be blocked for internal references // until associated instructions are emitted and available to be patched. RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED); lui(at, (imm32 & kHiMask) >> kLuiShift); ori(at, at, (imm32 & kImm16Mask)); } jr(at); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) { BlockTrampolinePoolScope block_trampoline_pool(this); uint32_t imm32; imm32 = jump_address(L); { BlockGrowBufferScope block_buf_growth(this); // Buffer growth (and relocation) must be blocked for internal references // until associated instructions are emitted and available to be patched. RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED); lui(at, (imm32 & kHiMask) >> kLuiShift); ori(at, at, (imm32 & kImm16Mask)); } jalr(at); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::DropAndRet(int drop) { DCHECK(is_int16(drop * kPointerSize)); Ret(USE_DELAY_SLOT); addiu(sp, sp, drop * kPointerSize); } void MacroAssembler::DropAndRet(int drop, Condition cond, Register r1, const Operand& r2) { // Both Drop and Ret need to be conditional. Label skip; if (cond != cc_always) { Branch(&skip, NegateCondition(cond), r1, r2); } Drop(drop); Ret(); if (cond != cc_always) { bind(&skip); } } void MacroAssembler::Drop(int count, Condition cond, Register reg, const Operand& op) { if (count <= 0) { return; } Label skip; if (cond != al) { Branch(&skip, NegateCondition(cond), reg, op); } Addu(sp, sp, Operand(count * kPointerSize)); if (cond != al) { bind(&skip); } } void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) { if (scratch.is(no_reg)) { Xor(reg1, reg1, Operand(reg2)); Xor(reg2, reg2, Operand(reg1)); Xor(reg1, reg1, Operand(reg2)); } else { mov(scratch, reg1); mov(reg1, reg2); mov(reg2, scratch); } } void MacroAssembler::Call(Label* target) { BranchAndLink(target); } void MacroAssembler::Push(Handle<Object> handle) { li(at, Operand(handle)); push(at); } void MacroAssembler::DebugBreak() { PrepareCEntryArgs(0); PrepareCEntryFunction( ExternalReference(Runtime::kHandleDebuggerStatement, isolate())); CEntryStub ces(isolate(), 1); DCHECK(AllowThisStubCall(&ces)); Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT); } // --------------------------------------------------------------------------- // Exception handling. void MacroAssembler::PushStackHandler() { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); // Link the current handler as the next handler. li(t2, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); lw(t1, MemOperand(t2)); push(t1); // Set this new handler as the current one. sw(sp, MemOperand(t2)); } void MacroAssembler::PopStackHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(a1); Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); sw(a1, MemOperand(at)); } void MacroAssembler::Allocate(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. li(result, 0x7091); li(scratch1, 0x7191); li(scratch2, 0x7291); } jmp(gc_required); return; } DCHECK(!result.is(scratch1)); DCHECK(!result.is(scratch2)); DCHECK(!scratch1.is(scratch2)); DCHECK(!scratch1.is(t9)); DCHECK(!scratch2.is(t9)); DCHECK(!result.is(t9)); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } DCHECK_EQ(0, object_size & kObjectAlignmentMask); // Check relative positions of allocation top and limit addresses. // ARM adds additional checks to make sure the ldm instruction can be // used. On MIPS we don't have ldm so we don't need additional checks either. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); // Set up allocation top address and object size registers. Register topaddr = scratch1; li(topaddr, Operand(allocation_top)); // This code stores a temporary value in t9. if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into t9. lw(result, MemOperand(topaddr)); lw(t9, MemOperand(topaddr, kPointerSize)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. t9 is used // immediately below so this use of t9 does not cause difference with // respect to register content between debug and release mode. lw(t9, MemOperand(topaddr)); Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); } // Load allocation limit into t9. Result already contains allocation top. lw(t9, MemOperand(topaddr, limit - top)); } if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. DCHECK(kPointerAlignment * 2 == kDoubleAlignment); And(scratch2, result, Operand(kDoubleAlignmentMask)); Label aligned; Branch(&aligned, eq, scratch2, Operand(zero_reg)); if ((flags & PRETENURE) != 0) { Branch(gc_required, Ugreater_equal, result, Operand(t9)); } li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); sw(scratch2, MemOperand(result)); Addu(result, result, Operand(kDoubleSize / 2)); bind(&aligned); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. Addu(scratch2, result, Operand(object_size)); Branch(gc_required, Ugreater, scratch2, Operand(t9)); sw(scratch2, MemOperand(topaddr)); // Tag object if requested. if ((flags & TAG_OBJECT) != 0) { Addu(result, result, Operand(kHeapObjectTag)); } } void MacroAssembler::Allocate(Register object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. li(result, 0x7091); li(scratch1, 0x7191); li(scratch2, 0x7291); } jmp(gc_required); return; } DCHECK(!result.is(scratch1)); DCHECK(!result.is(scratch2)); DCHECK(!scratch1.is(scratch2)); DCHECK(!object_size.is(t9)); DCHECK(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9)); // Check relative positions of allocation top and limit addresses. // ARM adds additional checks to make sure the ldm instruction can be // used. On MIPS we don't have ldm so we don't need additional checks either. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); // Set up allocation top address and object size registers. Register topaddr = scratch1; li(topaddr, Operand(allocation_top)); // This code stores a temporary value in t9. if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into t9. lw(result, MemOperand(topaddr)); lw(t9, MemOperand(topaddr, kPointerSize)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. t9 is used // immediately below so this use of t9 does not cause difference with // respect to register content between debug and release mode. lw(t9, MemOperand(topaddr)); Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); } // Load allocation limit into t9. Result already contains allocation top. lw(t9, MemOperand(topaddr, limit - top)); } if ((flags & DOUBLE_ALIGNMENT) != 0) { // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. DCHECK(kPointerAlignment * 2 == kDoubleAlignment); And(scratch2, result, Operand(kDoubleAlignmentMask)); Label aligned; Branch(&aligned, eq, scratch2, Operand(zero_reg)); if ((flags & PRETENURE) != 0) { Branch(gc_required, Ugreater_equal, result, Operand(t9)); } li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); sw(scratch2, MemOperand(result)); Addu(result, result, Operand(kDoubleSize / 2)); bind(&aligned); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. Object size may be in words so a shift is // required to get the number of bytes. if ((flags & SIZE_IN_WORDS) != 0) { sll(scratch2, object_size, kPointerSizeLog2); Addu(scratch2, result, scratch2); } else { Addu(scratch2, result, Operand(object_size)); } Branch(gc_required, Ugreater, scratch2, Operand(t9)); // Update allocation top. result temporarily holds the new top. if (emit_debug_code()) { And(t9, scratch2, Operand(kObjectAlignmentMask)); Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg)); } sw(scratch2, MemOperand(topaddr)); // Tag object if requested. if ((flags & TAG_OBJECT) != 0) { Addu(result, result, Operand(kHeapObjectTag)); } } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); sll(scratch1, length, 1); // Length in bytes, not chars. addiu(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); // Allocate two-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string // while observing object alignment. DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); DCHECK(kCharSize == 1); addiu(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize); And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); // Allocate one-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name) { STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); Label succeed; And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask)); Branch(&succeed, eq, at, Operand(zero_reg)); Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE)); bind(&succeed); } // Allocates a heap number or jumps to the label if the young space is full and // a scavenge is needed. void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* need_gc, TaggingMode tagging_mode, MutableMode mode) { // Allocate an object in the heap for the heap number and tag it as a heap // object. Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc, tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS); Heap::RootListIndex map_index = mode == MUTABLE ? Heap::kMutableHeapNumberMapRootIndex : Heap::kHeapNumberMapRootIndex; AssertIsRoot(heap_number_map, map_index); // Store heap number map in the allocated object. if (tagging_mode == TAG_RESULT) { sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); } else { sw(heap_number_map, MemOperand(result, HeapObject::kMapOffset)); } } void MacroAssembler::AllocateHeapNumberWithValue(Register result, FPURegister value, Register scratch1, Register scratch2, Label* gc_required) { LoadRoot(t8, Heap::kHeapNumberMapRootIndex); AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required); sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset)); } // Copies a fixed number of fields of heap objects from src to dst. void MacroAssembler::CopyFields(Register dst, Register src, RegList temps, int field_count) { DCHECK((temps & dst.bit()) == 0); DCHECK((temps & src.bit()) == 0); // Primitive implementation using only one temporary register. Register tmp = no_reg; // Find a temp register in temps list. for (int i = 0; i < kNumRegisters; i++) { if ((temps & (1 << i)) != 0) { tmp.code_ = i; break; } } DCHECK(!tmp.is(no_reg)); for (int i = 0; i < field_count; i++) { lw(tmp, FieldMemOperand(src, i * kPointerSize)); sw(tmp, FieldMemOperand(dst, i * kPointerSize)); } } void MacroAssembler::CopyBytes(Register src, Register dst, Register length, Register scratch) { Label align_loop_1, word_loop, byte_loop, byte_loop_1, done; // Align src before copying in word size chunks. Branch(&byte_loop, le, length, Operand(kPointerSize)); bind(&align_loop_1); And(scratch, src, kPointerSize - 1); Branch(&word_loop, eq, scratch, Operand(zero_reg)); lbu(scratch, MemOperand(src)); Addu(src, src, 1); sb(scratch, MemOperand(dst)); Addu(dst, dst, 1); Subu(length, length, Operand(1)); Branch(&align_loop_1, ne, length, Operand(zero_reg)); // Copy bytes in word size chunks. bind(&word_loop); if (emit_debug_code()) { And(scratch, src, kPointerSize - 1); Assert(eq, kExpectingAlignmentForCopyBytes, scratch, Operand(zero_reg)); } Branch(&byte_loop, lt, length, Operand(kPointerSize)); lw(scratch, MemOperand(src)); Addu(src, src, kPointerSize); // TODO(kalmard) check if this can be optimized to use sw in most cases. // Can't use unaligned access - copy byte by byte. if (kArchEndian == kLittle) { sb(scratch, MemOperand(dst, 0)); srl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 1)); srl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 2)); srl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 3)); } else { sb(scratch, MemOperand(dst, 3)); srl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 2)); srl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 1)); srl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 0)); } Addu(dst, dst, 4); Subu(length, length, Operand(kPointerSize)); Branch(&word_loop); // Copy the last bytes if any left. bind(&byte_loop); Branch(&done, eq, length, Operand(zero_reg)); bind(&byte_loop_1); lbu(scratch, MemOperand(src)); Addu(src, src, 1); sb(scratch, MemOperand(dst)); Addu(dst, dst, 1); Subu(length, length, Operand(1)); Branch(&byte_loop_1, ne, length, Operand(zero_reg)); bind(&done); } void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, Register end_offset, Register filler) { Label loop, entry; Branch(&entry); bind(&loop); sw(filler, MemOperand(start_offset)); Addu(start_offset, start_offset, kPointerSize); bind(&entry); Branch(&loop, ult, start_offset, Operand(end_offset)); } void MacroAssembler::CheckFastElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); } void MacroAssembler::CheckFastObjectElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Branch(fail, ls, scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); } void MacroAssembler::CheckFastSmiElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); } void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, Register key_reg, Register elements_reg, Register scratch1, Register scratch2, Register scratch3, Label* fail, int elements_offset) { Label smi_value, maybe_nan, have_double_value, is_nan, done; Register mantissa_reg = scratch2; Register exponent_reg = scratch3; // Handle smi values specially. JumpIfSmi(value_reg, &smi_value); // Ensure that the object is a heap number CheckMap(value_reg, scratch1, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000 // in the exponent. li(scratch1, Operand(kHoleNanUpper32 & HeapNumber::kExponentMask)); lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset)); Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1)); lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); bind(&have_double_value); sll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize); Addu(scratch1, scratch1, elements_reg); sw(mantissa_reg, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - elements_offset + kHoleNanLower32Offset)); sw(exponent_reg, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - elements_offset + kHoleNanUpper32Offset)); jmp(&done); bind(&maybe_nan); // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise // it's an Infinity, and the non-NaN code path applies. Branch(&is_nan, gt, exponent_reg, Operand(scratch1)); lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg)); bind(&is_nan); // Load canonical NaN for storing into the double array. LoadRoot(at, Heap::kNanValueRootIndex); lw(mantissa_reg, FieldMemOperand(at, HeapNumber::kMantissaOffset)); lw(exponent_reg, FieldMemOperand(at, HeapNumber::kExponentOffset)); jmp(&have_double_value); bind(&smi_value); Addu(scratch1, elements_reg, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag - elements_offset)); sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize); Addu(scratch1, scratch1, scratch2); // scratch1 is now effective address of the double element Register untagged_value = elements_reg; SmiUntag(untagged_value, value_reg); mtc1(untagged_value, f2); cvt_d_w(f0, f2); sdc1(f0, MemOperand(scratch1, 0)); bind(&done); } void MacroAssembler::CompareMapAndBranch(Register obj, Register scratch, Handle<Map> map, Label* early_success, Condition cond, Label* branch_to) { lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); CompareMapAndBranch(scratch, map, early_success, cond, branch_to); } void MacroAssembler::CompareMapAndBranch(Register obj_map, Handle<Map> map, Label* early_success, Condition cond, Label* branch_to) { Branch(branch_to, cond, obj_map, Operand(map)); } void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } Label success; CompareMapAndBranch(obj, scratch, map, &success, ne, fail); bind(&success); } void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1, Register scratch2, Handle<WeakCell> cell, Handle<Code> success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } lw(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset)); GetWeakValue(scratch2, cell); Jump(success, RelocInfo::CODE_TARGET, eq, scratch1, Operand(scratch2)); bind(&fail); } void MacroAssembler::CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); LoadRoot(at, index); Branch(fail, ne, scratch, Operand(at)); } void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) { li(value, Operand(cell)); lw(value, FieldMemOperand(value, WeakCell::kValueOffset)); } void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss) { GetWeakValue(value, cell); JumpIfSmi(value, miss); } void MacroAssembler::MovFromFloatResult(DoubleRegister dst) { if (IsMipsSoftFloatABI) { if (kArchEndian == kLittle) { Move(dst, v0, v1); } else { Move(dst, v1, v0); } } else { Move(dst, f0); // Reg f0 is o32 ABI FP return value. } } void MacroAssembler::MovFromFloatParameter(DoubleRegister dst) { if (IsMipsSoftFloatABI) { if (kArchEndian == kLittle) { Move(dst, a0, a1); } else { Move(dst, a1, a0); } } else { Move(dst, f12); // Reg f12 is o32 ABI FP first argument value. } } void MacroAssembler::MovToFloatParameter(DoubleRegister src) { if (!IsMipsSoftFloatABI) { Move(f12, src); } else { if (kArchEndian == kLittle) { Move(a0, a1, src); } else { Move(a1, a0, src); } } } void MacroAssembler::MovToFloatResult(DoubleRegister src) { if (!IsMipsSoftFloatABI) { Move(f0, src); } else { if (kArchEndian == kLittle) { Move(v0, v1, src); } else { Move(v1, v0, src); } } } void MacroAssembler::MovToFloatParameters(DoubleRegister src1, DoubleRegister src2) { if (!IsMipsSoftFloatABI) { if (src2.is(f12)) { DCHECK(!src1.is(f14)); Move(f14, src2); Move(f12, src1); } else { Move(f12, src1); Move(f14, src2); } } else { if (kArchEndian == kLittle) { Move(a0, a1, src1); Move(a2, a3, src2); } else { Move(a1, a0, src1); Move(a3, a2, src2); } } } // ----------------------------------------------------------------------------- // JavaScript invokes. void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle<Code> code_constant, Register code_reg, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // a0: actual arguments count // a1: function (passed through to callee) // a2: expected arguments count // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. DCHECK(actual.is_immediate() || actual.reg().is(a0)); DCHECK(expected.is_immediate() || expected.reg().is(a2)); DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3)); if (expected.is_immediate()) { DCHECK(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { li(a0, Operand(actual.immediate())); const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; li(a2, Operand(expected.immediate())); } } } else if (actual.is_immediate()) { Branch(®ular_invoke, eq, expected.reg(), Operand(actual.immediate())); li(a0, Operand(actual.immediate())); } else { Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); } if (!definitely_matches) { if (!code_constant.is_null()) { li(a3, Operand(code_constant)); addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); } Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor)); Call(adaptor); call_wrapper.AfterCall(); if (!*definitely_mismatches) { Branch(done); } } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, &definitely_mismatches, flag, call_wrapper); if (!definitely_mismatches) { if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); Call(code); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); Jump(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in a1. DCHECK(function.is(a1)); Register expected_reg = a2; Register code_reg = a3; lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); lw(expected_reg, FieldMemOperand(code_reg, SharedFunctionInfo::kFormalParameterCountOffset)); sra(expected_reg, expected_reg, kSmiTagSize); lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); ParameterCount expected(expected_reg); InvokeCode(code_reg, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in a1. DCHECK(function.is(a1)); // Get the function and setup the context. lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); InvokeCode(a3, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { li(a1, function); InvokeFunction(a1, expected, actual, flag, call_wrapper); } void MacroAssembler::IsObjectJSObjectType(Register heap_object, Register map, Register scratch, Label* fail) { lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); IsInstanceJSObjectType(map, scratch, fail); } void MacroAssembler::IsInstanceJSObjectType(Register map, Register scratch, Label* fail) { lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); } void MacroAssembler::IsObjectJSStringType(Register object, Register scratch, Label* fail) { DCHECK(kNotStringTag != 0); lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); And(scratch, scratch, Operand(kIsNotStringMask)); Branch(fail, ne, scratch, Operand(zero_reg)); } void MacroAssembler::IsObjectNameType(Register object, Register scratch, Label* fail) { lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE)); } // --------------------------------------------------------------------------- // Support functions. void MacroAssembler::GetMapConstructor(Register result, Register map, Register temp, Register temp2) { Label done, loop; lw(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset)); bind(&loop); JumpIfSmi(result, &done); GetObjectType(result, temp, temp2); Branch(&done, ne, temp2, Operand(MAP_TYPE)); lw(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset)); Branch(&loop); bind(&done); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss, bool miss_on_bound_function) { Label non_instance; if (miss_on_bound_function) { // Check that the receiver isn't a smi. JumpIfSmi(function, miss); // Check that the function really is a function. Load map into result reg. GetObjectType(function, result, scratch); Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE)); lw(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); lw(scratch, FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); And(scratch, scratch, Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction))); Branch(miss, ne, scratch, Operand(zero_reg)); // Make sure that the function has an instance prototype. lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); Branch(&non_instance, ne, scratch, Operand(zero_reg)); } // Get the prototype or initial map from the function. lw(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. LoadRoot(t8, Heap::kTheHoleValueRootIndex); Branch(miss, eq, result, Operand(t8)); // If the function does not have an initial map, we're done. Label done; GetObjectType(result, scratch, scratch); Branch(&done, ne, scratch, Operand(MAP_TYPE)); // Get the prototype from the initial map. lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); if (miss_on_bound_function) { jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. bind(&non_instance); GetMapConstructor(result, result, scratch, scratch); } // All done. bind(&done); } void MacroAssembler::GetObjectType(Register object, Register map, Register type_reg) { lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); } // ----------------------------------------------------------------------------- // Runtime calls. void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id, Condition cond, Register r1, const Operand& r2, BranchDelaySlot bd) { DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond, r1, r2, bd); } void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond, Register r1, const Operand& r2, BranchDelaySlot bd) { Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame_ || !stub->SometimesSetsUpAFrame(); } void MacroAssembler::IndexFromHash(Register hash, Register index) { // If the hash field contains an array index pick it out. The assert checks // that the constants for the maximum number of digits for an array index // cached in the hash field and the number of bits reserved for it does not // conflict. DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash); } void MacroAssembler::ObjectToDoubleFPURegister(Register object, FPURegister result, Register scratch1, Register scratch2, Register heap_number_map, Label* not_number, ObjectToDoubleFlags flags) { Label done; if ((flags & OBJECT_NOT_SMI) == 0) { Label not_smi; JumpIfNotSmi(object, ¬_smi); // Remove smi tag and convert to double. sra(scratch1, object, kSmiTagSize); mtc1(scratch1, result); cvt_d_w(result, result); Branch(&done); bind(¬_smi); } // Check for heap number and load double value from it. lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); Branch(not_number, ne, scratch1, Operand(heap_number_map)); if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { // If exponent is all ones the number is either a NaN or +/-Infinity. Register exponent = scratch1; Register mask_reg = scratch2; lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset)); li(mask_reg, HeapNumber::kExponentMask); And(exponent, exponent, mask_reg); Branch(not_number, eq, exponent, Operand(mask_reg)); } ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset)); bind(&done); } void MacroAssembler::SmiToDoubleFPURegister(Register smi, FPURegister value, Register scratch1) { sra(scratch1, smi, kSmiTagSize); mtc1(scratch1, value); cvt_d_w(value, value); } void MacroAssembler::AdduAndCheckForOverflow(Register dst, Register left, const Operand& right, Register overflow_dst, Register scratch) { if (right.is_reg()) { AdduAndCheckForOverflow(dst, left, right.rm(), overflow_dst, scratch); } else { if (dst.is(left)) { mov(scratch, left); // Preserve left. Addu(dst, left, right.immediate()); // Left is overwritten. xor_(scratch, dst, scratch); // Original left. // Load right since xori takes uint16 as immediate. Addu(t9, zero_reg, right); xor_(overflow_dst, dst, t9); and_(overflow_dst, overflow_dst, scratch); } else { Addu(dst, left, right.immediate()); xor_(overflow_dst, dst, left); // Load right since xori takes uint16 as immediate. Addu(t9, zero_reg, right); xor_(scratch, dst, t9); and_(overflow_dst, scratch, overflow_dst); } } } void MacroAssembler::AdduAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch) { DCHECK(!dst.is(overflow_dst)); DCHECK(!dst.is(scratch)); DCHECK(!overflow_dst.is(scratch)); DCHECK(!overflow_dst.is(left)); DCHECK(!overflow_dst.is(right)); if (left.is(right) && dst.is(left)) { DCHECK(!dst.is(t9)); DCHECK(!scratch.is(t9)); DCHECK(!left.is(t9)); DCHECK(!right.is(t9)); DCHECK(!overflow_dst.is(t9)); mov(t9, right); right = t9; } if (dst.is(left)) { mov(scratch, left); // Preserve left. addu(dst, left, right); // Left is overwritten. xor_(scratch, dst, scratch); // Original left. xor_(overflow_dst, dst, right); and_(overflow_dst, overflow_dst, scratch); } else if (dst.is(right)) { mov(scratch, right); // Preserve right. addu(dst, left, right); // Right is overwritten. xor_(scratch, dst, scratch); // Original right. xor_(overflow_dst, dst, left); and_(overflow_dst, overflow_dst, scratch); } else { addu(dst, left, right); xor_(overflow_dst, dst, left); xor_(scratch, dst, right); and_(overflow_dst, scratch, overflow_dst); } } void MacroAssembler::SubuAndCheckForOverflow(Register dst, Register left, const Operand& right, Register overflow_dst, Register scratch) { if (right.is_reg()) { SubuAndCheckForOverflow(dst, left, right.rm(), overflow_dst, scratch); } else { if (dst.is(left)) { mov(scratch, left); // Preserve left. Subu(dst, left, right); // Left is overwritten. xor_(overflow_dst, dst, scratch); // scratch is original left. // Load right since xori takes uint16 as immediate. Addu(t9, zero_reg, right); xor_(scratch, scratch, t9); // scratch is original left. and_(overflow_dst, scratch, overflow_dst); } else { Subu(dst, left, right); xor_(overflow_dst, dst, left); // Load right since xori takes uint16 as immediate. Addu(t9, zero_reg, right); xor_(scratch, left, t9); and_(overflow_dst, scratch, overflow_dst); } } } void MacroAssembler::SubuAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch) { DCHECK(!dst.is(overflow_dst)); DCHECK(!dst.is(scratch)); DCHECK(!overflow_dst.is(scratch)); DCHECK(!overflow_dst.is(left)); DCHECK(!overflow_dst.is(right)); DCHECK(!scratch.is(left)); DCHECK(!scratch.is(right)); // This happens with some crankshaft code. Since Subu works fine if // left == right, let's not make that restriction here. if (left.is(right)) { mov(dst, zero_reg); mov(overflow_dst, zero_reg); return; } if (dst.is(left)) { mov(scratch, left); // Preserve left. subu(dst, left, right); // Left is overwritten. xor_(overflow_dst, dst, scratch); // scratch is original left. xor_(scratch, scratch, right); // scratch is original left. and_(overflow_dst, scratch, overflow_dst); } else if (dst.is(right)) { mov(scratch, right); // Preserve right. subu(dst, left, right); // Right is overwritten. xor_(overflow_dst, dst, left); xor_(scratch, left, scratch); // Original right. and_(overflow_dst, scratch, overflow_dst); } else { subu(dst, left, right); xor_(overflow_dst, dst, left); xor_(scratch, left, right); and_(overflow_dst, scratch, overflow_dst); } } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles, BranchDelaySlot bd) { // All parameters are on the stack. v0 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. PrepareCEntryArgs(num_arguments); PrepareCEntryFunction(ExternalReference(f, isolate())); CEntryStub stub(isolate(), 1, save_doubles); CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments, BranchDelaySlot bd) { PrepareCEntryArgs(num_arguments); PrepareCEntryFunction(ext); CEntryStub stub(isolate(), 1); CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd); } void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. PrepareCEntryArgs(num_arguments); JumpToExternalReference(ext); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments, result_size); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, BranchDelaySlot bd) { PrepareCEntryFunction(builtin); CEntryStub stub(isolate(), 1); Jump(stub.GetCode(), RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg), bd); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a builtin without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); GetBuiltinEntry(t9, id); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(t9)); Call(t9); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); Jump(t9); } } void MacroAssembler::GetBuiltinFunction(Register target, Builtins::JavaScript id) { // Load the builtins object into target register. lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); // Load the JavaScript builtin function from the builtins object. lw(target, FieldMemOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id))); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { DCHECK(!target.is(a1)); GetBuiltinFunction(a1, id); // Load the code entry point from the builtins object. lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); } void MacroAssembler::SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (FLAG_native_code_counters && counter->Enabled()) { li(scratch1, Operand(value)); li(scratch2, Operand(ExternalReference(counter))); sw(scratch1, MemOperand(scratch2)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { li(scratch2, Operand(ExternalReference(counter))); lw(scratch1, MemOperand(scratch2)); Addu(scratch1, scratch1, Operand(value)); sw(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { li(scratch2, Operand(ExternalReference(counter))); lw(scratch1, MemOperand(scratch2)); Subu(scratch1, scratch1, Operand(value)); sw(scratch1, MemOperand(scratch2)); } } // ----------------------------------------------------------------------------- // Debugging. void MacroAssembler::Assert(Condition cc, BailoutReason reason, Register rs, Operand rt) { if (emit_debug_code()) Check(cc, reason, rs, rt); } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { DCHECK(!elements.is(at)); Label ok; push(elements); lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); LoadRoot(at, Heap::kFixedArrayMapRootIndex); Branch(&ok, eq, elements, Operand(at)); LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex); Branch(&ok, eq, elements, Operand(at)); LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); Branch(&ok, eq, elements, Operand(at)); Abort(kJSObjectWithFastElementsMapHasSlowElements); bind(&ok); pop(elements); } } void MacroAssembler::Check(Condition cc, BailoutReason reason, Register rs, Operand rt) { Label L; Branch(&L, cc, rs, rt); Abort(reason); // Will not return here. bind(&L); } void MacroAssembler::Abort(BailoutReason reason) { Label abort_start; bind(&abort_start); #ifdef DEBUG const char* msg = GetBailoutReason(reason); if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } if (FLAG_trap_on_abort) { stop(msg); return; } #endif li(a0, Operand(Smi::FromInt(reason))); push(a0); // Disable stub call restrictions to always allow calls to abort. if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); CallRuntime(Runtime::kAbort, 1); } else { CallRuntime(Runtime::kAbort, 1); } // Will not return here. if (is_trampoline_pool_blocked()) { // If the calling code cares about the exact number of // instructions generated, we insert padding here to keep the size // of the Abort macro constant. // Currently in debug mode with debug_code enabled the number of // generated instructions is 10, so we use this as a maximum value. static const int kExpectedAbortInstructions = 10; int abort_instructions = InstructionsGeneratedSince(&abort_start); DCHECK(abort_instructions <= kExpectedAbortInstructions); while (abort_instructions++ < kExpectedAbortInstructions) { nop(); } } } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. lw(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { lw(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in esi). Move(dst, cp); } } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match) { // Load the global or builtins object from the current context. lw(scratch, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); lw(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); // Check that the function's map is the same as the expected cached map. lw(scratch, MemOperand(scratch, Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX))); size_t offset = expected_kind * kPointerSize + FixedArrayBase::kHeaderSize; lw(at, FieldMemOperand(scratch, offset)); Branch(no_map_match, ne, map_in_out, Operand(at)); // Use the transitioned cached map. offset = transitioned_kind * kPointerSize + FixedArrayBase::kHeaderSize; lw(map_in_out, FieldMemOperand(scratch, offset)); } void MacroAssembler::LoadGlobalFunction(int index, Register function) { // Load the global or builtins object from the current context. lw(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); // Load the native context from the global or builtins object. lw(function, FieldMemOperand(function, GlobalObject::kNativeContextOffset)); // Load the function from the native context. lw(function, MemOperand(function, Context::SlotOffset(index))); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch) { // Load the initial map. The global functions all have initial maps. lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); Branch(&ok); bind(&fail); Abort(kGlobalFunctionsMustHaveInitialMap); bind(&ok); } } void MacroAssembler::StubPrologue() { Push(ra, fp, cp); Push(Smi::FromInt(StackFrame::STUB)); // Adjust FP to point to saved FP. Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); } void MacroAssembler::Prologue(bool code_pre_aging) { PredictableCodeSizeScope predictible_code_size_scope( this, kNoCodeAgeSequenceLength); // The following three instructions must remain together and unmodified // for code aging to work properly. if (code_pre_aging) { // Pre-age the code. Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); nop(Assembler::CODE_AGE_MARKER_NOP); // Load the stub address to t9 and call it, // GetCodeAgeAndParity() extracts the stub address from this instruction. li(t9, Operand(reinterpret_cast<uint32_t>(stub->instruction_start())), CONSTANT_SIZE); nop(); // Prevent jalr to jal optimization. jalr(t9, a0); nop(); // Branch delay slot nop. nop(); // Pad the empty space. } else { Push(ra, fp, cp, a1); nop(Assembler::CODE_AGE_SEQUENCE_NOP); // Adjust fp to point to caller's fp. Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); } } void MacroAssembler::EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // Out-of-line constant pool not implemented on mips. UNREACHABLE(); } void MacroAssembler::EnterFrame(StackFrame::Type type) { addiu(sp, sp, -5 * kPointerSize); li(t8, Operand(Smi::FromInt(type))); li(t9, Operand(CodeObject()), CONSTANT_SIZE); sw(ra, MemOperand(sp, 4 * kPointerSize)); sw(fp, MemOperand(sp, 3 * kPointerSize)); sw(cp, MemOperand(sp, 2 * kPointerSize)); sw(t8, MemOperand(sp, 1 * kPointerSize)); sw(t9, MemOperand(sp, 0 * kPointerSize)); // Adjust FP to point to saved FP. Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); } void MacroAssembler::LeaveFrame(StackFrame::Type type) { mov(sp, fp); lw(fp, MemOperand(sp, 0 * kPointerSize)); lw(ra, MemOperand(sp, 1 * kPointerSize)); addiu(sp, sp, 2 * kPointerSize); } void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) { // Set up the frame structure on the stack. STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); // This is how the stack will look: // fp + 2 (==kCallerSPDisplacement) - old stack's end // [fp + 1 (==kCallerPCOffset)] - saved old ra // [fp + 0 (==kCallerFPOffset)] - saved old fp // [fp - 1 (==kSPOffset)] - sp of the called function // [fp - 2 (==kCodeOffset)] - CodeObject // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the // new stack (will contain saved ra) // Save registers. addiu(sp, sp, -4 * kPointerSize); sw(ra, MemOperand(sp, 3 * kPointerSize)); sw(fp, MemOperand(sp, 2 * kPointerSize)); addiu(fp, sp, 2 * kPointerSize); // Set up new frame pointer. if (emit_debug_code()) { sw(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); } // Accessed from ExitFrame::code_slot. li(t8, Operand(CodeObject()), CONSTANT_SIZE); sw(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); // Save the frame pointer and the context in top. li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); sw(fp, MemOperand(t8)); li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); sw(cp, MemOperand(t8)); const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); if (save_doubles) { // The stack must be allign to 0 modulo 8 for stores with sdc1. DCHECK(kDoubleSize == frame_alignment); if (frame_alignment > 0) { DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); // Align stack. } int space = FPURegister::kMaxNumRegisters * kDoubleSize; Subu(sp, sp, Operand(space)); // Remember: we only need to save every 2nd double FPU value. for (int i = 0; i < FPURegister::kMaxNumRegisters; i+=2) { FPURegister reg = FPURegister::from_code(i); sdc1(reg, MemOperand(sp, i * kDoubleSize)); } } // Reserve place for the return address, stack space and an optional slot // (used by the DirectCEntryStub to hold the return value if a struct is // returned) and align the frame preparing for calling the runtime function. DCHECK(stack_space >= 0); Subu(sp, sp, Operand((stack_space + 2) * kPointerSize)); if (frame_alignment > 0) { DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); // Align stack. } // Set the exit frame sp value to point just before the return address // location. addiu(at, sp, kPointerSize); sw(at, MemOperand(fp, ExitFrameConstants::kSPOffset)); } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, bool restore_context, bool do_return, bool argument_count_is_length) { // Optionally restore all double registers. if (save_doubles) { // Remember: we only need to restore every 2nd double FPU value. lw(t8, MemOperand(fp, ExitFrameConstants::kSPOffset)); for (int i = 0; i < FPURegister::kMaxNumRegisters; i+=2) { FPURegister reg = FPURegister::from_code(i); ldc1(reg, MemOperand(t8, i * kDoubleSize + kPointerSize)); } } // Clear top frame. li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); sw(zero_reg, MemOperand(t8)); // Restore current context from top and clear it in debug mode. if (restore_context) { li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); lw(cp, MemOperand(t8)); } #ifdef DEBUG li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); sw(a3, MemOperand(t8)); #endif // Pop the arguments, restore registers, and return. mov(sp, fp); // Respect ABI stack constraint. lw(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); lw(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); if (argument_count.is_valid()) { if (argument_count_is_length) { addu(sp, sp, argument_count); } else { sll(t8, argument_count, kPointerSizeLog2); addu(sp, sp, t8); } } if (do_return) { Ret(USE_DELAY_SLOT); // If returning, the instruction in the delay slot will be the addiu below. } addiu(sp, sp, 8); } void MacroAssembler::InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2) { sll(scratch1, length, kSmiTagSize); LoadRoot(scratch2, map_index); sw(scratch1, FieldMemOperand(string, String::kLengthOffset)); li(scratch1, Operand(String::kEmptyHashField)); sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); } int MacroAssembler::ActivationFrameAlignment() { #if V8_HOST_ARCH_MIPS // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one Mips // platform for another Mips platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // V8_HOST_ARCH_MIPS // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // V8_HOST_ARCH_MIPS } void MacroAssembler::AssertStackIsAligned() { if (emit_debug_code()) { const int frame_alignment = ActivationFrameAlignment(); const int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { Label alignment_as_expected; DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); andi(at, sp, frame_alignment_mask); Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); // Don't use Check here, as it will call Runtime_Abort re-entering here. stop("Unexpected stack alignment"); bind(&alignment_as_expected); } } } void MacroAssembler::JumpIfNotPowerOfTwoOrZero( Register reg, Register scratch, Label* not_power_of_two_or_zero) { Subu(scratch, reg, Operand(1)); Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt, scratch, Operand(zero_reg)); and_(at, scratch, reg); // In the delay slot. Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg)); } void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { DCHECK(!reg.is(overflow)); mov(overflow, reg); // Save original value. SmiTag(reg); xor_(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0. } void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src, Register overflow) { if (dst.is(src)) { // Fall back to slower case. SmiTagCheckOverflow(dst, overflow); } else { DCHECK(!dst.is(src)); DCHECK(!dst.is(overflow)); DCHECK(!src.is(overflow)); SmiTag(dst, src); xor_(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0. } } void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case) { JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT); SmiUntag(dst, src); } void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case) { JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT); SmiUntag(dst, src); } void MacroAssembler::JumpIfSmi(Register value, Label* smi_label, Register scratch, BranchDelaySlot bd) { DCHECK_EQ(0, kSmiTag); andi(scratch, value, kSmiTagMask); Branch(bd, smi_label, eq, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label, Register scratch, BranchDelaySlot bd) { DCHECK_EQ(0, kSmiTag); andi(scratch, value, kSmiTagMask); Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi) { STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(1, kSmiTagMask); or_(at, reg1, reg2); JumpIfNotSmi(at, on_not_both_smi); } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(1, kSmiTagMask); // Both Smi tags must be 1 (not Smi). and_(at, reg1, reg2); JumpIfSmi(at, on_either_smi); } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); andi(at, object, kSmiTagMask); Check(ne, kOperandIsASmi, at, Operand(zero_reg)); } } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); andi(at, object, kSmiTagMask); Check(eq, kOperandIsASmi, at, Operand(zero_reg)); } } void MacroAssembler::AssertString(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t0); Check(ne, kOperandIsASmiAndNotAString, t0, Operand(zero_reg)); push(object); lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE)); pop(object); } } void MacroAssembler::AssertName(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t0); Check(ne, kOperandIsASmiAndNotAName, t0, Operand(zero_reg)); push(object); lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE)); pop(object); } } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); LoadRoot(scratch, Heap::kUndefinedValueRootIndex); Branch(&done_checking, eq, object, Operand(scratch)); push(object); lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex); Assert(eq, kExpectedUndefinedOrCell, object, Operand(scratch)); pop(object); bind(&done_checking); } } void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) { if (emit_debug_code()) { DCHECK(!reg.is(at)); LoadRoot(at, index); Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at)); } } void MacroAssembler::JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number) { lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map)); } void MacroAssembler::LookupNumberStringCache(Register object, Register result, Register scratch1, Register scratch2, Register scratch3, Label* not_found) { // Use of registers. Register result is used as a temporary. Register number_string_cache = result; Register mask = scratch3; // Load the number string cache. LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); // Divide length by two (length is a smi). sra(mask, mask, kSmiTagSize + 1); Addu(mask, mask, -1); // Make mask. // Calculate the entry in the number string cache. The hash value in the // number string cache for smis is just the smi value, and the hash for // doubles is the xor of the upper and lower words. See // Heap::GetNumberStringCache. Label is_smi; Label load_result_from_cache; JumpIfSmi(object, &is_smi); CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found, DONT_DO_SMI_CHECK); STATIC_ASSERT(8 == kDoubleSize); Addu(scratch1, object, Operand(HeapNumber::kValueOffset - kHeapObjectTag)); lw(scratch2, MemOperand(scratch1, kPointerSize)); lw(scratch1, MemOperand(scratch1, 0)); Xor(scratch1, scratch1, Operand(scratch2)); And(scratch1, scratch1, Operand(mask)); // Calculate address of entry in string cache: each entry consists // of two pointer sized fields. sll(scratch1, scratch1, kPointerSizeLog2 + 1); Addu(scratch1, number_string_cache, scratch1); Register probe = mask; lw(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); JumpIfSmi(probe, not_found); ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset)); ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset)); BranchF(&load_result_from_cache, NULL, eq, f12, f14); Branch(not_found); bind(&is_smi); Register scratch = scratch1; sra(scratch, object, 1); // Shift away the tag. And(scratch, mask, Operand(scratch)); // Calculate address of entry in string cache: each entry consists // of two pointer sized fields. sll(scratch, scratch, kPointerSizeLog2 + 1); Addu(scratch, number_string_cache, scratch); // Check if the entry is the smi we are looking for. lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); Branch(not_found, ne, object, Operand(probe)); // Get the result from the cache. bind(&load_result_from_cache); lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); IncrementCounter(isolate()->counters()->number_to_string_native(), 1, scratch1, scratch2); } void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Test that both first and second are sequential one-byte strings. // Assume that they are non-smis. lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Check that neither is a smi. STATIC_ASSERT(kSmiTag == 0); And(scratch1, first, Operand(second)); JumpIfSmi(scratch1, failure); JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1, scratch2, failure); } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; DCHECK(kFlatOneByteStringTag <= 0xffff); // Ensure this fits 16-bit immed. andi(scratch1, first, kFlatOneByteStringMask); Branch(failure, ne, scratch1, Operand(kFlatOneByteStringTag)); andi(scratch2, second, kFlatOneByteStringMask); Branch(failure, ne, scratch2, Operand(kFlatOneByteStringTag)); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; And(scratch, type, Operand(kFlatOneByteStringMask)); Branch(failure, ne, scratch, Operand(kFlatOneByteStringTag)); } static const int kRegisterPassedArguments = 4; int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; num_reg_arguments += 2 * num_double_arguments; // Up to four simple arguments are passed in registers a0..a3. if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } stack_passed_words += kCArgSlotCount; return stack_passed_words; } void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index, Register value, Register scratch, uint32_t encoding_mask) { Label is_object; SmiTst(string, at); Check(ne, kNonObject, at, Operand(zero_reg)); lw(at, FieldMemOperand(string, HeapObject::kMapOffset)); lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset)); andi(at, at, kStringRepresentationMask | kStringEncodingMask); li(scratch, Operand(encoding_mask)); Check(eq, kUnexpectedStringType, at, Operand(scratch)); // The index is assumed to be untagged coming in, tag it to compare with the // string length without using a temp register, it is restored at the end of // this function. Label index_tag_ok, index_tag_bad; TrySmiTag(index, scratch, &index_tag_bad); Branch(&index_tag_ok); bind(&index_tag_bad); Abort(kIndexIsTooLarge); bind(&index_tag_ok); lw(at, FieldMemOperand(string, String::kLengthOffset)); Check(lt, kIndexIsTooLarge, index, Operand(at)); DCHECK(Smi::FromInt(0) == 0); Check(ge, kIndexIsNegative, index, Operand(zero_reg)); SmiUntag(index, index); } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); // Up to four simple arguments are passed in registers a0..a3. // Those four arguments must have reserved argument slots on the stack for // mips, even though those argument slots are not normally used. // Remaining arguments are pushed on the stack, above (higher address than) // the argument slots. int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for num_arguments - 4 words // and the original value of sp. mov(scratch, sp); Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, Register scratch) { PrepareCallCFunction(num_reg_arguments, 0, scratch); } void MacroAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { li(t8, Operand(function)); CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { DCHECK(has_frame()); // Make sure that the stack is aligned before calling a C function unless // running in the simulator. The simulator has its own alignment check which // provides more information. // The argument stots are presumed to have been set up by // PrepareCallCFunction. The C function must be called via t9, for mips ABI. #if V8_HOST_ARCH_MIPS if (emit_debug_code()) { int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); Label alignment_as_expected; And(at, sp, Operand(frame_alignment_mask)); Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); // Don't use Check here, as it will call Runtime_Abort possibly // re-entering here. stop("Unexpected alignment in CallCFunction"); bind(&alignment_as_expected); } } #endif // V8_HOST_ARCH_MIPS // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. if (!function.is(t9)) { mov(t9, function); function = t9; } Call(function); int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (base::OS::ActivationFrameAlignment() > kPointerSize) { lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { Addu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } #undef BRANCH_ARGS_CHECK void MacroAssembler::PatchRelocatedValue(Register li_location, Register scratch, Register new_value) { lw(scratch, MemOperand(li_location)); // At this point scratch is a lui(at, ...) instruction. if (emit_debug_code()) { And(scratch, scratch, kOpcodeMask); Check(eq, kTheInstructionToPatchShouldBeALui, scratch, Operand(LUI)); lw(scratch, MemOperand(li_location)); } srl(t9, new_value, kImm16Bits); Ins(scratch, t9, 0, kImm16Bits); sw(scratch, MemOperand(li_location)); lw(scratch, MemOperand(li_location, kInstrSize)); // scratch is now ori(at, ...). if (emit_debug_code()) { And(scratch, scratch, kOpcodeMask); Check(eq, kTheInstructionToPatchShouldBeAnOri, scratch, Operand(ORI)); lw(scratch, MemOperand(li_location, kInstrSize)); } Ins(scratch, new_value, 0, kImm16Bits); sw(scratch, MemOperand(li_location, kInstrSize)); // Update the I-cache so the new lui and ori can be executed. FlushICache(li_location, 2); } void MacroAssembler::GetRelocatedValue(Register li_location, Register value, Register scratch) { lw(value, MemOperand(li_location)); if (emit_debug_code()) { And(value, value, kOpcodeMask); Check(eq, kTheInstructionShouldBeALui, value, Operand(LUI)); lw(value, MemOperand(li_location)); } // value now holds a lui instruction. Extract the immediate. sll(value, value, kImm16Bits); lw(scratch, MemOperand(li_location, kInstrSize)); if (emit_debug_code()) { And(scratch, scratch, kOpcodeMask); Check(eq, kTheInstructionShouldBeAnOri, scratch, Operand(ORI)); lw(scratch, MemOperand(li_location, kInstrSize)); } // "scratch" now holds an ori instruction. Extract the immediate. andi(scratch, scratch, kImm16Mask); // Merge the results. or_(value, value, scratch); } void MacroAssembler::CheckPageFlag( Register object, Register scratch, int mask, Condition cc, Label* condition_met) { And(scratch, object, Operand(~Page::kPageAlignmentMask)); lw(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); And(scratch, scratch, Operand(mask)); Branch(condition_met, cc, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black) { HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); } void MacroAssembler::HasColor(Register object, Register bitmap_scratch, Register mask_scratch, Label* has_color, int first_bit, int second_bit) { DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t8)); DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t9)); GetMarkBits(object, bitmap_scratch, mask_scratch); Label other_color, word_boundary; lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); And(t8, t9, Operand(mask_scratch)); Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg)); // Shift left 1 by adding. Addu(mask_scratch, mask_scratch, Operand(mask_scratch)); Branch(&word_boundary, eq, mask_scratch, Operand(zero_reg)); And(t8, t9, Operand(mask_scratch)); Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg)); jmp(&other_color); bind(&word_boundary); lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize)); And(t9, t9, Operand(1)); Branch(has_color, second_bit == 1 ? ne : eq, t9, Operand(zero_reg)); bind(&other_color); } // Detect some, but not all, common pointer-free objects. This is used by the // incremental write barrier which doesn't care about oddballs (they are always // marked black immediately so this code is not hit). void MacroAssembler::JumpIfDataObject(Register value, Register scratch, Label* not_data_object) { DCHECK(!AreAliased(value, scratch, t8, no_reg)); Label is_data_object; lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); LoadRoot(t8, Heap::kHeapNumberMapRootIndex); Branch(&is_data_object, eq, t8, Operand(scratch)); DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); // If it's a string and it's not a cons string then it's an object containing // no GC pointers. lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask)); Branch(not_data_object, ne, t8, Operand(zero_reg)); bind(&is_data_object); } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg) { DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask)); Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits); sll(t8, t8, kPointerSizeLog2); Addu(bitmap_reg, bitmap_reg, t8); li(t8, Operand(1)); sllv(mask_reg, t8, mask_reg); } void MacroAssembler::EnsureNotWhite( Register value, Register bitmap_scratch, Register mask_scratch, Register load_scratch, Label* value_is_white_and_not_data) { DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, t8)); GetMarkBits(value, bitmap_scratch, mask_scratch); // If the value is black or grey we don't need to do anything. DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0); DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); Label done; // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. lw(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); And(t8, mask_scratch, load_scratch); Branch(&done, ne, t8, Operand(zero_reg)); if (emit_debug_code()) { // Check for impossible bit pattern. Label ok; // sll may overflow, making the check conservative. sll(t8, mask_scratch, 1); And(t8, load_scratch, t8); Branch(&ok, eq, t8, Operand(zero_reg)); stop("Impossible marking bit pattern"); bind(&ok); } // Value is white. We check whether it is data that doesn't need scanning. // Currently only checks for HeapNumber and non-cons strings. Register map = load_scratch; // Holds map while checking type. Register length = load_scratch; // Holds length of object after testing type. Label is_data_object; // Check for heap-number lw(map, FieldMemOperand(value, HeapObject::kMapOffset)); LoadRoot(t8, Heap::kHeapNumberMapRootIndex); { Label skip; Branch(&skip, ne, t8, Operand(map)); li(length, HeapNumber::kSize); Branch(&is_data_object); bind(&skip); } // Check for strings. DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); // If it's a string and it's not a cons string then it's an object containing // no GC pointers. Register instance_type = load_scratch; lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask)); Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg)); // It's a non-indirect (non-cons and non-slice) string. // If it's external, the length is just ExternalString::kSize. // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). // External strings are the only ones with the kExternalStringTag bit // set. DCHECK_EQ(0, kSeqStringTag & kExternalStringTag); DCHECK_EQ(0, kConsStringTag & kExternalStringTag); And(t8, instance_type, Operand(kExternalStringTag)); { Label skip; Branch(&skip, eq, t8, Operand(zero_reg)); li(length, ExternalString::kSize); Branch(&is_data_object); bind(&skip); } // Sequential string, either Latin1 or UC16. // For Latin1 (char-size of 1) we shift the smi tag away to get the length. // For UC16 (char-size of 2) we just leave the smi tag in place, thereby // getting the length multiplied by 2. DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4); DCHECK(kSmiTag == 0 && kSmiTagSize == 1); lw(t9, FieldMemOperand(value, String::kLengthOffset)); And(t8, instance_type, Operand(kStringEncodingMask)); { Label skip; Branch(&skip, eq, t8, Operand(zero_reg)); srl(t9, t9, 1); bind(&skip); } Addu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask)); And(length, length, Operand(~kObjectAlignmentMask)); bind(&is_data_object); // Value is a data object, and it is white. Mark it black. Since we know // that the object is white we can make it black by flipping one bit. lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); Or(t8, t8, Operand(mask_scratch)); sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask)); lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); Addu(t8, t8, Operand(length)); sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); bind(&done); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { lw(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); } void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { lw(dst, FieldMemOperand(map, Map::kBitField3Offset)); DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); } void MacroAssembler::EnumLength(Register dst, Register map) { STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); lw(dst, FieldMemOperand(map, Map::kBitField3Offset)); And(dst, dst, Operand(Map::EnumLengthBits::kMask)); SmiTag(dst); } void MacroAssembler::LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor) { lw(dst, FieldMemOperand(holder, HeapObject::kMapOffset)); LoadInstanceDescriptors(dst, dst); lw(dst, FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index))); int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset : AccessorPair::kSetterOffset; lw(dst, FieldMemOperand(dst, offset)); } void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { Register empty_fixed_array_value = t2; LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); Label next, start; mov(a2, a0); // Check if the enum length field is properly initialized, indicating that // there is an enum cache. lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); EnumLength(a3, a1); Branch( call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel))); jmp(&start); bind(&next); lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); // For all objects but the receiver, check that the cache is empty. EnumLength(a3, a1); Branch(call_runtime, ne, a3, Operand(Smi::FromInt(0))); bind(&start); // Check that there are no elements. Register a2 contains the current JS // object we've reached through the prototype chain. Label no_elements; lw(a2, FieldMemOperand(a2, JSObject::kElementsOffset)); Branch(&no_elements, eq, a2, Operand(empty_fixed_array_value)); // Second chance, the object may be using the empty slow element dictionary. LoadRoot(at, Heap::kEmptySlowElementDictionaryRootIndex); Branch(call_runtime, ne, a2, Operand(at)); bind(&no_elements); lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset)); Branch(&next, ne, a2, Operand(null_value)); } void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { DCHECK(!output_reg.is(input_reg)); Label done; li(output_reg, Operand(255)); // Normal branch: nop in delay slot. Branch(&done, gt, input_reg, Operand(output_reg)); // Use delay slot in this branch. Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg)); mov(output_reg, zero_reg); // In delay slot. mov(output_reg, input_reg); // Value is in range 0..255. bind(&done); } void MacroAssembler::ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, DoubleRegister temp_double_reg) { Label above_zero; Label done; Label in_bounds; Move(temp_double_reg, 0.0); BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg); // Double value is less than zero, NaN or Inf, return 0. mov(result_reg, zero_reg); Branch(&done); // Double value is >= 255, return 255. bind(&above_zero); Move(temp_double_reg, 255.0); BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg); li(result_reg, Operand(255)); Branch(&done); // In 0-255 range, round and truncate. bind(&in_bounds); cvt_w_d(temp_double_reg, input_reg); mfc1(result_reg, temp_double_reg); bind(&done); } void MacroAssembler::TestJSArrayForAllocationMemento( Register receiver_reg, Register scratch_reg, Label* no_memento_found, Condition cond, Label* allocation_memento_present) { ExternalReference new_space_start = ExternalReference::new_space_start(isolate()); ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); Addu(scratch_reg, receiver_reg, Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag)); Branch(no_memento_found, lt, scratch_reg, Operand(new_space_start)); li(at, Operand(new_space_allocation_top)); lw(at, MemOperand(at)); Branch(no_memento_found, gt, scratch_reg, Operand(at)); lw(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize)); if (allocation_memento_present) { Branch(allocation_memento_present, cond, scratch_reg, Operand(isolate()->factory()->allocation_memento_map())); } } Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6) { RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); for (int i = 0; i < Register::NumAllocatableRegisters(); i++) { Register candidate = Register::FromAllocationIndex(i); if (regs & candidate.bit()) continue; return candidate; } UNREACHABLE(); return no_reg; } void MacroAssembler::JumpIfDictionaryInPrototypeChain( Register object, Register scratch0, Register scratch1, Label* found) { DCHECK(!scratch1.is(scratch0)); Factory* factory = isolate()->factory(); Register current = scratch0; Label loop_again, end; // Scratch contained elements pointer. Move(current, object); lw(current, FieldMemOperand(current, HeapObject::kMapOffset)); lw(current, FieldMemOperand(current, Map::kPrototypeOffset)); Branch(&end, eq, current, Operand(factory->null_value())); // Loop based on the map going up the prototype chain. bind(&loop_again); lw(current, FieldMemOperand(current, HeapObject::kMapOffset)); lbu(scratch1, FieldMemOperand(current, Map::kInstanceTypeOffset)); STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE); STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE); Branch(found, lo, scratch1, Operand(JS_OBJECT_TYPE)); lb(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); DecodeField<Map::ElementsKindBits>(scratch1); Branch(found, eq, scratch1, Operand(DICTIONARY_ELEMENTS)); lw(current, FieldMemOperand(current, Map::kPrototypeOffset)); Branch(&loop_again, ne, current, Operand(factory->null_value())); bind(&end); } bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6, Register reg7, Register reg8) { int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + reg7.is_valid() + reg8.is_valid(); RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); if (reg7.is_valid()) regs |= reg7.bit(); if (reg8.is_valid()) regs |= reg8.bit(); int n_of_non_aliasing_regs = NumRegs(regs); return n_of_valid_regs != n_of_non_aliasing_regs; } CodePatcher::CodePatcher(byte* address, int instructions, FlushICache flush_cache) : address_(address), size_(instructions * Assembler::kInstrSize), masm_(NULL, address, size_ + Assembler::kGap), flush_cache_(flush_cache) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. if (flush_cache_ == FLUSH) { CpuFeatures::FlushICache(address_, size_); } // Check that the code was patched as expected. DCHECK(masm_.pc_ == address_ + size_); DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void CodePatcher::Emit(Instr instr) { masm()->emit(instr); } void CodePatcher::Emit(Address addr) { masm()->emit(reinterpret_cast<Instr>(addr)); } void CodePatcher::ChangeBranchCondition(Condition cond) { Instr instr = Assembler::instr_at(masm_.pc_); DCHECK(Assembler::IsBranch(instr)); uint32_t opcode = Assembler::GetOpcodeField(instr); // Currently only the 'eq' and 'ne' cond values are supported and the simple // branch instructions (with opcode being the branch type). // There are some special cases (see Assembler::IsBranch()) so extending this // would be tricky. DCHECK(opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ || opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL); opcode = (cond == eq) ? BEQ : BNE; instr = (instr & ~kOpcodeMask) | opcode; masm_.emit(instr); } void MacroAssembler::TruncatingDiv(Register result, Register dividend, int32_t divisor) { DCHECK(!dividend.is(result)); DCHECK(!dividend.is(at)); DCHECK(!result.is(at)); base::MagicNumbersForDivision<uint32_t> mag = base::SignedDivisionByConstant(static_cast<uint32_t>(divisor)); li(at, Operand(mag.multiplier)); Mulh(result, dividend, Operand(at)); bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0; if (divisor > 0 && neg) { Addu(result, result, Operand(dividend)); } if (divisor < 0 && !neg && mag.multiplier > 0) { Subu(result, result, Operand(dividend)); } if (mag.shift > 0) sra(result, result, mag.shift); srl(at, dividend, 31); Addu(result, result, Operand(at)); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS