Commit fdf44a4b authored by whesse@chromium.org's avatar whesse@chromium.org

Revert change 5989, which causes failures in some benchmarks.

Review URL: http://codereview.chromium.org/5804003

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5991 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 49f4c39d
......@@ -1354,9 +1354,6 @@ LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
case kMathPowHalf:
Abort("MathPowHalf LUnaryMathOperation not implemented");
return NULL;
case kMathLog:
Abort("MathLog LUnaryMathOperation not implemented");
return NULL;
default:
UNREACHABLE();
return NULL;
......
......@@ -56,7 +56,6 @@ namespace internal {
V(FastNewContext) \
V(FastCloneShallowArray) \
V(TranscendentalCache) \
V(TranscendentalCacheSSE2) \
V(GenericUnaryOp) \
V(RevertToNumber) \
V(ToBoolean) \
......
......@@ -2054,9 +2054,8 @@ class TranscendentalCache {
// Allow access to the caches_ array as an ExternalReference.
friend class ExternalReference;
// Inline implementation of the cache.
// Inline implementation of the caching.
friend class TranscendentalCacheStub;
friend class TranscendentalCacheSSE2Stub;
static TranscendentalCache* caches_[kNumberOfCaches];
Element elements_[kCacheSize];
......
......@@ -1380,7 +1380,6 @@ class HUnaryMathOperation: public HUnaryOperation {
break;
case kMathSqrt:
case kMathPowHalf:
case kMathLog:
default:
set_representation(Representation::Double());
}
......@@ -1400,7 +1399,6 @@ class HUnaryMathOperation: public HUnaryOperation {
case kMathCeil:
case kMathSqrt:
case kMathPowHalf:
case kMathLog:
return Representation::Double();
break;
case kMathAbs:
......
......@@ -4087,7 +4087,6 @@ bool HGraphBuilder::TryMathFunctionInline(Call* expr) {
case kMathFloor:
case kMathAbs:
case kMathSqrt:
case kMathLog:
if (argument_count == 2) {
HValue* argument = Pop();
Drop(1); // Receiver.
......
......@@ -2409,7 +2409,6 @@ void Assembler::movsd(XMMRegister dst, const Operand& src) {
emit_sse_operand(dst, src);
}
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
ASSERT(CpuFeatures::IsEnabled(SSE2));
EnsureSpace ensure_space(this);
......@@ -2432,17 +2431,6 @@ void Assembler::movd(XMMRegister dst, const Operand& src) {
}
void Assembler::movd(const Operand& dst, XMMRegister src) {
ASSERT(CpuFeatures::IsEnabled(SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x66);
EMIT(0x0F);
EMIT(0x7E);
emit_sse_operand(src, dst);
}
void Assembler::pand(XMMRegister dst, XMMRegister src) {
ASSERT(CpuFeatures::IsEnabled(SSE2));
EnsureSpace ensure_space(this);
......@@ -2477,7 +2465,7 @@ void Assembler::ptest(XMMRegister dst, XMMRegister src) {
}
void Assembler::psllq(XMMRegister reg, int8_t shift) {
void Assembler::psllq(XMMRegister reg, int8_t imm8) {
ASSERT(CpuFeatures::IsEnabled(SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
......@@ -2485,32 +2473,7 @@ void Assembler::psllq(XMMRegister reg, int8_t shift) {
EMIT(0x0F);
EMIT(0x73);
emit_sse_operand(esi, reg); // esi == 6
EMIT(shift);
}
void Assembler::pshufd(XMMRegister dst, XMMRegister src, int8_t shuffle) {
ASSERT(CpuFeatures::IsEnabled(SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x66);
EMIT(0x0F);
EMIT(0x70);
emit_sse_operand(dst, src);
EMIT(shuffle);
}
void Assembler::pextrd(const Operand& dst, XMMRegister src, int8_t offset) {
ASSERT(CpuFeatures::IsEnabled(SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x66);
EMIT(0x0F);
EMIT(0x3A);
EMIT(0x16);
emit_sse_operand(src, dst);
EMIT(offset);
EMIT(imm8);
}
......
......@@ -905,16 +905,13 @@ class Assembler : public Malloced {
void movdbl(const Operand& dst, XMMRegister src);
void movd(XMMRegister dst, const Operand& src);
void movd(const Operand& src, XMMRegister dst);
void movsd(XMMRegister dst, XMMRegister src);
void pand(XMMRegister dst, XMMRegister src);
void pxor(XMMRegister dst, XMMRegister src);
void ptest(XMMRegister dst, XMMRegister src);
void psllq(XMMRegister reg, int8_t shift);
void pshufd(XMMRegister dst, XMMRegister src, int8_t shuffle);
void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
void psllq(XMMRegister reg, int8_t imm8);
// Parallel XMM operations.
void movntdqa(XMMRegister src, const Operand& dst);
......
......@@ -2683,137 +2683,6 @@ void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) {
}
void TranscendentalCacheSSE2Stub::Generate(MacroAssembler* masm) {
// Input on stack:
// esp[0]: return address.
// Input in registers:
// xmm1: untagged double input argument.
// Output:
// xmm1: untagged double result.
Label skip_cache;
Label call_runtime;
// Input is an untagged double in xmm1.
// Compute hash (the shifts are arithmetic):
// h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
__ pextrd(Operand(edx), xmm1, 0x1); // copy xmm1[63..32] to edx.
__ movd(Operand(ebx), xmm1);
// xmm1 = double value
// ebx = low 32 bits of double value
// edx = high 32 bits of double value
// Compute hash (the shifts are arithmetic):
// h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
__ mov(ecx, ebx);
__ xor_(ecx, Operand(edx));
__ mov(eax, ecx);
__ sar(eax, 16);
__ xor_(ecx, Operand(eax));
__ mov(eax, ecx);
__ sar(eax, 8);
__ xor_(ecx, Operand(eax));
ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
__ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1));
// xmm1 = double value.
// ebx = low 32 bits of double value.
// edx = high 32 bits of double value.
// ecx = TranscendentalCache::hash(double value).
__ mov(eax,
Immediate(ExternalReference::transcendental_cache_array_address()));
// Eax points to cache array.
__ mov(eax, Operand(eax, type_ * sizeof(TranscendentalCache::caches_[0])));
// Eax points to the cache for the type type_.
// If NULL, the cache hasn't been initialized yet, so go through runtime.
__ test(eax, Operand(eax));
__ j(zero, &call_runtime);
#ifdef DEBUG
// Check that the layout of cache elements match expectations.
{ TranscendentalCache::Element test_elem[2];
char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
CHECK_EQ(0, elem_in0 - elem_start);
CHECK_EQ(kIntSize, elem_in1 - elem_start);
CHECK_EQ(2 * kIntSize, elem_out - elem_start);
}
#endif
// Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12].
__ lea(ecx, Operand(ecx, ecx, times_2, 0));
__ lea(ecx, Operand(eax, ecx, times_4, 0));
// Check if cache matches: Double value is stored in uint32_t[2] array.
NearLabel cache_miss;
__ cmp(ebx, Operand(ecx, 0));
__ j(not_equal, &cache_miss);
__ cmp(edx, Operand(ecx, kIntSize));
__ j(not_equal, &cache_miss);
// Cache hit!
__ mov(eax, Operand(ecx, 2 * kIntSize));
__ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ Ret();
__ bind(&cache_miss);
// Update cache with new value.
// We are short on registers, so use no_reg as scratch.
// This gives slightly larger code.
__ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
__ sub(Operand(esp), Immediate(sizeof(double)));
__ movdbl(Operand(esp, 0), xmm1);
__ fld_d(Operand(esp, 0));
__ add(Operand(esp), Immediate(sizeof(double)));
GenerateOperation(masm);
__ mov(Operand(ecx, 0), ebx);
__ mov(Operand(ecx, kIntSize), edx);
__ mov(Operand(ecx, 2 * kIntSize), eax);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ Ret();
__ bind(&skip_cache);
__ sub(Operand(esp), Immediate(2 * kPointerSize));
__ movdbl(Operand(esp, 0), xmm1);
__ fld_d(Operand(esp, 0));
GenerateOperation(masm);
__ fstp_d(Operand(esp, 0));
__ movdbl(xmm1, Operand(esp, 0));
__ add(Operand(esp), Immediate(2 * kPointerSize));
__ Ret();
__ bind(&call_runtime);
__ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
__ push(eax);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1);
__ CallRuntime(RuntimeFunction(), 1);
__ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ Ret();
}
Runtime::FunctionId TranscendentalCacheSSE2Stub::RuntimeFunction() {
switch (type_) {
// Add more cases when necessary.
case TranscendentalCache::LOG: return Runtime::kMath_log;
default:
UNIMPLEMENTED();
return Runtime::kAbort;
}
}
void TranscendentalCacheSSE2Stub::GenerateOperation(MacroAssembler* masm) {
// Only free register is edi.
// Input value is on FP stack and in xmm1.
ASSERT(type_ == TranscendentalCache::LOG);
__ fldln2();
__ fxch();
__ fyl2x();
}
// Get the integer part of a heap number. Surprisingly, all this bit twiddling
// is faster than using the built-in instructions on floating point registers.
// Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the
......
......@@ -45,7 +45,6 @@ class TranscendentalCacheStub: public CodeStub {
void Generate(MacroAssembler* masm);
private:
TranscendentalCache::Type type_;
Major MajorKey() { return TranscendentalCache; }
int MinorKey() { return type_; }
Runtime::FunctionId RuntimeFunction();
......@@ -53,24 +52,6 @@ class TranscendentalCacheStub: public CodeStub {
};
// Check the transcendental cache, or generate the result, using SSE2.
// The argument and result will be in xmm1.
// Only supports TranscendentalCache::LOG at this point.
class TranscendentalCacheSSE2Stub: public CodeStub {
public:
explicit TranscendentalCacheSSE2Stub(TranscendentalCache::Type type)
: type_(type) {}
void Generate(MacroAssembler* masm);
private:
TranscendentalCache::Type type_;
Major MajorKey() { return TranscendentalCacheSSE2; }
int MinorKey() { return type_; }
Runtime::FunctionId RuntimeFunction();
void GenerateOperation(MacroAssembler* masm);
};
class ToBooleanStub: public CodeStub {
public:
ToBooleanStub() { }
......
......@@ -1107,21 +1107,6 @@ int DisassemblerIA32::InstructionDecode(v8::internal::Vector<char> out_buffer,
} else {
UnimplementedInstruction();
}
} else if (*data == 0x3A) {
data++;
if (*data == 0x16) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
int8_t imm8 = static_cast<int8_t>(data[1]);
AppendToBuffer("pextrd %s,%s,%d",
NameOfXMMRegister(regop),
NameOfXMMRegister(rm),
static_cast<int>(imm8));
data += 2;
} else {
UnimplementedInstruction();
}
} else if (*data == 0x2E || *data == 0x2F) {
const char* mnem = (*data == 0x2E) ? "ucomisd" : "comisd";
data++;
......@@ -1144,14 +1129,6 @@ int DisassemblerIA32::InstructionDecode(v8::internal::Vector<char> out_buffer,
NameOfCPURegister(regop),
NameOfXMMRegister(rm));
data++;
} else if (*data == 0x54) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
AppendToBuffer("andpd %s,%s",
NameOfXMMRegister(regop),
NameOfXMMRegister(rm));
data++;
} else if (*data == 0x57) {
data++;
int mod, regop, rm;
......@@ -1172,25 +1149,6 @@ int DisassemblerIA32::InstructionDecode(v8::internal::Vector<char> out_buffer,
get_modrm(*data, &mod, &regop, &rm);
AppendToBuffer("movdqa %s,", NameOfXMMRegister(regop));
data += PrintRightOperand(data);
} else if (*data == 0x70) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
int8_t imm8 = static_cast<int8_t>(data[1]);
AppendToBuffer("pshufd %s,%s,%d",
NameOfXMMRegister(regop),
NameOfXMMRegister(rm),
static_cast<int>(imm8));
data += 2;
} else if (*data == 0x73) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
int8_t imm8 = static_cast<int8_t>(data[1]);
AppendToBuffer("psllq %s,%d",
NameOfXMMRegister(rm),
static_cast<int>(imm8));
data += 2;
} else if (*data == 0x7F) {
AppendToBuffer("movdqa ");
data++;
......@@ -1198,21 +1156,6 @@ int DisassemblerIA32::InstructionDecode(v8::internal::Vector<char> out_buffer,
get_modrm(*data, &mod, &regop, &rm);
data += PrintRightOperand(data);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
} else if (*data == 0x7E) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
AppendToBuffer("movd ");
data += PrintRightOperand(data);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
} else if (*data == 0xDB) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
AppendToBuffer("pand %s,%s",
NameOfXMMRegister(regop),
NameOfXMMRegister(rm));
data++;
} else if (*data == 0xE7) {
AppendToBuffer("movntdq ");
data++;
......@@ -1221,13 +1164,38 @@ int DisassemblerIA32::InstructionDecode(v8::internal::Vector<char> out_buffer,
data += PrintRightOperand(data);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
} else if (*data == 0xEF) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
AppendToBuffer("pxor %s,%s",
NameOfXMMRegister(regop),
NameOfXMMRegister(rm));
data++;
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
AppendToBuffer("pxor %s,%s",
NameOfXMMRegister(regop),
NameOfXMMRegister(rm));
data++;
} else if (*data == 0xDB) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
AppendToBuffer("pand %s,%s",
NameOfXMMRegister(regop),
NameOfXMMRegister(rm));
data++;
} else if (*data == 0x73) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
int8_t imm8 = static_cast<int8_t>(data[1]);
AppendToBuffer("psllq %s,%d",
NameOfXMMRegister(rm),
static_cast<int>(imm8));
data += 2;
} else if (*data == 0x54) {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
AppendToBuffer("andpd %s,%s",
NameOfXMMRegister(regop),
NameOfXMMRegister(rm));
data++;
} else {
UnimplementedInstruction();
}
......
......@@ -2235,13 +2235,6 @@ void LCodeGen::DoPower(LPower* instr) {
}
void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheSSE2Stub stub(TranscendentalCache::LOG);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
switch (instr->op()) {
case kMathAbs:
......@@ -2259,10 +2252,6 @@ void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
case kMathPowHalf:
DoMathPowHalf(instr);
break;
case kMathLog:
DoMathLog(instr);
break;
default:
UNREACHABLE();
}
......
......@@ -176,7 +176,6 @@ class LCodeGen BASE_EMBEDDED {
void DoMathRound(LUnaryMathOperation* instr);
void DoMathSqrt(LUnaryMathOperation* instr);
void DoMathPowHalf(LUnaryMathOperation* instr);
void DoMathLog(LUnaryMathOperation* instr);
// Support for recording safepoint and position information.
void RecordSafepoint(LPointerMap* pointers, int deoptimization_index);
......
......@@ -1355,28 +1355,22 @@ LInstruction* LChunkBuilder::DoCallConstantFunction(
LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
MathFunctionId op = instr->op();
if (op == kMathLog) {
LOperand* input = UseFixedDouble(instr->value(), xmm1);
LInstruction* result = new LUnaryMathOperation(input);
return MarkAsCall(DefineFixedDouble(result, xmm1), instr);
} else {
LOperand* input = UseRegisterAtStart(instr->value());
LInstruction* result = new LUnaryMathOperation(input);
switch (op) {
case kMathAbs:
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
case kMathFloor:
return AssignEnvironment(DefineAsRegister(result));
case kMathRound:
return AssignEnvironment(DefineAsRegister(result));
case kMathSqrt:
return DefineSameAsFirst(result);
case kMathPowHalf:
return AssignEnvironment(DefineSameAsFirst(result));
default:
UNREACHABLE();
return NULL;
}
LOperand* input = UseRegisterAtStart(instr->value());
LInstruction* result = new LUnaryMathOperation(input);
switch (op) {
case kMathAbs:
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
case kMathFloor:
return AssignEnvironment(DefineAsRegister(result));
case kMathRound:
return AssignEnvironment(DefineAsRegister(result));
case kMathSqrt:
return DefineSameAsFirst(result);
case kMathPowHalf:
return AssignEnvironment(DefineSameAsFirst(result));
default:
UNREACHABLE();
return NULL;
}
}
......
......@@ -265,7 +265,6 @@ function SetupMath() {
%SetMathFunctionId($Math.abs, 4);
%SetMathFunctionId($Math.sqrt, 0xd);
%SetMathFunctionId($Math.pow, 0xe);
%SetMathFunctionId($Math.log, 5);
// TODO(erikcorry): Set the id of the other functions so they can be
// optimized.
};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment