Commit fab14341 authored by jkummerow's avatar jkummerow Committed by Commit bot

[cleanup] Refactor builtins-math.cc to use TF_BUILTIN macro

Review-Url: https://codereview.chromium.org/2614773004
Cr-Commit-Position: refs/heads/master@{#42135}
parent f91e12cc
......@@ -13,341 +13,300 @@ namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 20.2.2 Function Properties of the Math Object
// ES6 section - 20.2.2.1 Math.abs ( x )
void Builtins::Generate_MathAbs(compiler::CodeAssemblerState* state) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
CodeStubAssembler assembler(state);
class MathBuiltinsAssembler : public CodeStubAssembler {
public:
explicit MathBuiltinsAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
protected:
void MathRoundingOperation(Node* (CodeStubAssembler::*float64op)(Node*));
void MathUnaryOperation(Node* (CodeStubAssembler::*float64op)(Node*));
};
Node* context = assembler.Parameter(4);
// ES6 section - 20.2.2.1 Math.abs ( x )
TF_BUILTIN(MathAbs, CodeStubAssembler) {
Node* context = Parameter(4);
// We might need to loop once for ToNumber conversion.
Variable var_x(&assembler, MachineRepresentation::kTagged);
Label loop(&assembler, &var_x);
var_x.Bind(assembler.Parameter(1));
assembler.Goto(&loop);
assembler.Bind(&loop);
Variable var_x(this, MachineRepresentation::kTagged);
Label loop(this, &var_x);
var_x.Bind(Parameter(1));
Goto(&loop);
Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
Label if_xissmi(&assembler), if_xisnotsmi(&assembler);
assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
Label if_xissmi(this), if_xisnotsmi(this);
Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
assembler.Bind(&if_xissmi);
Bind(&if_xissmi);
{
// Check if {x} is already positive.
Label if_xispositive(&assembler), if_xisnotpositive(&assembler);
assembler.BranchIfSmiLessThanOrEqual(
assembler.SmiConstant(Smi::FromInt(0)), x, &if_xispositive,
&if_xisnotpositive);
Label if_xispositive(this), if_xisnotpositive(this);
BranchIfSmiLessThanOrEqual(SmiConstant(Smi::FromInt(0)), x,
&if_xispositive, &if_xisnotpositive);
assembler.Bind(&if_xispositive);
Bind(&if_xispositive);
{
// Just return the input {x}.
assembler.Return(x);
Return(x);
}
assembler.Bind(&if_xisnotpositive);
Bind(&if_xisnotpositive);
{
// Try to negate the {x} value.
Node* pair = assembler.IntPtrSubWithOverflow(
assembler.IntPtrConstant(0), assembler.BitcastTaggedToWord(x));
Node* overflow = assembler.Projection(1, pair);
Label if_overflow(&assembler, Label::kDeferred),
if_notoverflow(&assembler);
assembler.Branch(overflow, &if_overflow, &if_notoverflow);
assembler.Bind(&if_notoverflow);
Node* pair =
IntPtrSubWithOverflow(IntPtrConstant(0), BitcastTaggedToWord(x));
Node* overflow = Projection(1, pair);
Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
Branch(overflow, &if_overflow, &if_notoverflow);
Bind(&if_notoverflow);
{
// There is a Smi representation for negated {x}.
Node* result = assembler.Projection(0, pair);
result = assembler.BitcastWordToTagged(result);
assembler.Return(result);
Node* result = Projection(0, pair);
Return(BitcastWordToTagged(result));
}
assembler.Bind(&if_overflow);
{
Node* result = assembler.NumberConstant(0.0 - Smi::kMinValue);
assembler.Return(result);
}
Bind(&if_overflow);
{ Return(NumberConstant(0.0 - Smi::kMinValue)); }
}
}
assembler.Bind(&if_xisnotsmi);
Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
Label if_xisheapnumber(&assembler),
if_xisnotheapnumber(&assembler, Label::kDeferred);
assembler.Branch(assembler.IsHeapNumberMap(assembler.LoadMap(x)),
&if_xisheapnumber, &if_xisnotheapnumber);
Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred);
Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber,
&if_xisnotheapnumber);
assembler.Bind(&if_xisheapnumber);
Bind(&if_xisheapnumber);
{
Node* x_value = assembler.LoadHeapNumberValue(x);
Node* value = assembler.Float64Abs(x_value);
Node* result = assembler.AllocateHeapNumberWithValue(value);
assembler.Return(result);
Node* x_value = LoadHeapNumberValue(x);
Node* value = Float64Abs(x_value);
Node* result = AllocateHeapNumberWithValue(value);
Return(result);
}
assembler.Bind(&if_xisnotheapnumber);
Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate());
var_x.Bind(assembler.CallStub(callable, context, x));
assembler.Goto(&loop);
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_x.Bind(CallStub(callable, context, x));
Goto(&loop);
}
}
}
}
namespace {
void Generate_MathRoundingOperation(
CodeStubAssembler* assembler,
compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* context = assembler->Parameter(4);
void MathBuiltinsAssembler::MathRoundingOperation(
Node* (CodeStubAssembler::*float64op)(Node*)) {
Node* context = Parameter(4);
// We might need to loop once for ToNumber conversion.
Variable var_x(assembler, MachineRepresentation::kTagged);
Label loop(assembler, &var_x);
var_x.Bind(assembler->Parameter(1));
assembler->Goto(&loop);
assembler->Bind(&loop);
Variable var_x(this, MachineRepresentation::kTagged);
Label loop(this, &var_x);
var_x.Bind(Parameter(1));
Goto(&loop);
Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
Label if_xissmi(assembler), if_xisnotsmi(assembler);
assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
Label if_xissmi(this), if_xisnotsmi(this);
Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
assembler->Bind(&if_xissmi);
Bind(&if_xissmi);
{
// Nothing to do when {x} is a Smi.
assembler->Return(x);
Return(x);
}
assembler->Bind(&if_xisnotsmi);
Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
Label if_xisheapnumber(assembler),
if_xisnotheapnumber(assembler, Label::kDeferred);
assembler->Branch(assembler->IsHeapNumberMap(assembler->LoadMap(x)),
&if_xisheapnumber, &if_xisnotheapnumber);
Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred);
Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber,
&if_xisnotheapnumber);
assembler->Bind(&if_xisheapnumber);
Bind(&if_xisheapnumber);
{
Node* x_value = assembler->LoadHeapNumberValue(x);
Node* value = (assembler->*float64op)(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Node* x_value = LoadHeapNumberValue(x);
Node* value = (this->*float64op)(x_value);
Node* result = ChangeFloat64ToTagged(value);
Return(result);
}
assembler->Bind(&if_xisnotheapnumber);
Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_x.Bind(assembler->CallStub(callable, context, x));
assembler->Goto(&loop);
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_x.Bind(CallStub(callable, context, x));
Goto(&loop);
}
}
}
}
void Generate_MathUnaryOperation(
CodeStubAssembler* assembler,
compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) {
typedef compiler::Node Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = (assembler->*float64op)(x_value);
Node* result = assembler->AllocateHeapNumberWithValue(value);
assembler->Return(result);
void MathBuiltinsAssembler::MathUnaryOperation(
Node* (CodeStubAssembler::*float64op)(Node*)) {
Node* x = Parameter(1);
Node* context = Parameter(4);
Node* x_value = TruncateTaggedToFloat64(context, x);
Node* value = (this->*float64op)(x_value);
Node* result = AllocateHeapNumberWithValue(value);
Return(result);
}
} // namespace
// ES6 section 20.2.2.2 Math.acos ( x )
void Builtins::Generate_MathAcos(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acos);
TF_BUILTIN(MathAcos, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Acos);
}
// ES6 section 20.2.2.3 Math.acosh ( x )
void Builtins::Generate_MathAcosh(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acosh);
TF_BUILTIN(MathAcosh, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Acosh);
}
// ES6 section 20.2.2.4 Math.asin ( x )
void Builtins::Generate_MathAsin(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asin);
TF_BUILTIN(MathAsin, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Asin);
}
// ES6 section 20.2.2.5 Math.asinh ( x )
void Builtins::Generate_MathAsinh(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asinh);
TF_BUILTIN(MathAsinh, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Asinh);
}
// ES6 section 20.2.2.6 Math.atan ( x )
void Builtins::Generate_MathAtan(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atan);
TF_BUILTIN(MathAtan, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Atan);
}
// ES6 section 20.2.2.7 Math.atanh ( x )
void Builtins::Generate_MathAtanh(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atanh);
TF_BUILTIN(MathAtanh, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Atanh);
}
// ES6 section 20.2.2.8 Math.atan2 ( y, x )
void Builtins::Generate_MathAtan2(compiler::CodeAssemblerState* state) {
using compiler::Node;
CodeStubAssembler assembler(state);
TF_BUILTIN(MathAtan2, CodeStubAssembler) {
Node* y = Parameter(1);
Node* x = Parameter(2);
Node* context = Parameter(5);
Node* y = assembler.Parameter(1);
Node* x = assembler.Parameter(2);
Node* context = assembler.Parameter(5);
Node* y_value = assembler.TruncateTaggedToFloat64(context, y);
Node* x_value = assembler.TruncateTaggedToFloat64(context, x);
Node* value = assembler.Float64Atan2(y_value, x_value);
Node* result = assembler.AllocateHeapNumberWithValue(value);
assembler.Return(result);
Node* y_value = TruncateTaggedToFloat64(context, y);
Node* x_value = TruncateTaggedToFloat64(context, x);
Node* value = Float64Atan2(y_value, x_value);
Node* result = AllocateHeapNumberWithValue(value);
Return(result);
}
// ES6 section 20.2.2.10 Math.ceil ( x )
void Builtins::Generate_MathCeil(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Ceil);
TF_BUILTIN(MathCeil, MathBuiltinsAssembler) {
MathRoundingOperation(&CodeStubAssembler::Float64Ceil);
}
// ES6 section 20.2.2.9 Math.cbrt ( x )
void Builtins::Generate_MathCbrt(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cbrt);
TF_BUILTIN(MathCbrt, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Cbrt);
}
// ES6 section 20.2.2.11 Math.clz32 ( x )
void Builtins::Generate_MathClz32(compiler::CodeAssemblerState* state) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
CodeStubAssembler assembler(state);
Node* context = assembler.Parameter(4);
TF_BUILTIN(MathClz32, CodeStubAssembler) {
Node* context = Parameter(4);
// Shared entry point for the clz32 operation.
Variable var_clz32_x(&assembler, MachineRepresentation::kWord32);
Label do_clz32(&assembler);
Variable var_clz32_x(this, MachineRepresentation::kWord32);
Label do_clz32(this);
// We might need to loop once for ToNumber conversion.
Variable var_x(&assembler, MachineRepresentation::kTagged);
Label loop(&assembler, &var_x);
var_x.Bind(assembler.Parameter(1));
assembler.Goto(&loop);
assembler.Bind(&loop);
Variable var_x(this, MachineRepresentation::kTagged);
Label loop(this, &var_x);
var_x.Bind(Parameter(1));
Goto(&loop);
Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
Label if_xissmi(&assembler), if_xisnotsmi(&assembler);
assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
Label if_xissmi(this), if_xisnotsmi(this);
Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
assembler.Bind(&if_xissmi);
Bind(&if_xissmi);
{
var_clz32_x.Bind(assembler.SmiToWord32(x));
assembler.Goto(&do_clz32);
var_clz32_x.Bind(SmiToWord32(x));
Goto(&do_clz32);
}
assembler.Bind(&if_xisnotsmi);
Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
Label if_xisheapnumber(&assembler),
if_xisnotheapnumber(&assembler, Label::kDeferred);
assembler.Branch(assembler.IsHeapNumberMap(assembler.LoadMap(x)),
&if_xisheapnumber, &if_xisnotheapnumber);
Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred);
Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber,
&if_xisnotheapnumber);
assembler.Bind(&if_xisheapnumber);
Bind(&if_xisheapnumber);
{
var_clz32_x.Bind(assembler.TruncateHeapNumberValueToWord32(x));
assembler.Goto(&do_clz32);
var_clz32_x.Bind(TruncateHeapNumberValueToWord32(x));
Goto(&do_clz32);
}
assembler.Bind(&if_xisnotheapnumber);
Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate());
var_x.Bind(assembler.CallStub(callable, context, x));
assembler.Goto(&loop);
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_x.Bind(CallStub(callable, context, x));
Goto(&loop);
}
}
}
assembler.Bind(&do_clz32);
Bind(&do_clz32);
{
Node* x_value = var_clz32_x.value();
Node* value = assembler.Word32Clz(x_value);
Node* result = assembler.ChangeInt32ToTagged(value);
assembler.Return(result);
Node* value = Word32Clz(x_value);
Node* result = ChangeInt32ToTagged(value);
Return(result);
}
}
// ES6 section 20.2.2.12 Math.cos ( x )
void Builtins::Generate_MathCos(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cos);
TF_BUILTIN(MathCos, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Cos);
}
// ES6 section 20.2.2.13 Math.cosh ( x )
void Builtins::Generate_MathCosh(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cosh);
TF_BUILTIN(MathCosh, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Cosh);
}
// ES6 section 20.2.2.14 Math.exp ( x )
void Builtins::Generate_MathExp(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Exp);
TF_BUILTIN(MathExp, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Exp);
}
// ES6 section 20.2.2.15 Math.expm1 ( x )
void Builtins::Generate_MathExpm1(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Expm1);
TF_BUILTIN(MathExpm1, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Expm1);
}
// ES6 section 20.2.2.16 Math.floor ( x )
void Builtins::Generate_MathFloor(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Floor);
TF_BUILTIN(MathFloor, MathBuiltinsAssembler) {
MathRoundingOperation(&CodeStubAssembler::Float64Floor);
}
// ES6 section 20.2.2.17 Math.fround ( x )
void Builtins::Generate_MathFround(compiler::CodeAssemblerState* state) {
using compiler::Node;
CodeStubAssembler assembler(state);
Node* x = assembler.Parameter(1);
Node* context = assembler.Parameter(4);
Node* x_value = assembler.TruncateTaggedToFloat64(context, x);
Node* value32 = assembler.TruncateFloat64ToFloat32(x_value);
Node* value = assembler.ChangeFloat32ToFloat64(value32);
Node* result = assembler.AllocateHeapNumberWithValue(value);
assembler.Return(result);
TF_BUILTIN(MathFround, CodeStubAssembler) {
Node* x = Parameter(1);
Node* context = Parameter(4);
Node* x_value = TruncateTaggedToFloat64(context, x);
Node* value32 = TruncateFloat64ToFloat32(x_value);
Node* value = ChangeFloat32ToFloat64(value32);
Node* result = AllocateHeapNumberWithValue(value);
Return(result);
}
// ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values )
......@@ -403,168 +362,134 @@ BUILTIN(MathHypot) {
}
// ES6 section 20.2.2.19 Math.imul ( x, y )
void Builtins::Generate_MathImul(compiler::CodeAssemblerState* state) {
using compiler::Node;
CodeStubAssembler assembler(state);
Node* x = assembler.Parameter(1);
Node* y = assembler.Parameter(2);
Node* context = assembler.Parameter(5);
Node* x_value = assembler.TruncateTaggedToWord32(context, x);
Node* y_value = assembler.TruncateTaggedToWord32(context, y);
Node* value = assembler.Int32Mul(x_value, y_value);
Node* result = assembler.ChangeInt32ToTagged(value);
assembler.Return(result);
TF_BUILTIN(MathImul, CodeStubAssembler) {
Node* x = Parameter(1);
Node* y = Parameter(2);
Node* context = Parameter(5);
Node* x_value = TruncateTaggedToWord32(context, x);
Node* y_value = TruncateTaggedToWord32(context, y);
Node* value = Int32Mul(x_value, y_value);
Node* result = ChangeInt32ToTagged(value);
Return(result);
}
// ES6 section 20.2.2.20 Math.log ( x )
void Builtins::Generate_MathLog(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log);
TF_BUILTIN(MathLog, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Log);
}
// ES6 section 20.2.2.21 Math.log1p ( x )
void Builtins::Generate_MathLog1p(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log1p);
TF_BUILTIN(MathLog1p, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Log1p);
}
// ES6 section 20.2.2.22 Math.log10 ( x )
void Builtins::Generate_MathLog10(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log10);
TF_BUILTIN(MathLog10, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Log10);
}
// ES6 section 20.2.2.23 Math.log2 ( x )
void Builtins::Generate_MathLog2(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log2);
TF_BUILTIN(MathLog2, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Log2);
}
// ES6 section 20.2.2.26 Math.pow ( x, y )
void Builtins::Generate_MathPow(compiler::CodeAssemblerState* state) {
using compiler::Node;
CodeStubAssembler assembler(state);
Node* x = assembler.Parameter(1);
Node* y = assembler.Parameter(2);
Node* context = assembler.Parameter(5);
Node* x_value = assembler.TruncateTaggedToFloat64(context, x);
Node* y_value = assembler.TruncateTaggedToFloat64(context, y);
Node* value = assembler.Float64Pow(x_value, y_value);
Node* result = assembler.ChangeFloat64ToTagged(value);
assembler.Return(result);
TF_BUILTIN(MathPow, CodeStubAssembler) {
Node* x = Parameter(1);
Node* y = Parameter(2);
Node* context = Parameter(5);
Node* x_value = TruncateTaggedToFloat64(context, x);
Node* y_value = TruncateTaggedToFloat64(context, y);
Node* value = Float64Pow(x_value, y_value);
Node* result = ChangeFloat64ToTagged(value);
Return(result);
}
// ES6 section 20.2.2.27 Math.random ( )
void Builtins::Generate_MathRandom(compiler::CodeAssemblerState* state) {
using compiler::Node;
CodeStubAssembler assembler(state);
Node* context = assembler.Parameter(3);
Node* native_context = assembler.LoadNativeContext(context);
TF_BUILTIN(MathRandom, CodeStubAssembler) {
Node* context = Parameter(3);
Node* native_context = LoadNativeContext(context);
// Load cache index.
CodeStubAssembler::Variable smi_index(&assembler,
MachineRepresentation::kTagged);
smi_index.Bind(assembler.LoadContextElement(
native_context, Context::MATH_RANDOM_INDEX_INDEX));
Variable smi_index(this, MachineRepresentation::kTagged);
smi_index.Bind(
LoadContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX));
// Cached random numbers are exhausted if index is 0. Go to slow path.
CodeStubAssembler::Label if_cached(&assembler);
assembler.GotoIf(
assembler.SmiAbove(smi_index.value(), assembler.SmiConstant(Smi::kZero)),
&if_cached);
Label if_cached(this);
GotoIf(SmiAbove(smi_index.value(), SmiConstant(Smi::kZero)), &if_cached);
// Cache exhausted, populate the cache. Return value is the new index.
smi_index.Bind(
assembler.CallRuntime(Runtime::kGenerateRandomNumbers, context));
assembler.Goto(&if_cached);
smi_index.Bind(CallRuntime(Runtime::kGenerateRandomNumbers, context));
Goto(&if_cached);
// Compute next index by decrement.
assembler.Bind(&if_cached);
Node* new_smi_index = assembler.SmiSub(
smi_index.value(), assembler.SmiConstant(Smi::FromInt(1)));
assembler.StoreContextElement(
native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index);
Bind(&if_cached);
Node* new_smi_index = SmiSub(smi_index.value(), SmiConstant(Smi::FromInt(1)));
StoreContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX,
new_smi_index);
// Load and return next cached random number.
Node* array = assembler.LoadContextElement(native_context,
Context::MATH_RANDOM_CACHE_INDEX);
Node* random = assembler.LoadFixedDoubleArrayElement(
array, new_smi_index, MachineType::Float64(), 0,
CodeStubAssembler::SMI_PARAMETERS);
assembler.Return(assembler.AllocateHeapNumberWithValue(random));
Node* array =
LoadContextElement(native_context, Context::MATH_RANDOM_CACHE_INDEX);
Node* random = LoadFixedDoubleArrayElement(
array, new_smi_index, MachineType::Float64(), 0, SMI_PARAMETERS);
Return(AllocateHeapNumberWithValue(random));
}
// ES6 section 20.2.2.28 Math.round ( x )
void Builtins::Generate_MathRound(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Round);
TF_BUILTIN(MathRound, MathBuiltinsAssembler) {
MathRoundingOperation(&CodeStubAssembler::Float64Round);
}
// ES6 section 20.2.2.29 Math.sign ( x )
void Builtins::Generate_MathSign(compiler::CodeAssemblerState* state) {
typedef CodeStubAssembler::Label Label;
using compiler::Node;
CodeStubAssembler assembler(state);
TF_BUILTIN(MathSign, CodeStubAssembler) {
// Convert the {x} value to a Number.
Node* x = assembler.Parameter(1);
Node* context = assembler.Parameter(4);
Node* x_value = assembler.TruncateTaggedToFloat64(context, x);
Node* x = Parameter(1);
Node* context = Parameter(4);
Node* x_value = TruncateTaggedToFloat64(context, x);
// Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself.
Label if_xisnegative(&assembler), if_xispositive(&assembler);
assembler.GotoIf(
assembler.Float64LessThan(x_value, assembler.Float64Constant(0.0)),
&if_xisnegative);
assembler.GotoIf(
assembler.Float64LessThan(assembler.Float64Constant(0.0), x_value),
&if_xispositive);
assembler.Return(assembler.ChangeFloat64ToTagged(x_value));
Label if_xisnegative(this), if_xispositive(this);
GotoIf(Float64LessThan(x_value, Float64Constant(0.0)), &if_xisnegative);
GotoIf(Float64LessThan(Float64Constant(0.0), x_value), &if_xispositive);
Return(ChangeFloat64ToTagged(x_value));
assembler.Bind(&if_xisnegative);
assembler.Return(assembler.SmiConstant(Smi::FromInt(-1)));
Bind(&if_xisnegative);
Return(SmiConstant(Smi::FromInt(-1)));
assembler.Bind(&if_xispositive);
assembler.Return(assembler.SmiConstant(Smi::FromInt(1)));
Bind(&if_xispositive);
Return(SmiConstant(Smi::FromInt(1)));
}
// ES6 section 20.2.2.30 Math.sin ( x )
void Builtins::Generate_MathSin(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sin);
TF_BUILTIN(MathSin, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Sin);
}
// ES6 section 20.2.2.31 Math.sinh ( x )
void Builtins::Generate_MathSinh(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sinh);
TF_BUILTIN(MathSinh, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Sinh);
}
// ES6 section 20.2.2.32 Math.sqrt ( x )
void Builtins::Generate_MathSqrt(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sqrt);
TF_BUILTIN(MathSqrt, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Sqrt);
}
// ES6 section 20.2.2.33 Math.tan ( x )
void Builtins::Generate_MathTan(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tan);
TF_BUILTIN(MathTan, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Tan);
}
// ES6 section 20.2.2.34 Math.tanh ( x )
void Builtins::Generate_MathTanh(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tanh);
TF_BUILTIN(MathTanh, MathBuiltinsAssembler) {
MathUnaryOperation(&CodeStubAssembler::Float64Tanh);
}
// ES6 section 20.2.2.35 Math.trunc ( x )
void Builtins::Generate_MathTrunc(compiler::CodeAssemblerState* state) {
CodeStubAssembler assembler(state);
Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Trunc);
TF_BUILTIN(MathTrunc, MathBuiltinsAssembler) {
MathRoundingOperation(&CodeStubAssembler::Float64Trunc);
}
void Builtins::Generate_MathMax(MacroAssembler* masm) {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment