// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/bits.h" #include "src/compiler/backend/instruction-selector-impl.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-properties.h" namespace v8 { namespace internal { namespace compiler { #define TRACE_UNIMPL() \ PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) #define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) // Adds RISC-V-specific methods for generating InstructionOperands. class RiscvOperandGenerator final : public OperandGenerator { public: explicit RiscvOperandGenerator(InstructionSelector* selector) : OperandGenerator(selector) {} InstructionOperand UseOperand(Node* node, InstructionCode opcode) { if (CanBeImmediate(node, opcode)) { return UseImmediate(node); } return UseRegister(node); } // Use the zero register if the node has the immediate value zero, otherwise // assign a register. InstructionOperand UseRegisterOrImmediateZero(Node* node) { if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) || (IsFloatConstant(node) && (bit_cast<int64_t>(GetFloatConstantValue(node)) == 0))) { return UseImmediate(node); } return UseRegister(node); } bool IsIntegerConstant(Node* node) { return (node->opcode() == IrOpcode::kInt32Constant) || (node->opcode() == IrOpcode::kInt64Constant); } int64_t GetIntegerConstantValue(Node* node) { if (node->opcode() == IrOpcode::kInt32Constant) { return OpParameter<int32_t>(node->op()); } DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode()); return OpParameter<int64_t>(node->op()); } bool IsFloatConstant(Node* node) { return (node->opcode() == IrOpcode::kFloat32Constant) || (node->opcode() == IrOpcode::kFloat64Constant); } double GetFloatConstantValue(Node* node) { if (node->opcode() == IrOpcode::kFloat32Constant) { return OpParameter<float>(node->op()); } DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode()); return OpParameter<double>(node->op()); } bool CanBeImmediate(Node* node, InstructionCode mode) { return IsIntegerConstant(node) && CanBeImmediate(GetIntegerConstantValue(node), mode); } bool CanBeImmediate(int64_t value, InstructionCode opcode) { switch (ArchOpcodeField::decode(opcode)) { case kRiscvShl32: case kRiscvSar32: case kRiscvShr32: return is_uint5(value); case kRiscvShl64: case kRiscvSar64: case kRiscvShr64: return is_uint6(value); case kRiscvAdd32: case kRiscvAnd32: case kRiscvAnd: case kRiscvAdd64: case kRiscvOr32: case kRiscvOr: case kRiscvTst: case kRiscvXor: return is_int12(value); case kRiscvLb: case kRiscvLbu: case kRiscvSb: case kRiscvLh: case kRiscvLhu: case kRiscvSh: case kRiscvLw: case kRiscvSw: case kRiscvLd: case kRiscvSd: case kRiscvLoadFloat: case kRiscvStoreFloat: case kRiscvLoadDouble: case kRiscvStoreDouble: return is_int32(value); default: return is_int12(value); } } private: bool ImmediateFitsAddrMode1Instruction(int32_t imm) const { TRACE_UNIMPL(); return false; } }; static void VisitRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { RiscvOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } static void VisitRRI(InstructionSelector* selector, ArchOpcode opcode, Node* node) { RiscvOperandGenerator g(selector); int32_t imm = OpParameter<int32_t>(node->op()); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(imm)); } static void VisitSimdShift(InstructionSelector* selector, ArchOpcode opcode, Node* node) { RiscvOperandGenerator g(selector); if (g.IsIntegerConstant(node->InputAt(1))) { selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(node->InputAt(1))); } else { selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } } static void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { RiscvOperandGenerator g(selector); int32_t imm = OpParameter<int32_t>(node->op()); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(imm), g.UseRegister(node->InputAt(1))); } static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { RiscvOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } static void VisitUniqueRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { RiscvOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1))); } void VisitRRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { RiscvOperandGenerator g(selector); selector->Emit( opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); } static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, Node* node) { RiscvOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseOperand(node->InputAt(1), opcode)); } struct ExtendingLoadMatcher { ExtendingLoadMatcher(Node* node, InstructionSelector* selector) : matches_(false), selector_(selector), base_(nullptr), immediate_(0) { Initialize(node); } bool Matches() const { return matches_; } Node* base() const { DCHECK(Matches()); return base_; } int64_t immediate() const { DCHECK(Matches()); return immediate_; } ArchOpcode opcode() const { DCHECK(Matches()); return opcode_; } private: bool matches_; InstructionSelector* selector_; Node* base_; int64_t immediate_; ArchOpcode opcode_; void Initialize(Node* node) { Int64BinopMatcher m(node); // When loading a 64-bit value and shifting by 32, we should // just load and sign-extend the interesting 4 bytes instead. // This happens, for example, when we're loading and untagging SMIs. DCHECK(m.IsWord64Sar()); if (m.left().IsLoad() && m.right().Is(32) && selector_->CanCover(m.node(), m.left().node())) { DCHECK_EQ(selector_->GetEffectLevel(node), selector_->GetEffectLevel(m.left().node())); MachineRepresentation rep = LoadRepresentationOf(m.left().node()->op()).representation(); DCHECK_EQ(3, ElementSizeLog2Of(rep)); if (rep != MachineRepresentation::kTaggedSigned && rep != MachineRepresentation::kTaggedPointer && rep != MachineRepresentation::kTagged && rep != MachineRepresentation::kWord64) { return; } RiscvOperandGenerator g(selector_); Node* load = m.left().node(); Node* offset = load->InputAt(1); base_ = load->InputAt(0); opcode_ = kRiscvLw; if (g.CanBeImmediate(offset, opcode_)) { #if defined(V8_TARGET_LITTLE_ENDIAN) immediate_ = g.GetIntegerConstantValue(offset) + 4; #elif defined(V8_TARGET_BIG_ENDIAN) immediate_ = g.GetIntegerConstantValue(offset); #endif matches_ = g.CanBeImmediate(immediate_, kRiscvLw); } } } }; bool TryEmitExtendingLoad(InstructionSelector* selector, Node* node, Node* output_node) { ExtendingLoadMatcher m(node, selector); RiscvOperandGenerator g(selector); if (m.Matches()) { InstructionOperand inputs[2]; inputs[0] = g.UseRegister(m.base()); InstructionCode opcode = m.opcode() | AddressingModeField::encode(kMode_MRI); DCHECK(is_int32(m.immediate())); inputs[1] = g.TempImmediate(static_cast<int32_t>(m.immediate())); InstructionOperand outputs[] = {g.DefineAsRegister(output_node)}; selector->Emit(opcode, arraysize(outputs), outputs, arraysize(inputs), inputs); return true; } return false; } bool TryMatchImmediate(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, size_t* input_count_return, InstructionOperand* inputs) { RiscvOperandGenerator g(selector); if (g.CanBeImmediate(node, *opcode_return)) { *opcode_return |= AddressingModeField::encode(kMode_MRI); inputs[0] = g.UseImmediate(node); *input_count_return = 1; return true; } return false; } static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, bool has_reverse_opcode, InstructionCode reverse_opcode, FlagsContinuation* cont) { RiscvOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand inputs[2]; size_t input_count = 0; InstructionOperand outputs[1]; size_t output_count = 0; if (TryMatchImmediate(selector, &opcode, m.right().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.left().node()); input_count++; } else if (has_reverse_opcode && TryMatchImmediate(selector, &reverse_opcode, m.left().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.right().node()); opcode = reverse_opcode; input_count++; } else { inputs[input_count++] = g.UseRegister(m.left().node()); inputs[input_count++] = g.UseOperand(m.right().node(), opcode); } if (cont->IsDeoptimize()) { // If we can deoptimize as a result of the binop, we need to make sure that // the deopt inputs are not overwritten by the binop result. One way // to achieve that is to declare the output register as same-as-first. outputs[output_count++] = g.DefineSameAsFirst(node); } else { outputs[output_count++] = g.DefineAsRegister(node); } DCHECK_NE(0u, input_count); DCHECK_EQ(1u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, bool has_reverse_opcode, InstructionCode reverse_opcode) { FlagsContinuation cont; VisitBinop(selector, node, opcode, has_reverse_opcode, reverse_opcode, &cont); } static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { VisitBinop(selector, node, opcode, false, kArchNop, cont); } static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode) { VisitBinop(selector, node, opcode, false, kArchNop); } void InstructionSelector::VisitStackSlot(Node* node) { StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); int alignment = rep.alignment(); int slot = frame_->AllocateSpillSlot(rep.size(), alignment); OperandGenerator g(this); Emit(kArchStackSlot, g.DefineAsRegister(node), sequence()->AddImmediate(Constant(slot)), sequence()->AddImmediate(Constant(alignment)), 0, nullptr); } void InstructionSelector::VisitAbortCSAAssert(Node* node) { RiscvOperandGenerator g(this); Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), a0)); } void EmitLoad(InstructionSelector* selector, Node* node, InstructionCode opcode, Node* output = nullptr) { RiscvOperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); if (g.CanBeImmediate(index, opcode)) { selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(output == nullptr ? node : output), g.UseRegister(base), g.UseImmediate(index)); } else { InstructionOperand addr_reg = g.TempRegister(); selector->Emit(kRiscvAdd64 | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired load opcode, using temp addr_reg. selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(output == nullptr ? node : output), addr_reg, g.TempImmediate(0)); } } void InstructionSelector::VisitStoreLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitLoadLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitLoadTransform(Node* node) { LoadTransformParameters params = LoadTransformParametersOf(node->op()); InstructionCode opcode = kArchNop; switch (params.transformation) { case LoadTransformation::kS128Load8Splat: opcode = kRiscvS128Load8Splat; break; case LoadTransformation::kS128Load16Splat: opcode = kRiscvS128Load16Splat; break; case LoadTransformation::kS128Load32Splat: opcode = kRiscvS128Load32Splat; break; case LoadTransformation::kS128Load64Splat: opcode = kRiscvS128Load64Splat; break; case LoadTransformation::kS128Load8x8S: opcode = kRiscvS128Load8x8S; break; case LoadTransformation::kS128Load8x8U: opcode = kRiscvS128Load8x8U; break; case LoadTransformation::kS128Load16x4S: opcode = kRiscvS128Load16x4S; break; case LoadTransformation::kS128Load16x4U: opcode = kRiscvS128Load16x4U; break; case LoadTransformation::kS128Load32x2S: opcode = kRiscvS128Load32x2S; break; case LoadTransformation::kS128Load32x2U: opcode = kRiscvS128Load32x2U; break; default: UNIMPLEMENTED(); } EmitLoad(this, node, opcode); } void InstructionSelector::VisitLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); InstructionCode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kRiscvLoadFloat; break; case MachineRepresentation::kFloat64: opcode = kRiscvLoadDouble; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsUnsigned() ? kRiscvLbu : kRiscvLb; break; case MachineRepresentation::kWord16: opcode = load_rep.IsUnsigned() ? kRiscvLhu : kRiscvLh; break; case MachineRepresentation::kWord32: opcode = load_rep.IsUnsigned() ? kRiscvLwu : kRiscvLw; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kRiscvLd; break; case MachineRepresentation::kSimd128: opcode = kRiscvMsaLd; break; case MachineRepresentation::kCompressedPointer: // Fall through. case MachineRepresentation::kCompressed: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); } if (node->opcode() == IrOpcode::kPoisonedLoad) { CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); opcode |= MiscField::encode(kMemoryAccessPoisoned); } EmitLoad(this, node, opcode); } void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } void InstructionSelector::VisitProtectedLoad(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitStore(Node* node) { RiscvOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); StoreRepresentation store_rep = StoreRepresentationOf(node->op()); WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); MachineRepresentation rep = store_rep.representation(); // TODO(riscv): I guess this could be done in a better way. if (write_barrier_kind != kNoWriteBarrier && V8_LIKELY(!FLAG_disable_write_barriers)) { DCHECK(CanBeTaggedPointer(rep)); InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); RecordWriteMode record_write_mode = WriteBarrierKindToRecordWriteMode(write_barrier_kind); InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; size_t const temp_count = arraysize(temps); InstructionCode code = kArchStoreWithWriteBarrier; code |= MiscField::encode(static_cast<int>(record_write_mode)); Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); } else { ArchOpcode opcode; switch (rep) { case MachineRepresentation::kFloat32: opcode = kRiscvStoreFloat; break; case MachineRepresentation::kFloat64: opcode = kRiscvStoreDouble; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = kRiscvSb; break; case MachineRepresentation::kWord16: opcode = kRiscvSh; break; case MachineRepresentation::kWord32: opcode = kRiscvSw; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kRiscvSd; break; case MachineRepresentation::kSimd128: opcode = kRiscvMsaSt; break; case MachineRepresentation::kCompressedPointer: // Fall through. case MachineRepresentation::kCompressed: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); } if (g.CanBeImmediate(index, opcode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), g.UseRegister(base), g.UseImmediate(index), g.UseRegisterOrImmediateZero(value)); } else { InstructionOperand addr_reg = g.TempRegister(); Emit(kRiscvAdd64 | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired store opcode, using temp addr_reg. Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); } } } void InstructionSelector::VisitProtectedStore(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitWord32And(Node* node) { VisitBinop(this, node, kRiscvAnd32, true, kRiscvAnd32); } void InstructionSelector::VisitWord64And(Node* node) { RiscvOperandGenerator g(this); Int64BinopMatcher m(node); if (m.left().IsWord64Shr() && CanCover(node, m.left().node()) && m.right().HasResolvedValue()) { uint64_t mask = m.right().ResolvedValue(); uint32_t mask_width = base::bits::CountPopulation(mask); uint32_t mask_msb = base::bits::CountLeadingZeros64(mask); if ((mask_width != 0) && (mask_msb + mask_width == 64)) { // The mask must be contiguous, and occupy the least-significant bits. DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); // Select Dext for And(Shr(x, imm), mask) where the mask is in the least // significant bits. Int64BinopMatcher mleft(m.left().node()); if (mleft.right().HasResolvedValue()) { // Any shift value can match; int64 shifts use `value % 64`. uint32_t lsb = static_cast<uint32_t>(mleft.right().ResolvedValue() & 0x3F); // Dext cannot extract bits past the register size, however since // shifting the original value would have introduced some zeros we can // still use Dext with a smaller mask and the remaining bits will be // zeros. if (lsb + mask_width > 64) mask_width = 64 - lsb; if (lsb == 0 && mask_width == 64) { Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(mleft.left().node())); return; } } // Other cases fall through to the normal And operation. } } VisitBinop(this, node, kRiscvAnd, true, kRiscvAnd); } void InstructionSelector::VisitWord32Or(Node* node) { VisitBinop(this, node, kRiscvOr32, true, kRiscvOr32); } void InstructionSelector::VisitWord64Or(Node* node) { VisitBinop(this, node, kRiscvOr, true, kRiscvOr); } void InstructionSelector::VisitWord32Xor(Node* node) { Int32BinopMatcher m(node); if (m.left().IsWord32Or() && CanCover(node, m.left().node()) && m.right().Is(-1)) { Int32BinopMatcher mleft(m.left().node()); if (!mleft.right().HasResolvedValue()) { RiscvOperandGenerator g(this); Emit(kRiscvNor32, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node())); return; } } if (m.right().Is(-1)) { // Use Nor for bit negation and eliminate constant loading for xori. RiscvOperandGenerator g(this); Emit(kRiscvNor32, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(0)); return; } VisitBinop(this, node, kRiscvXor32, true, kRiscvXor32); } void InstructionSelector::VisitWord64Xor(Node* node) { Int64BinopMatcher m(node); if (m.left().IsWord64Or() && CanCover(node, m.left().node()) && m.right().Is(-1)) { Int64BinopMatcher mleft(m.left().node()); if (!mleft.right().HasResolvedValue()) { RiscvOperandGenerator g(this); Emit(kRiscvNor, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node())); return; } } if (m.right().Is(-1)) { // Use Nor for bit negation and eliminate constant loading for xori. RiscvOperandGenerator g(this); Emit(kRiscvNor, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(0)); return; } VisitBinop(this, node, kRiscvXor, true, kRiscvXor); } void InstructionSelector::VisitWord32Shl(Node* node) { Int32BinopMatcher m(node); if (m.left().IsWord32And() && CanCover(node, m.left().node()) && m.right().IsInRange(1, 31)) { RiscvOperandGenerator g(this); Int32BinopMatcher mleft(m.left().node()); // Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is // contiguous, and the shift immediate non-zero. if (mleft.right().HasResolvedValue()) { uint32_t mask = mleft.right().ResolvedValue(); uint32_t mask_width = base::bits::CountPopulation(mask); uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); if ((mask_width != 0) && (mask_msb + mask_width == 32)) { uint32_t shift = m.right().ResolvedValue(); DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); DCHECK_NE(0u, shift); if ((shift + mask_width) >= 32) { // If the mask is contiguous and reaches or extends beyond the top // bit, only the shift is needed. Emit(kRiscvShl32, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseImmediate(m.right().node())); return; } } } } VisitRRO(this, kRiscvShl32, node); } void InstructionSelector::VisitWord32Shr(Node* node) { VisitRRO(this, kRiscvShr32, node); } void InstructionSelector::VisitWord32Sar(Node* node) { Int32BinopMatcher m(node); if (m.left().IsWord32Shl() && CanCover(node, m.left().node())) { Int32BinopMatcher mleft(m.left().node()); if (m.right().HasResolvedValue() && mleft.right().HasResolvedValue()) { RiscvOperandGenerator g(this); uint32_t sar = m.right().ResolvedValue(); uint32_t shl = mleft.right().ResolvedValue(); if ((sar == shl) && (sar == 16)) { Emit(kRiscvSignExtendShort, g.DefineAsRegister(node), g.UseRegister(mleft.left().node())); return; } else if ((sar == shl) && (sar == 24)) { Emit(kRiscvSignExtendByte, g.DefineAsRegister(node), g.UseRegister(mleft.left().node())); return; } else if ((sar == shl) && (sar == 32)) { Emit(kRiscvShl32, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } } } VisitRRO(this, kRiscvSar32, node); } void InstructionSelector::VisitWord64Shl(Node* node) { RiscvOperandGenerator g(this); Int64BinopMatcher m(node); if ((m.left().IsChangeInt32ToInt64() || m.left().IsChangeUint32ToUint64()) && m.right().IsInRange(32, 63) && CanCover(node, m.left().node())) { // There's no need to sign/zero-extend to 64-bit if we shift out the upper // 32 bits anyway. Emit(kRiscvShl64, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()->InputAt(0)), g.UseImmediate(m.right().node())); return; } if (m.left().IsWord64And() && CanCover(node, m.left().node()) && m.right().IsInRange(1, 63)) { // Match Word64Shl(Word64And(x, mask), imm) to Dshl where the mask is // contiguous, and the shift immediate non-zero. Int64BinopMatcher mleft(m.left().node()); if (mleft.right().HasResolvedValue()) { uint64_t mask = mleft.right().ResolvedValue(); uint32_t mask_width = base::bits::CountPopulation(mask); uint32_t mask_msb = base::bits::CountLeadingZeros64(mask); if ((mask_width != 0) && (mask_msb + mask_width == 64)) { uint64_t shift = m.right().ResolvedValue(); DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); DCHECK_NE(0u, shift); if ((shift + mask_width) >= 64) { // If the mask is contiguous and reaches or extends beyond the top // bit, only the shift is needed. Emit(kRiscvShl64, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseImmediate(m.right().node())); return; } } } } VisitRRO(this, kRiscvShl64, node); } void InstructionSelector::VisitWord64Shr(Node* node) { VisitRRO(this, kRiscvShr64, node); } void InstructionSelector::VisitWord64Sar(Node* node) { if (TryEmitExtendingLoad(this, node, node)) return; VisitRRO(this, kRiscvSar64, node); } void InstructionSelector::VisitWord32Rol(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord64Rol(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord32Ror(Node* node) { VisitRRO(this, kRiscvRor32, node); } void InstructionSelector::VisitWord32Clz(Node* node) { VisitRR(this, kRiscvClz32, node); } void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord64ReverseBytes(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvByteSwap64, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord32ReverseBytes(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvByteSwap32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSimd128ReverseBytes(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord32Ctz(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvCtz32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord64Ctz(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvCtz64, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord32Popcnt(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvPopcnt32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord64Popcnt(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvPopcnt64, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord64Ror(Node* node) { VisitRRO(this, kRiscvRor64, node); } void InstructionSelector::VisitWord64Clz(Node* node) { VisitRR(this, kRiscvClz64, node); } void InstructionSelector::VisitInt32Add(Node* node) { VisitBinop(this, node, kRiscvAdd32, true, kRiscvAdd32); } void InstructionSelector::VisitInt64Add(Node* node) { VisitBinop(this, node, kRiscvAdd64, true, kRiscvAdd64); } void InstructionSelector::VisitInt32Sub(Node* node) { VisitBinop(this, node, kRiscvSub32); } void InstructionSelector::VisitInt64Sub(Node* node) { VisitBinop(this, node, kRiscvSub64); } void InstructionSelector::VisitInt32Mul(Node* node) { RiscvOperandGenerator g(this); Int32BinopMatcher m(node); if (m.right().HasResolvedValue() && m.right().ResolvedValue() > 0) { uint32_t value = static_cast<uint32_t>(m.right().ResolvedValue()); if (base::bits::IsPowerOfTwo(value)) { Emit(kRiscvShl32 | AddressingModeField::encode(kMode_None), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(base::bits::WhichPowerOfTwo(value))); return; } if (base::bits::IsPowerOfTwo(value + 1)) { InstructionOperand temp = g.TempRegister(); Emit(kRiscvShl32 | AddressingModeField::encode(kMode_None), temp, g.UseRegister(m.left().node()), g.TempImmediate(base::bits::WhichPowerOfTwo(value + 1))); Emit(kRiscvSub32 | AddressingModeField::encode(kMode_None), g.DefineAsRegister(node), temp, g.UseRegister(m.left().node())); return; } } Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (CanCover(node, left) && CanCover(node, right)) { if (left->opcode() == IrOpcode::kWord64Sar && right->opcode() == IrOpcode::kWord64Sar) { Int64BinopMatcher leftInput(left), rightInput(right); if (leftInput.right().Is(32) && rightInput.right().Is(32)) { // Combine untagging shifts with Dmul high. Emit(kRiscvMulHigh64, g.DefineSameAsFirst(node), g.UseRegister(leftInput.left().node()), g.UseRegister(rightInput.left().node())); return; } } } VisitRRR(this, kRiscvMul32, node); } void InstructionSelector::VisitI32x4ExtAddPairwiseI16x8S(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4ExtAddPairwiseI16x8U(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ExtAddPairwiseI8x16S(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ExtAddPairwiseI8x16U(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitInt32MulHigh(Node* node) { VisitRRR(this, kRiscvMulHigh32, node); } void InstructionSelector::VisitUint32MulHigh(Node* node) { VisitRRR(this, kRiscvMulHighU32, node); } void InstructionSelector::VisitInt64Mul(Node* node) { RiscvOperandGenerator g(this); Int64BinopMatcher m(node); // TODO(dusmil): Add optimization for shifts larger than 32. if (m.right().HasResolvedValue() && m.right().ResolvedValue() > 0) { uint32_t value = static_cast<uint32_t>(m.right().ResolvedValue()); if (base::bits::IsPowerOfTwo(value)) { Emit(kRiscvShl64 | AddressingModeField::encode(kMode_None), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(base::bits::WhichPowerOfTwo(value))); return; } if (base::bits::IsPowerOfTwo(value + 1)) { InstructionOperand temp = g.TempRegister(); Emit(kRiscvShl64 | AddressingModeField::encode(kMode_None), temp, g.UseRegister(m.left().node()), g.TempImmediate(base::bits::WhichPowerOfTwo(value + 1))); Emit(kRiscvSub64 | AddressingModeField::encode(kMode_None), g.DefineAsRegister(node), temp, g.UseRegister(m.left().node())); return; } } Emit(kRiscvMul64, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitInt32Div(Node* node) { RiscvOperandGenerator g(this); Int32BinopMatcher m(node); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (CanCover(node, left) && CanCover(node, right)) { if (left->opcode() == IrOpcode::kWord64Sar && right->opcode() == IrOpcode::kWord64Sar) { Int64BinopMatcher rightInput(right), leftInput(left); if (rightInput.right().Is(32) && leftInput.right().Is(32)) { // Combine both shifted operands with Ddiv. Emit(kRiscvDiv64, g.DefineSameAsFirst(node), g.UseRegister(leftInput.left().node()), g.UseRegister(rightInput.left().node())); return; } } } Emit(kRiscvDiv32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitUint32Div(Node* node) { RiscvOperandGenerator g(this); Int32BinopMatcher m(node); Emit(kRiscvDivU32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitInt32Mod(Node* node) { RiscvOperandGenerator g(this); Int32BinopMatcher m(node); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (CanCover(node, left) && CanCover(node, right)) { if (left->opcode() == IrOpcode::kWord64Sar && right->opcode() == IrOpcode::kWord64Sar) { Int64BinopMatcher rightInput(right), leftInput(left); if (rightInput.right().Is(32) && leftInput.right().Is(32)) { // Combine both shifted operands with Dmod. Emit(kRiscvMod64, g.DefineSameAsFirst(node), g.UseRegister(leftInput.left().node()), g.UseRegister(rightInput.left().node())); return; } } } Emit(kRiscvMod32, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitUint32Mod(Node* node) { RiscvOperandGenerator g(this); Int32BinopMatcher m(node); Emit(kRiscvModU32, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitInt64Div(Node* node) { RiscvOperandGenerator g(this); Int64BinopMatcher m(node); Emit(kRiscvDiv64, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitUint64Div(Node* node) { RiscvOperandGenerator g(this); Int64BinopMatcher m(node); Emit(kRiscvDivU64, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitInt64Mod(Node* node) { RiscvOperandGenerator g(this); Int64BinopMatcher m(node); Emit(kRiscvMod64, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitUint64Mod(Node* node) { RiscvOperandGenerator g(this); Int64BinopMatcher m(node); Emit(kRiscvModU64, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) { VisitRR(this, kRiscvCvtDS, node); } void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) { VisitRR(this, kRiscvCvtSW, node); } void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) { VisitRR(this, kRiscvCvtSUw, node); } void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) { VisitRR(this, kRiscvCvtDW, node); } void InstructionSelector::VisitChangeInt64ToFloat64(Node* node) { VisitRR(this, kRiscvCvtDL, node); } void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) { VisitRR(this, kRiscvCvtDUw, node); } void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { RiscvOperandGenerator g(this); InstructionCode opcode = kRiscvTruncWS; TruncateKind kind = OpParameter<TruncateKind>(node->op()); if (kind == TruncateKind::kSetOverflowToMin) { opcode |= MiscField::encode(true); } Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { RiscvOperandGenerator g(this); InstructionCode opcode = kRiscvTruncUwS; TruncateKind kind = OpParameter<TruncateKind>(node->op()); if (kind == TruncateKind::kSetOverflowToMin) { opcode |= MiscField::encode(true); } Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) { RiscvOperandGenerator g(this); Node* value = node->InputAt(0); // Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction // which does rounding and conversion to integer format. if (CanCover(node, value)) { switch (value->opcode()) { case IrOpcode::kFloat64RoundDown: Emit(kRiscvFloorWD, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; case IrOpcode::kFloat64RoundUp: Emit(kRiscvCeilWD, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; case IrOpcode::kFloat64RoundTiesEven: Emit(kRiscvRoundWD, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; case IrOpcode::kFloat64RoundTruncate: Emit(kRiscvTruncWD, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; default: break; } if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) { Node* next = value->InputAt(0); if (CanCover(value, next)) { // Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP)) switch (next->opcode()) { case IrOpcode::kFloat32RoundDown: Emit(kRiscvFloorWS, g.DefineAsRegister(node), g.UseRegister(next->InputAt(0))); return; case IrOpcode::kFloat32RoundUp: Emit(kRiscvCeilWS, g.DefineAsRegister(node), g.UseRegister(next->InputAt(0))); return; case IrOpcode::kFloat32RoundTiesEven: Emit(kRiscvRoundWS, g.DefineAsRegister(node), g.UseRegister(next->InputAt(0))); return; case IrOpcode::kFloat32RoundTruncate: Emit(kRiscvTruncWS, g.DefineAsRegister(node), g.UseRegister(next->InputAt(0))); return; default: Emit(kRiscvTruncWS, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; } } else { // Match float32 -> float64 -> int32 representation change path. Emit(kRiscvTruncWS, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; } } } VisitRR(this, kRiscvTruncWD, node); } void InstructionSelector::VisitChangeFloat64ToInt64(Node* node) { VisitRR(this, kRiscvTruncLD, node); } void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) { VisitRR(this, kRiscvTruncUwD, node); } void InstructionSelector::VisitChangeFloat64ToUint64(Node* node) { VisitRR(this, kRiscvTruncUlD, node); } void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) { VisitRR(this, kRiscvTruncUwD, node); } void InstructionSelector::VisitTruncateFloat64ToInt64(Node* node) { RiscvOperandGenerator g(this); InstructionCode opcode = kRiscvTruncLD; TruncateKind kind = OpParameter<TruncateKind>(node->op()); if (kind == TruncateKind::kSetOverflowToMin) { opcode |= MiscField::encode(true); } Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { RiscvOperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } this->Emit(kRiscvTruncLS, output_count, outputs, 1, inputs); } void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { RiscvOperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } Emit(kRiscvTruncLD, output_count, outputs, 1, inputs); } void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { RiscvOperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } Emit(kRiscvTruncUlS, output_count, outputs, 1, inputs); } void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { RiscvOperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } Emit(kRiscvTruncUlD, output_count, outputs, 1, inputs); } void InstructionSelector::VisitBitcastWord32ToWord64(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { Node* value = node->InputAt(0); if (value->opcode() == IrOpcode::kLoad && CanCover(node, value)) { // Generate sign-extending load. LoadRepresentation load_rep = LoadRepresentationOf(value->op()); InstructionCode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsUnsigned() ? kRiscvLbu : kRiscvLb; break; case MachineRepresentation::kWord16: opcode = load_rep.IsUnsigned() ? kRiscvLhu : kRiscvLh; break; case MachineRepresentation::kWord32: opcode = kRiscvLw; break; default: UNREACHABLE(); } EmitLoad(this, value, opcode, node); } else { RiscvOperandGenerator g(this); Emit(kRiscvShl32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.TempImmediate(0)); } } bool InstructionSelector::ZeroExtendsWord32ToWord64NoPhis(Node* node) { DCHECK_NE(node->opcode(), IrOpcode::kPhi); if (node->opcode() == IrOpcode::kLoad) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); if (load_rep.IsUnsigned()) { switch (load_rep.representation()) { case MachineRepresentation::kWord8: case MachineRepresentation::kWord16: case MachineRepresentation::kWord32: return true; default: return false; } } } // All other 32-bit operations sign-extend to the upper 32 bits return false; } void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { RiscvOperandGenerator g(this); Node* value = node->InputAt(0); if (ZeroExtendsWord32ToWord64(value)) { Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value)); return; } Emit(kRiscvZeroExtendWord, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { RiscvOperandGenerator g(this); Node* value = node->InputAt(0); if (CanCover(node, value)) { switch (value->opcode()) { case IrOpcode::kWord64Sar: { if (CanCoverTransitively(node, value, value->InputAt(0)) && TryEmitExtendingLoad(this, value, node)) { return; } else { Int64BinopMatcher m(value); if (m.right().IsInRange(32, 63)) { // After smi untagging no need for truncate. Combine sequence. Emit(kRiscvSar64, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseImmediate(m.right().node())); return; } } break; } default: break; } } // Semantics of this machine IR is not clear. For example, x86 zero-extend the // truncated value; arm treats it as nop thus the upper 32-bit as undefined; // Riscv emits ext instruction which zero-extend the 32-bit value; for riscv, // we do sign-extension of the truncated value Emit(kRiscvSignExtendWord, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) { RiscvOperandGenerator g(this); Node* value = node->InputAt(0); // Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding // instruction. if (CanCover(node, value) && value->opcode() == IrOpcode::kChangeInt32ToFloat64) { Emit(kRiscvCvtSW, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; } VisitRR(this, kRiscvCvtSD, node); } void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { VisitRR(this, kArchTruncateDoubleToI, node); } void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) { VisitRR(this, kRiscvTruncWD, node); } void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) { VisitRR(this, kRiscvCvtSL, node); } void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) { VisitRR(this, kRiscvCvtDL, node); } void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) { VisitRR(this, kRiscvCvtSUl, node); } void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) { VisitRR(this, kRiscvCvtDUl, node); } void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) { VisitRR(this, kRiscvBitcastFloat32ToInt32, node); } void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) { VisitRR(this, kRiscvBitcastDL, node); } void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) { VisitRR(this, kRiscvBitcastInt32ToFloat32, node); } void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) { VisitRR(this, kRiscvBitcastLD, node); } void InstructionSelector::VisitFloat32Add(Node* node) { VisitRRR(this, kRiscvAddS, node); } void InstructionSelector::VisitFloat64Add(Node* node) { VisitRRR(this, kRiscvAddD, node); } void InstructionSelector::VisitFloat32Sub(Node* node) { VisitRRR(this, kRiscvSubS, node); } void InstructionSelector::VisitFloat64Sub(Node* node) { VisitRRR(this, kRiscvSubD, node); } void InstructionSelector::VisitFloat32Mul(Node* node) { VisitRRR(this, kRiscvMulS, node); } void InstructionSelector::VisitFloat64Mul(Node* node) { VisitRRR(this, kRiscvMulD, node); } void InstructionSelector::VisitFloat32Div(Node* node) { VisitRRR(this, kRiscvDivS, node); } void InstructionSelector::VisitFloat64Div(Node* node) { VisitRRR(this, kRiscvDivD, node); } void InstructionSelector::VisitFloat64Mod(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvModD, g.DefineAsFixed(node, fa0), g.UseFixed(node->InputAt(0), fa0), g.UseFixed(node->InputAt(1), fa1)) ->MarkAsCall(); } void InstructionSelector::VisitFloat32Max(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvFloat32Max, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitFloat64Max(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvFloat64Max, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitFloat32Min(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvFloat32Min, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitFloat64Min(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvFloat64Min, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitFloat32Abs(Node* node) { VisitRR(this, kRiscvAbsS, node); } void InstructionSelector::VisitFloat64Abs(Node* node) { VisitRR(this, kRiscvAbsD, node); } void InstructionSelector::VisitFloat32Sqrt(Node* node) { VisitRR(this, kRiscvSqrtS, node); } void InstructionSelector::VisitFloat64Sqrt(Node* node) { VisitRR(this, kRiscvSqrtD, node); } void InstructionSelector::VisitFloat32RoundDown(Node* node) { VisitRR(this, kRiscvFloat32RoundDown, node); } void InstructionSelector::VisitFloat64RoundDown(Node* node) { VisitRR(this, kRiscvFloat64RoundDown, node); } void InstructionSelector::VisitFloat32RoundUp(Node* node) { VisitRR(this, kRiscvFloat32RoundUp, node); } void InstructionSelector::VisitFloat64RoundUp(Node* node) { VisitRR(this, kRiscvFloat64RoundUp, node); } void InstructionSelector::VisitFloat32RoundTruncate(Node* node) { VisitRR(this, kRiscvFloat32RoundTruncate, node); } void InstructionSelector::VisitFloat64RoundTruncate(Node* node) { VisitRR(this, kRiscvFloat64RoundTruncate, node); } void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { VisitRR(this, kRiscvFloat32RoundTiesEven, node); } void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { VisitRR(this, kRiscvFloat64RoundTiesEven, node); } void InstructionSelector::VisitFloat32Neg(Node* node) { VisitRR(this, kRiscvNegS, node); } void InstructionSelector::VisitFloat64Neg(Node* node) { VisitRR(this, kRiscvNegD, node); } void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, InstructionCode opcode) { RiscvOperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, fa0), g.UseFixed(node->InputAt(0), fa0), g.UseFixed(node->InputAt(1), fa1)) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, InstructionCode opcode) { RiscvOperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, fa0), g.UseFixed(node->InputAt(0), fa1)) ->MarkAsCall(); } void InstructionSelector::EmitPrepareArguments( ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, Node* node) { RiscvOperandGenerator g(this); // Prepare for C function call. if (call_descriptor->IsCFunctionCall()) { Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( call_descriptor->ParameterCount())), 0, nullptr, 0, nullptr); // Poke any stack arguments. int slot = kCArgSlotCount; for (PushParameter input : (*arguments)) { Emit(kRiscvStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), g.TempImmediate(slot << kSystemPointerSizeLog2)); ++slot; } } else { int push_count = static_cast<int>(call_descriptor->ParameterSlotCount()); if (push_count > 0) { // Calculate needed space int stack_size = 0; for (PushParameter input : (*arguments)) { if (input.node) { stack_size += input.location.GetSizeInPointers(); } } Emit(kRiscvStackClaim, g.NoOutput(), g.TempImmediate(stack_size << kSystemPointerSizeLog2)); } for (size_t n = 0; n < arguments->size(); ++n) { PushParameter input = (*arguments)[n]; if (input.node) { Emit(kRiscvStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), g.TempImmediate(static_cast<int>(n << kSystemPointerSizeLog2))); } } } } void InstructionSelector::EmitPrepareResults( ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, Node* node) { RiscvOperandGenerator g(this); int reverse_slot = 1; for (PushParameter output : *results) { if (!output.location.IsCallerFrameSlot()) continue; // Skip any alignment holes in nodes. if (output.node != nullptr) { DCHECK(!call_descriptor->IsCFunctionCall()); if (output.location.GetType() == MachineType::Float32()) { MarkAsFloat32(output.node); } else if (output.location.GetType() == MachineType::Float64()) { MarkAsFloat64(output.node); } Emit(kRiscvPeek, g.DefineAsRegister(output.node), g.UseImmediate(reverse_slot)); } reverse_slot += output.location.GetSizeInPointers(); } } bool InstructionSelector::IsTailCallAddressImmediate() { return false; } void InstructionSelector::VisitUnalignedLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); RiscvOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); ArchOpcode opcode; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kRiscvULoadFloat; break; case MachineRepresentation::kFloat64: opcode = kRiscvULoadDouble; break; case MachineRepresentation::kWord8: opcode = load_rep.IsUnsigned() ? kRiscvLbu : kRiscvLb; break; case MachineRepresentation::kWord16: opcode = load_rep.IsUnsigned() ? kRiscvUlhu : kRiscvUlh; break; case MachineRepresentation::kWord32: opcode = load_rep.IsUnsigned() ? kRiscvUlwu : kRiscvUlw; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kRiscvUld; break; case MachineRepresentation::kSimd128: opcode = kRiscvMsaLd; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kCompressedPointer: // Fall through. case MachineRepresentation::kCompressed: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); } if (g.CanBeImmediate(index, opcode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); } else { InstructionOperand addr_reg = g.TempRegister(); Emit(kRiscvAdd64 | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired load opcode, using temp addr_reg. Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); } } void InstructionSelector::VisitUnalignedStore(Node* node) { RiscvOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); UnalignedStoreRepresentation rep = UnalignedStoreRepresentationOf(node->op()); ArchOpcode opcode; switch (rep) { case MachineRepresentation::kFloat32: opcode = kRiscvUStoreFloat; break; case MachineRepresentation::kFloat64: opcode = kRiscvUStoreDouble; break; case MachineRepresentation::kWord8: opcode = kRiscvSb; break; case MachineRepresentation::kWord16: opcode = kRiscvUsh; break; case MachineRepresentation::kWord32: opcode = kRiscvUsw; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kRiscvUsd; break; case MachineRepresentation::kSimd128: opcode = kRiscvMsaSt; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kCompressedPointer: // Fall through. case MachineRepresentation::kCompressed: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); } if (g.CanBeImmediate(index, opcode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), g.UseRegister(base), g.UseImmediate(index), g.UseRegisterOrImmediateZero(value)); } else { InstructionOperand addr_reg = g.TempRegister(); Emit(kRiscvAdd64 | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired store opcode, using temp addr_reg. Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); } } namespace { // Shared routine for multiple compare operations. static void VisitCompare(InstructionSelector* selector, InstructionCode opcode, InstructionOperand left, InstructionOperand right, FlagsContinuation* cont) { selector->EmitWithContinuation(opcode, left, right, cont); } // Shared routine for multiple float32 compare operations. void VisitFloat32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { RiscvOperandGenerator g(selector); Float32BinopMatcher m(node); InstructionOperand lhs, rhs; lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) : g.UseRegister(m.left().node()); rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) : g.UseRegister(m.right().node()); VisitCompare(selector, kRiscvCmpS, lhs, rhs, cont); } // Shared routine for multiple float64 compare operations. void VisitFloat64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { RiscvOperandGenerator g(selector); Float64BinopMatcher m(node); InstructionOperand lhs, rhs; lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) : g.UseRegister(m.left().node()); rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) : g.UseRegister(m.right().node()); VisitCompare(selector, kRiscvCmpD, lhs, rhs, cont); } // Shared routine for multiple word compare operations. void VisitWordCompare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont, bool commutative) { RiscvOperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); // Match immediates on left or right side of comparison. if (g.CanBeImmediate(right, opcode)) { if (opcode == kRiscvTst) { VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), cont); } else { switch (cont->condition()) { case kEqual: case kNotEqual: if (cont->IsSet()) { VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), cont); } else { VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), cont); } break; case kSignedLessThan: case kSignedGreaterThanOrEqual: case kUnsignedLessThan: case kUnsignedGreaterThanOrEqual: VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), cont); break; default: VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), cont); } } } else if (g.CanBeImmediate(left, opcode)) { if (!commutative) cont->Commute(); if (opcode == kRiscvTst) { VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), cont); } else { switch (cont->condition()) { case kEqual: case kNotEqual: if (cont->IsSet()) { VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), cont); } else { VisitCompare(selector, opcode, g.UseRegister(right), g.UseRegister(left), cont); } break; case kSignedLessThan: case kSignedGreaterThanOrEqual: case kUnsignedLessThan: case kUnsignedGreaterThanOrEqual: VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), cont); break; default: VisitCompare(selector, opcode, g.UseRegister(right), g.UseRegister(left), cont); } } } else { VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), cont); } } bool IsNodeUnsigned(Node* n) { NodeMatcher m(n); if (m.IsLoad() || m.IsUnalignedLoad() || m.IsPoisonedLoad() || m.IsProtectedLoad() || m.IsWord32AtomicLoad() || m.IsWord64AtomicLoad()) { LoadRepresentation load_rep = LoadRepresentationOf(n->op()); return load_rep.IsUnsigned(); } else { return m.IsUint32Div() || m.IsUint32LessThan() || m.IsUint32LessThanOrEqual() || m.IsUint32Mod() || m.IsUint32MulHigh() || m.IsChangeFloat64ToUint32() || m.IsTruncateFloat64ToUint32() || m.IsTruncateFloat32ToUint32(); } } // Shared routine for multiple word compare operations. void VisitFullWord32Compare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { RiscvOperandGenerator g(selector); InstructionOperand leftOp = g.TempRegister(); InstructionOperand rightOp = g.TempRegister(); selector->Emit(kRiscvShl64, leftOp, g.UseRegister(node->InputAt(0)), g.TempImmediate(32)); selector->Emit(kRiscvShl64, rightOp, g.UseRegister(node->InputAt(1)), g.TempImmediate(32)); VisitCompare(selector, opcode, leftOp, rightOp, cont); } void VisitOptimizedWord32Compare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { if (FLAG_debug_code) { RiscvOperandGenerator g(selector); InstructionOperand leftOp = g.TempRegister(); InstructionOperand rightOp = g.TempRegister(); InstructionOperand optimizedResult = g.TempRegister(); InstructionOperand fullResult = g.TempRegister(); FlagsCondition condition = cont->condition(); InstructionCode testOpcode = opcode | FlagsConditionField::encode(condition) | FlagsModeField::encode(kFlags_set); selector->Emit(testOpcode, optimizedResult, g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); selector->Emit(kRiscvShl64, leftOp, g.UseRegister(node->InputAt(0)), g.TempImmediate(32)); selector->Emit(kRiscvShl64, rightOp, g.UseRegister(node->InputAt(1)), g.TempImmediate(32)); selector->Emit(testOpcode, fullResult, leftOp, rightOp); selector->Emit(kRiscvAssertEqual, g.NoOutput(), optimizedResult, fullResult, g.TempImmediate(static_cast<int>( AbortReason::kUnsupportedNonPrimitiveCompare))); } VisitWordCompare(selector, node, opcode, cont, false); } void VisitWord32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { // RISC-V doesn't support Word32 compare instructions. Instead it relies // that the values in registers are correctly sign-extended and uses // Word64 comparison instead. This behavior is correct in most cases, // but doesn't work when comparing signed with unsigned operands. // We could simulate full Word32 compare in all cases but this would // create an unnecessary overhead since unsigned integers are rarely // used in JavaScript. // The solution proposed here tries to match a comparison of signed // with unsigned operand, and perform full Word32Compare only // in those cases. Unfortunately, the solution is not complete because // it might skip cases where Word32 full compare is needed, so // basically it is a hack. // When call to a host function in simulator, if the function return a // int32 value, the simulator do not sign-extended to int64 because in // simulator we do not know the function whether return a int32 or int64. // so we need do a full word32 compare in this case. #ifndef USE_SIMULATOR if (IsNodeUnsigned(node->InputAt(0)) != IsNodeUnsigned(node->InputAt(1))) { #else if (IsNodeUnsigned(node->InputAt(0)) != IsNodeUnsigned(node->InputAt(1)) || node->InputAt(0)->opcode() == IrOpcode::kCall || node->InputAt(1)->opcode() == IrOpcode::kCall) { #endif VisitFullWord32Compare(selector, node, kRiscvCmp, cont); } else { VisitOptimizedWord32Compare(selector, node, kRiscvCmp, cont); } } void VisitWord64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { VisitWordCompare(selector, node, kRiscvCmp, cont, false); } void EmitWordCompareZero(InstructionSelector* selector, Node* value, FlagsContinuation* cont) { RiscvOperandGenerator g(selector); selector->EmitWithContinuation(kRiscvCmp, g.UseRegister(value), g.TempImmediate(0), cont); } void VisitAtomicLoad(InstructionSelector* selector, Node* node, ArchOpcode opcode) { RiscvOperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); if (g.CanBeImmediate(index, opcode)) { selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); } else { InstructionOperand addr_reg = g.TempRegister(); selector->Emit(kRiscvAdd64 | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired load opcode, using temp addr_reg. selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); } } void VisitAtomicStore(InstructionSelector* selector, Node* node, ArchOpcode opcode) { RiscvOperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); if (g.CanBeImmediate(index, opcode)) { selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), g.UseRegister(base), g.UseImmediate(index), g.UseRegisterOrImmediateZero(value)); } else { InstructionOperand addr_reg = g.TempRegister(); selector->Emit(kRiscvAdd64 | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired store opcode, using temp addr_reg. selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); } } void VisitAtomicExchange(InstructionSelector* selector, Node* node, ArchOpcode opcode) { RiscvOperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); AddressingMode addressing_mode = kMode_MRI; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; outputs[0] = g.UseUniqueRegister(node); InstructionOperand temp[3]; temp[0] = g.TempRegister(); temp[1] = g.TempRegister(); temp[2] = g.TempRegister(); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); selector->Emit(code, 1, outputs, input_count, inputs, 3, temp); } void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node, ArchOpcode opcode) { RiscvOperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* old_value = node->InputAt(2); Node* new_value = node->InputAt(3); AddressingMode addressing_mode = kMode_MRI; InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(old_value); inputs[input_count++] = g.UseUniqueRegister(new_value); InstructionOperand outputs[1]; outputs[0] = g.UseUniqueRegister(node); InstructionOperand temp[3]; temp[0] = g.TempRegister(); temp[1] = g.TempRegister(); temp[2] = g.TempRegister(); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); selector->Emit(code, 1, outputs, input_count, inputs, 3, temp); } void VisitAtomicBinop(InstructionSelector* selector, Node* node, ArchOpcode opcode) { RiscvOperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); AddressingMode addressing_mode = kMode_MRI; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; outputs[0] = g.UseUniqueRegister(node); InstructionOperand temps[4]; temps[0] = g.TempRegister(); temps[1] = g.TempRegister(); temps[2] = g.TempRegister(); temps[3] = g.TempRegister(); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); selector->Emit(code, 1, outputs, input_count, inputs, 4, temps); } } // namespace void InstructionSelector::VisitStackPointerGreaterThan( Node* node, FlagsContinuation* cont) { StackCheckKind kind = StackCheckKindOf(node->op()); InstructionCode opcode = kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind)); RiscvOperandGenerator g(this); // No outputs. InstructionOperand* const outputs = nullptr; const int output_count = 0; // Applying an offset to this stack check requires a temp register. Offsets // are only applied to the first stack check. If applying an offset, we must // ensure the input and temp registers do not alias, thus kUniqueRegister. InstructionOperand temps[] = {g.TempRegister()}; const int temp_count = (kind == StackCheckKind::kJSFunctionEntry ? 1 : 0); const auto register_mode = (kind == StackCheckKind::kJSFunctionEntry) ? OperandGenerator::kUniqueRegister : OperandGenerator::kRegister; Node* const value = node->InputAt(0); InstructionOperand inputs[] = {g.UseRegisterWithMode(value, register_mode)}; static constexpr int input_count = arraysize(inputs); EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, temp_count, temps, cont); } // Shared routine for word comparisons against zero. void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, FlagsContinuation* cont) { // Try to combine with comparisons against 0 by simply inverting the branch. while (CanCover(user, value)) { if (value->opcode() == IrOpcode::kWord32Equal) { Int32BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); } else if (value->opcode() == IrOpcode::kWord64Equal) { Int64BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); } else { break; } cont->Negate(); } if (CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kWord32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWord32Compare(this, value, cont); case IrOpcode::kInt32LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWord32Compare(this, value, cont); case IrOpcode::kInt32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWord32Compare(this, value, cont); case IrOpcode::kUint32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWord32Compare(this, value, cont); case IrOpcode::kUint32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWord32Compare(this, value, cont); case IrOpcode::kWord64Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWord64Compare(this, value, cont); case IrOpcode::kInt64LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWord64Compare(this, value, cont); case IrOpcode::kInt64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWord64Compare(this, value, cont); case IrOpcode::kUint64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWord64Compare(this, value, cont); case IrOpcode::kUint64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWord64Compare(this, value, cont); case IrOpcode::kFloat32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat64Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kProjection: // Check if this is the overflow output projection of an // <Operation>WithOverflow node. if (ProjectionIndexOf(value->op()) == 1u) { // We cannot combine the <Operation>WithOverflow with this branch // unless the 0th projection (the use of the actual value of the // <Operation> is either nullptr, which means there's no use of the // actual value, or was already defined, which means it is scheduled // *AFTER* this branch). Node* const node = value->InputAt(0); Node* const result = NodeProperties::FindProjection(node, 0); if (result == nullptr || IsDefined(result)) { switch (node->opcode()) { case IrOpcode::kInt32AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kRiscvAdd64, cont); case IrOpcode::kInt32SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kRiscvSub64, cont); case IrOpcode::kInt32MulWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kRiscvMulOvf32, cont); case IrOpcode::kInt64AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kRiscvAddOvf64, cont); case IrOpcode::kInt64SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kRiscvSubOvf64, cont); default: break; } } } break; case IrOpcode::kWord32And: case IrOpcode::kWord64And: return VisitWordCompare(this, value, kRiscvTst, cont, true); case IrOpcode::kStackPointerGreaterThan: cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition); return VisitStackPointerGreaterThan(value, cont); default: break; } } // Continuation could not be combined with a compare, emit compare against 0. EmitWordCompareZero(this, value, cont); } void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { RiscvOperandGenerator g(this); InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); // Emit either ArchTableSwitch or ArchBinarySearchSwitch. if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { static const size_t kMaxTableSwitchValueRange = 2 << 16; size_t table_space_cost = 10 + 2 * sw.value_range(); size_t table_time_cost = 3; size_t lookup_space_cost = 2 + 2 * sw.case_count(); size_t lookup_time_cost = sw.case_count(); if (sw.case_count() > 0 && table_space_cost + 3 * table_time_cost <= lookup_space_cost + 3 * lookup_time_cost && sw.min_value() > std::numeric_limits<int32_t>::min() && sw.value_range() <= kMaxTableSwitchValueRange) { InstructionOperand index_operand = value_operand; if (sw.min_value()) { index_operand = g.TempRegister(); Emit(kRiscvSub32, index_operand, value_operand, g.TempImmediate(sw.min_value())); } // Generate a table lookup. return EmitTableSwitch(sw, index_operand); } } // Generate a tree of conditional jumps. return EmitBinarySearchSwitch(sw, value_operand); } void InstructionSelector::VisitWord32Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int32BinopMatcher m(node); if (m.right().Is(0)) { return VisitWordCompareZero(m.node(), m.left().node(), &cont); } VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitUint32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kRiscvAdd64, &cont); } FlagsContinuation cont; VisitBinop(this, node, kRiscvAdd64, &cont); } void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kRiscvSub64, &cont); } FlagsContinuation cont; VisitBinop(this, node, kRiscvSub64, &cont); } void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kRiscvMulOvf32, &cont); } FlagsContinuation cont; VisitBinop(this, node, kRiscvMulOvf32, &cont); } void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kRiscvAddOvf64, &cont); } FlagsContinuation cont; VisitBinop(this, node, kRiscvAddOvf64, &cont); } void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kRiscvSubOvf64, &cont); } FlagsContinuation cont; VisitBinop(this, node, kRiscvSubOvf64, &cont); } void InstructionSelector::VisitWord64Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int64BinopMatcher m(node); if (m.right().Is(0)) { return VisitWordCompareZero(m.node(), m.left().node(), &cont); } VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitInt64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitUint64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitFloat32Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat64Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) { VisitRR(this, kRiscvFloat64ExtractLowWord32, node); } void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) { VisitRR(this, kRiscvFloat64ExtractHighWord32, node); } void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { VisitRR(this, kRiscvFloat64SilenceNaN, node); } void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { RiscvOperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Emit(kRiscvFloat64InsertLowWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { RiscvOperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Emit(kRiscvFloat64InsertHighWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitMemoryBarrier(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvSync, g.NoOutput()); } void InstructionSelector::VisitWord32AtomicLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ArchOpcode opcode; switch (load_rep.representation()) { case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt8 : kWord32AtomicLoadUint8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt16 : kWord32AtomicLoadUint16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicLoadWord32; break; default: UNREACHABLE(); } VisitAtomicLoad(this, node, opcode); } void InstructionSelector::VisitWord32AtomicStore(Node* node) { MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); ArchOpcode opcode; switch (rep) { case MachineRepresentation::kWord8: opcode = kWord32AtomicStoreWord8; break; case MachineRepresentation::kWord16: opcode = kWord32AtomicStoreWord16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicStoreWord32; break; default: UNREACHABLE(); } VisitAtomicStore(this, node, opcode); } void InstructionSelector::VisitWord64AtomicLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ArchOpcode opcode; switch (load_rep.representation()) { case MachineRepresentation::kWord8: opcode = kRiscvWord64AtomicLoadUint8; break; case MachineRepresentation::kWord16: opcode = kRiscvWord64AtomicLoadUint16; break; case MachineRepresentation::kWord32: opcode = kRiscvWord64AtomicLoadUint32; break; case MachineRepresentation::kWord64: opcode = kRiscvWord64AtomicLoadUint64; break; default: UNREACHABLE(); } VisitAtomicLoad(this, node, opcode); } void InstructionSelector::VisitWord64AtomicStore(Node* node) { MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); ArchOpcode opcode; switch (rep) { case MachineRepresentation::kWord8: opcode = kRiscvWord64AtomicStoreWord8; break; case MachineRepresentation::kWord16: opcode = kRiscvWord64AtomicStoreWord16; break; case MachineRepresentation::kWord32: opcode = kRiscvWord64AtomicStoreWord32; break; case MachineRepresentation::kWord64: opcode = kRiscvWord64AtomicStoreWord64; break; default: UNREACHABLE(); } VisitAtomicStore(this, node, opcode); } void InstructionSelector::VisitWord32AtomicExchange(Node* node) { ArchOpcode opcode; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = kWord32AtomicExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicExchangeWord32; } else { UNREACHABLE(); } VisitAtomicExchange(this, node, opcode); } void InstructionSelector::VisitWord64AtomicExchange(Node* node) { ArchOpcode opcode; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Uint8()) { opcode = kRiscvWord64AtomicExchangeUint8; } else if (type == MachineType::Uint16()) { opcode = kRiscvWord64AtomicExchangeUint16; } else if (type == MachineType::Uint32()) { opcode = kRiscvWord64AtomicExchangeUint32; } else if (type == MachineType::Uint64()) { opcode = kRiscvWord64AtomicExchangeUint64; } else { UNREACHABLE(); } VisitAtomicExchange(this, node, opcode); } void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { ArchOpcode opcode; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = kWord32AtomicCompareExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicCompareExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicCompareExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicCompareExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicCompareExchangeWord32; } else { UNREACHABLE(); } VisitAtomicCompareExchange(this, node, opcode); } void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) { ArchOpcode opcode; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Uint8()) { opcode = kRiscvWord64AtomicCompareExchangeUint8; } else if (type == MachineType::Uint16()) { opcode = kRiscvWord64AtomicCompareExchangeUint16; } else if (type == MachineType::Uint32()) { opcode = kRiscvWord64AtomicCompareExchangeUint32; } else if (type == MachineType::Uint64()) { opcode = kRiscvWord64AtomicCompareExchangeUint64; } else { UNREACHABLE(); } VisitAtomicCompareExchange(this, node, opcode); } void InstructionSelector::VisitWord32AtomicBinaryOperation( Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, ArchOpcode uint16_op, ArchOpcode word32_op) { ArchOpcode opcode; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = int8_op; } else if (type == MachineType::Uint8()) { opcode = uint8_op; } else if (type == MachineType::Int16()) { opcode = int16_op; } else if (type == MachineType::Uint16()) { opcode = uint16_op; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = word32_op; } else { UNREACHABLE(); } VisitAtomicBinop(this, node, opcode); } #define VISIT_ATOMIC_BINOP(op) \ void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ VisitWord32AtomicBinaryOperation( \ node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ kWord32Atomic##op##Word32); \ } VISIT_ATOMIC_BINOP(Add) VISIT_ATOMIC_BINOP(Sub) VISIT_ATOMIC_BINOP(And) VISIT_ATOMIC_BINOP(Or) VISIT_ATOMIC_BINOP(Xor) #undef VISIT_ATOMIC_BINOP void InstructionSelector::VisitWord64AtomicBinaryOperation( Node* node, ArchOpcode uint8_op, ArchOpcode uint16_op, ArchOpcode uint32_op, ArchOpcode uint64_op) { ArchOpcode opcode; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Uint8()) { opcode = uint8_op; } else if (type == MachineType::Uint16()) { opcode = uint16_op; } else if (type == MachineType::Uint32()) { opcode = uint32_op; } else if (type == MachineType::Uint64()) { opcode = uint64_op; } else { UNREACHABLE(); } VisitAtomicBinop(this, node, opcode); } #define VISIT_ATOMIC_BINOP(op) \ void InstructionSelector::VisitWord64Atomic##op(Node* node) { \ VisitWord64AtomicBinaryOperation( \ node, kRiscvWord64Atomic##op##Uint8, kRiscvWord64Atomic##op##Uint16, \ kRiscvWord64Atomic##op##Uint32, kRiscvWord64Atomic##op##Uint64); \ } VISIT_ATOMIC_BINOP(Add) VISIT_ATOMIC_BINOP(Sub) VISIT_ATOMIC_BINOP(And) VISIT_ATOMIC_BINOP(Or) VISIT_ATOMIC_BINOP(Xor) #undef VISIT_ATOMIC_BINOP void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { UNREACHABLE(); } #define SIMD_TYPE_LIST(V) \ V(F32x4) \ V(I32x4) \ V(I16x8) \ V(I8x16) #define SIMD_UNOP_LIST(V) \ V(F64x2Abs, kRiscvF64x2Abs) \ V(F64x2Neg, kRiscvF64x2Neg) \ V(F64x2Sqrt, kRiscvF64x2Sqrt) \ V(F64x2ConvertLowI32x4S, kRiscvF64x2ConvertLowI32x4S) \ V(F64x2ConvertLowI32x4U, kRiscvF64x2ConvertLowI32x4U) \ V(F64x2PromoteLowF32x4, kRiscvF64x2PromoteLowF32x4) \ V(F64x2Ceil, kRiscvF64x2Ceil) \ V(F64x2Floor, kRiscvF64x2Floor) \ V(F64x2Trunc, kRiscvF64x2Trunc) \ V(F64x2NearestInt, kRiscvF64x2NearestInt) \ V(I64x2Neg, kRiscvI64x2Neg) \ V(I64x2Abs, kRiscvI64x2Abs) \ V(I64x2BitMask, kRiscvI64x2BitMask) \ V(I64x2Eq, kRiscvI64x2Eq) \ V(I64x2Ne, kRiscvI64x2Ne) \ V(I64x2GtS, kRiscvI64x2GtS) \ V(I64x2GeS, kRiscvI64x2GeS) \ V(F32x4SConvertI32x4, kRiscvF32x4SConvertI32x4) \ V(F32x4UConvertI32x4, kRiscvF32x4UConvertI32x4) \ V(F32x4Abs, kRiscvF32x4Abs) \ V(F32x4Neg, kRiscvF32x4Neg) \ V(F32x4Sqrt, kRiscvF32x4Sqrt) \ V(F32x4RecipApprox, kRiscvF32x4RecipApprox) \ V(F32x4RecipSqrtApprox, kRiscvF32x4RecipSqrtApprox) \ V(F32x4DemoteF64x2Zero, kRiscvF32x4DemoteF64x2Zero) \ V(F32x4Ceil, kRiscvF32x4Ceil) \ V(F32x4Floor, kRiscvF32x4Floor) \ V(F32x4Trunc, kRiscvF32x4Trunc) \ V(F32x4NearestInt, kRiscvF32x4NearestInt) \ V(I64x2SConvertI32x4Low, kRiscvI64x2SConvertI32x4Low) \ V(I64x2SConvertI32x4High, kRiscvI64x2SConvertI32x4High) \ V(I64x2UConvertI32x4Low, kRiscvI64x2UConvertI32x4Low) \ V(I64x2UConvertI32x4High, kRiscvI64x2UConvertI32x4High) \ V(I32x4SConvertF32x4, kRiscvI32x4SConvertF32x4) \ V(I32x4UConvertF32x4, kRiscvI32x4UConvertF32x4) \ V(I32x4Neg, kRiscvI32x4Neg) \ V(I32x4SConvertI16x8Low, kRiscvI32x4SConvertI16x8Low) \ V(I32x4SConvertI16x8High, kRiscvI32x4SConvertI16x8High) \ V(I32x4UConvertI16x8Low, kRiscvI32x4UConvertI16x8Low) \ V(I32x4UConvertI16x8High, kRiscvI32x4UConvertI16x8High) \ V(I32x4Abs, kRiscvI32x4Abs) \ V(I32x4BitMask, kRiscvI32x4BitMask) \ V(I32x4TruncSatF64x2SZero, kRiscvI32x4TruncSatF64x2SZero) \ V(I32x4TruncSatF64x2UZero, kRiscvI32x4TruncSatF64x2UZero) \ V(I16x8Neg, kRiscvI16x8Neg) \ V(I16x8SConvertI8x16Low, kRiscvI16x8SConvertI8x16Low) \ V(I16x8SConvertI8x16High, kRiscvI16x8SConvertI8x16High) \ V(I16x8UConvertI8x16Low, kRiscvI16x8UConvertI8x16Low) \ V(I16x8UConvertI8x16High, kRiscvI16x8UConvertI8x16High) \ V(I16x8Abs, kRiscvI16x8Abs) \ V(I16x8BitMask, kRiscvI16x8BitMask) \ V(I8x16Neg, kRiscvI8x16Neg) \ V(I8x16Abs, kRiscvI8x16Abs) \ V(I8x16BitMask, kRiscvI8x16BitMask) \ V(I8x16Popcnt, kRiscvI8x16Popcnt) \ V(S128Not, kRiscvS128Not) \ V(V128AnyTrue, kRiscvV128AnyTrue) \ V(I32x4AllTrue, kRiscvI32x4AllTrue) \ V(I16x8AllTrue, kRiscvI16x8AllTrue) \ V(I8x16AllTrue, kRiscvI8x16AllTrue) \ V(I64x2AllTrue, kRiscvI64x2AllTrue) \ #define SIMD_SHIFT_OP_LIST(V) \ V(I64x2Shl) \ V(I64x2ShrS) \ V(I64x2ShrU) \ V(I32x4Shl) \ V(I32x4ShrS) \ V(I32x4ShrU) \ V(I16x8Shl) \ V(I16x8ShrS) \ V(I16x8ShrU) \ V(I8x16Shl) \ V(I8x16ShrS) \ V(I8x16ShrU) #define SIMD_BINOP_LIST(V) \ V(F64x2Add, kRiscvF64x2Add) \ V(F64x2Sub, kRiscvF64x2Sub) \ V(F64x2Mul, kRiscvF64x2Mul) \ V(F64x2Div, kRiscvF64x2Div) \ V(F64x2Min, kRiscvF64x2Min) \ V(F64x2Max, kRiscvF64x2Max) \ V(F64x2Eq, kRiscvF64x2Eq) \ V(F64x2Ne, kRiscvF64x2Ne) \ V(F64x2Lt, kRiscvF64x2Lt) \ V(F64x2Le, kRiscvF64x2Le) \ V(I64x2Add, kRiscvI64x2Add) \ V(I64x2Sub, kRiscvI64x2Sub) \ V(I64x2Mul, kRiscvI64x2Mul) \ V(F32x4Add, kRiscvF32x4Add) \ V(F32x4Sub, kRiscvF32x4Sub) \ V(F32x4Mul, kRiscvF32x4Mul) \ V(F32x4Div, kRiscvF32x4Div) \ V(F32x4Max, kRiscvF32x4Max) \ V(F32x4Min, kRiscvF32x4Min) \ V(F32x4Eq, kRiscvF32x4Eq) \ V(F32x4Ne, kRiscvF32x4Ne) \ V(F32x4Lt, kRiscvF32x4Lt) \ V(F32x4Le, kRiscvF32x4Le) \ V(I32x4Add, kRiscvI32x4Add) \ V(I32x4Sub, kRiscvI32x4Sub) \ V(I32x4Mul, kRiscvI32x4Mul) \ V(I32x4MaxS, kRiscvI32x4MaxS) \ V(I32x4MinS, kRiscvI32x4MinS) \ V(I32x4MaxU, kRiscvI32x4MaxU) \ V(I32x4MinU, kRiscvI32x4MinU) \ V(I32x4Eq, kRiscvI32x4Eq) \ V(I32x4Ne, kRiscvI32x4Ne) \ V(I32x4GtS, kRiscvI32x4GtS) \ V(I32x4GeS, kRiscvI32x4GeS) \ V(I32x4GtU, kRiscvI32x4GtU) \ V(I32x4GeU, kRiscvI32x4GeU) \ V(I32x4DotI16x8S, kRiscvI32x4DotI16x8S) \ V(I16x8Add, kRiscvI16x8Add) \ V(I16x8AddSatS, kRiscvI16x8AddSatS) \ V(I16x8AddSatU, kRiscvI16x8AddSatU) \ V(I16x8Sub, kRiscvI16x8Sub) \ V(I16x8SubSatS, kRiscvI16x8SubSatS) \ V(I16x8SubSatU, kRiscvI16x8SubSatU) \ V(I16x8Mul, kRiscvI16x8Mul) \ V(I16x8MaxS, kRiscvI16x8MaxS) \ V(I16x8MinS, kRiscvI16x8MinS) \ V(I16x8MaxU, kRiscvI16x8MaxU) \ V(I16x8MinU, kRiscvI16x8MinU) \ V(I16x8Eq, kRiscvI16x8Eq) \ V(I16x8Ne, kRiscvI16x8Ne) \ V(I16x8GtS, kRiscvI16x8GtS) \ V(I16x8GeS, kRiscvI16x8GeS) \ V(I16x8GtU, kRiscvI16x8GtU) \ V(I16x8GeU, kRiscvI16x8GeU) \ V(I16x8RoundingAverageU, kRiscvI16x8RoundingAverageU) \ V(I16x8Q15MulRSatS, kRiscvI16x8Q15MulRSatS) \ V(I16x8SConvertI32x4, kRiscvI16x8SConvertI32x4) \ V(I16x8UConvertI32x4, kRiscvI16x8UConvertI32x4) \ V(I8x16Add, kRiscvI8x16Add) \ V(I8x16AddSatS, kRiscvI8x16AddSatS) \ V(I8x16AddSatU, kRiscvI8x16AddSatU) \ V(I8x16Sub, kRiscvI8x16Sub) \ V(I8x16SubSatS, kRiscvI8x16SubSatS) \ V(I8x16SubSatU, kRiscvI8x16SubSatU) \ V(I8x16MaxS, kRiscvI8x16MaxS) \ V(I8x16MinS, kRiscvI8x16MinS) \ V(I8x16MaxU, kRiscvI8x16MaxU) \ V(I8x16MinU, kRiscvI8x16MinU) \ V(I8x16Eq, kRiscvI8x16Eq) \ V(I8x16Ne, kRiscvI8x16Ne) \ V(I8x16GtS, kRiscvI8x16GtS) \ V(I8x16GeS, kRiscvI8x16GeS) \ V(I8x16GtU, kRiscvI8x16GtU) \ V(I8x16GeU, kRiscvI8x16GeU) \ V(I8x16RoundingAverageU, kRiscvI8x16RoundingAverageU) \ V(I8x16SConvertI16x8, kRiscvI8x16SConvertI16x8) \ V(I8x16UConvertI16x8, kRiscvI8x16UConvertI16x8) \ V(S128And, kRiscvS128And) \ V(S128Or, kRiscvS128Or) \ V(S128Xor, kRiscvS128Xor) \ V(S128AndNot, kRiscvS128AndNot) void InstructionSelector::VisitS128Const(Node* node) { RiscvOperandGenerator g(this); static const int kUint32Immediates = kSimd128Size / sizeof(uint32_t); uint32_t val[kUint32Immediates]; memcpy(val, S128ImmediateParameterOf(node->op()).data(), kSimd128Size); // If all bytes are zeros or ones, avoid emitting code for generic constants bool all_zeros = !(val[0] || val[1] || val[2] || val[3]); bool all_ones = val[0] == UINT32_MAX && val[1] == UINT32_MAX && val[2] == UINT32_MAX && val[3] == UINT32_MAX; InstructionOperand dst = g.DefineAsRegister(node); if (all_zeros) { Emit(kRiscvS128Zero, dst); } else if (all_ones) { Emit(kRiscvS128AllOnes, dst); } else { Emit(kRiscvS128Const, dst, g.UseImmediate(val[0]), g.UseImmediate(val[1]), g.UseImmediate(val[2]), g.UseImmediate(val[3])); } } void InstructionSelector::VisitS128Zero(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvS128Zero, g.DefineAsRegister(node)); } #define SIMD_VISIT_SPLAT(Type) \ void InstructionSelector::Visit##Type##Splat(Node* node) { \ VisitRR(this, kRiscv##Type##Splat, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_SPLAT) SIMD_VISIT_SPLAT(F64x2) #undef SIMD_VISIT_SPLAT #define SIMD_VISIT_EXTRACT_LANE(Type, Sign) \ void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \ VisitRRI(this, kRiscv##Type##ExtractLane##Sign, node); \ } SIMD_VISIT_EXTRACT_LANE(F64x2, ) SIMD_VISIT_EXTRACT_LANE(F32x4, ) SIMD_VISIT_EXTRACT_LANE(I32x4, ) SIMD_VISIT_EXTRACT_LANE(I16x8, U) SIMD_VISIT_EXTRACT_LANE(I16x8, S) SIMD_VISIT_EXTRACT_LANE(I8x16, U) SIMD_VISIT_EXTRACT_LANE(I8x16, S) #undef SIMD_VISIT_EXTRACT_LANE #define SIMD_VISIT_REPLACE_LANE(Type) \ void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ VisitRRIR(this, kRiscv##Type##ReplaceLane, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE) SIMD_VISIT_REPLACE_LANE(F64x2) #undef SIMD_VISIT_REPLACE_LANE #define SIMD_VISIT_UNOP(Name, instruction) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRR(this, instruction, node); \ } SIMD_UNOP_LIST(SIMD_VISIT_UNOP) #undef SIMD_VISIT_UNOP #define SIMD_VISIT_SHIFT_OP(Name) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitSimdShift(this, kRiscv##Name, node); \ } SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP) #undef SIMD_VISIT_SHIFT_OP #define SIMD_VISIT_BINOP(Name, instruction) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRRR(this, instruction, node); \ } SIMD_BINOP_LIST(SIMD_VISIT_BINOP) #undef SIMD_VISIT_BINOP void InstructionSelector::VisitS128Select(Node* node) { VisitRRRR(this, kRiscvS128Select, node); } namespace { struct ShuffleEntry { uint8_t shuffle[kSimd128Size]; ArchOpcode opcode; }; static const ShuffleEntry arch_shuffles[] = { {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}, kRiscvS32x4InterleaveRight}, {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}, kRiscvS32x4InterleaveLeft}, {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}, kRiscvS32x4PackEven}, {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}, kRiscvS32x4PackOdd}, {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}, kRiscvS32x4InterleaveEven}, {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}, kRiscvS32x4InterleaveOdd}, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}, kRiscvS16x8InterleaveRight}, {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}, kRiscvS16x8InterleaveLeft}, {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}, kRiscvS16x8PackEven}, {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}, kRiscvS16x8PackOdd}, {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}, kRiscvS16x8InterleaveEven}, {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}, kRiscvS16x8InterleaveOdd}, {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}, kRiscvS16x4Reverse}, {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, kRiscvS16x2Reverse}, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}, kRiscvS8x16InterleaveRight}, {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}, kRiscvS8x16InterleaveLeft}, {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, kRiscvS8x16PackEven}, {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, kRiscvS8x16PackOdd}, {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}, kRiscvS8x16InterleaveEven}, {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}, kRiscvS8x16InterleaveOdd}, {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, kRiscvS8x8Reverse}, {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, kRiscvS8x4Reverse}, {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, kRiscvS8x2Reverse}}; bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table, size_t num_entries, bool is_swizzle, ArchOpcode* opcode) { uint8_t mask = is_swizzle ? kSimd128Size - 1 : 2 * kSimd128Size - 1; for (size_t i = 0; i < num_entries; ++i) { const ShuffleEntry& entry = table[i]; int j = 0; for (; j < kSimd128Size; ++j) { if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) { break; } } if (j == kSimd128Size) { *opcode = entry.opcode; return true; } } return false; } } // namespace void InstructionSelector::VisitI8x16Shuffle(Node* node) { uint8_t shuffle[kSimd128Size]; bool is_swizzle; CanonicalizeShuffle(node, shuffle, &is_swizzle); uint8_t shuffle32x4[4]; ArchOpcode opcode; if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles), is_swizzle, &opcode)) { VisitRRR(this, opcode, node); return; } Node* input0 = node->InputAt(0); Node* input1 = node->InputAt(1); uint8_t offset; RiscvOperandGenerator g(this); if (wasm::SimdShuffle::TryMatchConcat(shuffle, &offset)) { Emit(kRiscvS8x16Concat, g.DefineSameAsFirst(node), g.UseRegister(input1), g.UseRegister(input0), g.UseImmediate(offset)); return; } if (wasm::SimdShuffle::TryMatch32x4Shuffle(shuffle, shuffle32x4)) { Emit(kRiscvS32x4Shuffle, g.DefineAsRegister(node), g.UseRegister(input0), g.UseRegister(input1), g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle32x4))); return; } Emit(kRiscvS8x16Shuffle, g.DefineAsRegister(node), g.UseRegister(input0), g.UseRegister(input1), g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle)), g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle + 4)), g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle + 8)), g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle + 12))); } void InstructionSelector::VisitI8x16Swizzle(Node* node) { RiscvOperandGenerator g(this); InstructionOperand temps[] = {g.TempSimd128Register()}; // We don't want input 0 or input 1 to be the same as output, since we will // modify output before do the calculation. Emit(kRiscvI8x16Swizzle, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); } void InstructionSelector::VisitSignExtendWord8ToInt32(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvSignExtendByte, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSignExtendWord16ToInt32(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvSignExtendShort, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSignExtendWord8ToInt64(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvSignExtendByte, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSignExtendWord16ToInt64(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvSignExtendShort, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSignExtendWord32ToInt64(Node* node) { RiscvOperandGenerator g(this); Emit(kRiscvShl32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.TempImmediate(0)); } void InstructionSelector::VisitF32x4Pmin(Node* node) { VisitUniqueRRR(this, kRiscvF32x4Pmin, node); } void InstructionSelector::VisitF32x4Pmax(Node* node) { VisitUniqueRRR(this, kRiscvF32x4Pmax, node); } void InstructionSelector::VisitF64x2Pmin(Node* node) { VisitUniqueRRR(this, kRiscvF64x2Pmin, node); } void InstructionSelector::VisitF64x2Pmax(Node* node) { VisitUniqueRRR(this, kRiscvF64x2Pmax, node); } #define VISIT_EXT_MUL(OPCODE1, OPCODE2) \ void InstructionSelector::Visit##OPCODE1##ExtMulLow##OPCODE2(Node* node) { \ UNREACHABLE(); \ } \ void InstructionSelector::Visit##OPCODE1##ExtMulHigh##OPCODE2(Node* node) { \ UNREACHABLE(); \ } VISIT_EXT_MUL(I64x2, I32x4S) VISIT_EXT_MUL(I64x2, I32x4U) VISIT_EXT_MUL(I32x4, I16x8S) VISIT_EXT_MUL(I32x4, I16x8U) VISIT_EXT_MUL(I16x8, I8x16S) VISIT_EXT_MUL(I16x8, I8x16U) #undef VISIT_EXT_MUL // static MachineOperatorBuilder::Flags InstructionSelector::SupportedMachineOperatorFlags() { MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags; return flags | MachineOperatorBuilder::kWord32ShiftIsSafe | MachineOperatorBuilder::kInt32DivIsSafe | MachineOperatorBuilder::kUint32DivIsSafe | MachineOperatorBuilder::kFloat64RoundDown | MachineOperatorBuilder::kFloat32RoundDown | MachineOperatorBuilder::kFloat64RoundUp | MachineOperatorBuilder::kFloat32RoundUp | MachineOperatorBuilder::kFloat64RoundTruncate | MachineOperatorBuilder::kFloat32RoundTruncate | MachineOperatorBuilder::kFloat64RoundTiesEven | MachineOperatorBuilder::kFloat32RoundTiesEven; } // static MachineOperatorBuilder::AlignmentRequirements InstructionSelector::AlignmentRequirements() { return MachineOperatorBuilder::AlignmentRequirements:: NoUnalignedAccessSupport(); } #undef SIMD_BINOP_LIST #undef SIMD_SHIFT_OP_LIST #undef SIMD_UNOP_LIST #undef SIMD_TYPE_LIST #undef TRACE_UNIMPL #undef TRACE } // namespace compiler } // namespace internal } // namespace v8