Commit f574d93e authored by bmeurer@chromium.org's avatar bmeurer@chromium.org

Revert "Reland "Refine expression typing, esp. by propagating range information.""

This reverts commit r24609 for breaking the
cctest/test-js-typed-lowering/Int32BitwiseBinops test.

TBR=rossberg@chromium.org,neis@chromium.org

Review URL: https://codereview.chromium.org/656003002

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@24614 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 2de468e8
......@@ -383,6 +383,16 @@ Reduction JSTypedLowering::ReduceJSStrictEqual(Node* node, bool invert) {
: jsgraph()->TrueConstant());
}
}
/* TODO(neis): This is currently unsound.
if (!r.left_type()->Maybe(r.right_type())) {
// Type intersection is empty; === is always false unless both
// inputs could be strings (one internalized and one not).
if (r.OneInputCannotBe(Type::String())) {
return ReplaceEagerly(node, invert ? jsgraph()->TrueConstant()
: jsgraph()->FalseConstant());
}
}
*/
if (r.OneInputIs(Type::Undefined())) {
return r.ChangeToPureOperator(
simplified()->ReferenceEqual(Type::Undefined()), invert);
......
......@@ -17,27 +17,6 @@ namespace compiler {
Typer::Typer(Zone* zone) : zone_(zone) {
Factory* f = zone->isolate()->factory();
Handle<Object> zero = f->NewNumber(0);
Handle<Object> one = f->NewNumber(1);
Handle<Object> positive_infinity = f->NewNumber(+V8_INFINITY);
Handle<Object> negative_infinity = f->NewNumber(-V8_INFINITY);
negative_signed32 = Type::Union(
Type::SignedSmall(), Type::OtherSigned32(), zone);
non_negative_signed32 = Type::Union(
Type::UnsignedSmall(), Type::OtherUnsigned31(), zone);
undefined_or_null = Type::Union(Type::Undefined(), Type::Null(), zone);
singleton_false = Type::Constant(f->false_value(), zone);
singleton_true = Type::Constant(f->true_value(), zone);
singleton_zero = Type::Range(zero, zero, zone);
singleton_one = Type::Range(one, one, zone);
zero_or_one = Type::Union(singleton_zero, singleton_one, zone);
zeroish = Type::Union(
singleton_zero, Type::Union(Type::NaN(), Type::MinusZero(), zone), zone);
falsish = Type::Union(Type::Undetectable(),
Type::Union(zeroish, undefined_or_null, zone), zone);
integer = Type::Range(negative_infinity, positive_infinity, zone);
Type* number = Type::Number();
Type* signed32 = Type::Signed32();
Type* unsigned32 = Type::Unsigned32();
......@@ -45,7 +24,8 @@ Typer::Typer(Zone* zone) : zone_(zone) {
Type* object = Type::Object();
Type* undefined = Type::Undefined();
Type* weakint = Type::Union(
integer, Type::Union(Type::NaN(), Type::MinusZero(), zone), zone);
Type::Range(f->NewNumber(-V8_INFINITY), f->NewNumber(+V8_INFINITY), zone),
Type::Union(Type::NaN(), Type::MinusZero(), zone), zone);
number_fun0_ = Type::Function(number, zone);
number_fun1_ = Type::Function(number, number, zone);
......@@ -55,27 +35,19 @@ Typer::Typer(Zone* zone) : zone_(zone) {
random_fun_ = Type::Function(Type::Union(
Type::UnsignedSmall(), Type::OtherNumber(), zone), zone);
Type* int8 = Type::Intersect(
Type::Range(f->NewNumber(-0x7F), f->NewNumber(0x7F-1), zone),
Type::UntaggedInt8(), zone);
Type* int16 = Type::Intersect(
Type::Range(f->NewNumber(-0x7FFF), f->NewNumber(0x7FFF-1), zone),
Type::UntaggedInt16(), zone);
Type* uint8 = Type::Intersect(
Type::Range(zero, f->NewNumber(0xFF-1), zone),
Type::UntaggedInt8(), zone);
Type* uint16 = Type::Intersect(
Type::Range(zero, f->NewNumber(0xFFFF-1), zone),
Type::UntaggedInt16(), zone);
#define NATIVE_TYPE(sem, rep) \
Type::Intersect(Type::sem(), Type::rep(), zone)
Type::Intersect(Type::sem(zone), Type::rep(zone), zone)
// TODO(rossberg): Use range types for more precision, once we have them.
Type* int8 = NATIVE_TYPE(SignedSmall, UntaggedInt8);
Type* int16 = NATIVE_TYPE(SignedSmall, UntaggedInt16);
Type* int32 = NATIVE_TYPE(Signed32, UntaggedInt32);
Type* uint8 = NATIVE_TYPE(UnsignedSmall, UntaggedInt8);
Type* uint16 = NATIVE_TYPE(UnsignedSmall, UntaggedInt16);
Type* uint32 = NATIVE_TYPE(Unsigned32, UntaggedInt32);
Type* float32 = NATIVE_TYPE(Number, UntaggedFloat32);
Type* float64 = NATIVE_TYPE(Number, UntaggedFloat64);
#undef NATIVE_TYPE
Type* buffer = Type::Buffer(zone);
Type* int8_array = Type::Array(int8, zone);
Type* int16_array = Type::Array(int16, zone);
......@@ -107,21 +79,9 @@ class Typer::Visitor : public NullNodeVisitor {
Bounds TypeNode(Node* node) {
switch (node->opcode()) {
#define DECLARE_CASE(x) \
case IrOpcode::k##x: return TypeBinaryOp(node, x##Typer);
JS_SIMPLE_BINOP_LIST(DECLARE_CASE)
#undef DECLARE_CASE
#define DECLARE_CASE(x) case IrOpcode::k##x: return Type##x(node);
DECLARE_CASE(Start)
// VALUE_OP_LIST without JS_SIMPLE_BINOP_LIST:
COMMON_OP_LIST(DECLARE_CASE)
SIMPLIFIED_OP_LIST(DECLARE_CASE)
MACHINE_OP_LIST(DECLARE_CASE)
JS_SIMPLE_UNOP_LIST(DECLARE_CASE)
JS_OBJECT_OP_LIST(DECLARE_CASE)
JS_CONTEXT_OP_LIST(DECLARE_CASE)
JS_OTHER_OP_LIST(DECLARE_CASE)
VALUE_OP_LIST(DECLARE_CASE)
#undef DECLARE_CASE
#define DECLARE_CASE(x) case IrOpcode::k##x:
......@@ -142,11 +102,11 @@ class Typer::Visitor : public NullNodeVisitor {
VALUE_OP_LIST(DECLARE_METHOD)
#undef DECLARE_METHOD
static Bounds OperandType(Node* node, int i) {
Bounds OperandType(Node* node, int i) {
return NodeProperties::GetBounds(NodeProperties::GetValueInput(node, i));
}
static Type* ContextType(Node* node) {
Type* ContextType(Node* node) {
Bounds result =
NodeProperties::GetBounds(NodeProperties::GetContextInput(node));
DCHECK(result.upper->Maybe(Type::Internal()));
......@@ -162,37 +122,6 @@ class Typer::Visitor : public NullNodeVisitor {
private:
Typer* typer_;
MaybeHandle<Context> context_;
typedef Type* (*UnaryTyperFun)(Type*, Typer* t);
typedef Type* (*BinaryTyperFun)(Type*, Type*, Typer* t);
Bounds TypeUnaryOp(Node* node, UnaryTyperFun);
Bounds TypeBinaryOp(Node* node, BinaryTyperFun);
static Type* Invert(Type*, Typer*);
static Type* FalsifyUndefined(Type*, Typer*);
static Type* ToPrimitive(Type*, Typer*);
static Type* ToBoolean(Type*, Typer*);
static Type* ToNumber(Type*, Typer*);
static Type* ToString(Type*, Typer*);
static Type* NumberToInt32(Type*, Typer*);
static Type* NumberToUint32(Type*, Typer*);
static Type* JSAddRanger(Type::RangeType*, Type::RangeType*, Typer*);
static Type* JSSubtractRanger(Type::RangeType*, Type::RangeType*, Typer*);
static Type* JSMultiplyRanger(Type::RangeType*, Type::RangeType*, Typer*);
static Type* JSDivideRanger(Type::RangeType*, Type::RangeType*, Typer*);
static Type* JSCompareTyper(Type*, Type*, Typer*);
#define DECLARE_METHOD(x) static Type* x##Typer(Type*, Type*, Typer*);
JS_SIMPLE_BINOP_LIST(DECLARE_METHOD)
#undef DECLARE_METHOD
static Type* JSUnaryNotTyper(Type*, Typer*);
static Type* JSLoadPropertyTyper(Type*, Type*, Typer*);
static Type* JSCallFunctionTyper(Type*, Typer*);
};
......@@ -306,162 +235,51 @@ void Typer::Init(Node* node) {
}
// -----------------------------------------------------------------------------
// Helper functions that lift a function f on types to a function on bounds,
// and uses that to type the given node. Note that f is never called with None
// as an argument.
Bounds Typer::Visitor::TypeUnaryOp(Node* node, UnaryTyperFun f) {
Bounds input = OperandType(node, 0);
Type* upper = input.upper->Is(Type::None())
? Type::None()
: f(input.upper, typer_);
Type* lower = input.lower->Is(Type::None())
? Type::None()
: (input.lower == input.upper || upper->IsConstant())
? upper // TODO(neis): Extend this to Range(x,x), NaN, MinusZero, ...?
: f(input.lower, typer_);
// TODO(neis): Figure out what to do with lower bound.
return Bounds(lower, upper);
}
Bounds Typer::Visitor::TypeBinaryOp(Node* node, BinaryTyperFun f) {
Bounds left = OperandType(node, 0);
Bounds right = OperandType(node, 1);
Type* upper = left.upper->Is(Type::None()) || right.upper->Is(Type::None())
? Type::None()
: f(left.upper, right.upper, typer_);
Type* lower = left.lower->Is(Type::None()) || right.lower->Is(Type::None())
? Type::None()
: ((left.lower == left.upper && right.lower == right.upper) ||
upper->IsConstant())
? upper
: f(left.lower, right.lower, typer_);
// TODO(neis): Figure out what to do with lower bound.
return Bounds(lower, upper);
}
Type* Typer::Visitor::Invert(Type* type, Typer* t) {
if (type->Is(t->singleton_false)) return t->singleton_true;
if (type->Is(t->singleton_true)) return t->singleton_false;
return type;
}
Type* Typer::Visitor::FalsifyUndefined(Type* type, Typer* t) {
if (type->Is(Type::Undefined())) return t->singleton_false;
return type;
}
// Type conversion.
Type* Typer::Visitor::ToPrimitive(Type* type, Typer* t) {
if (type->Is(Type::Primitive()) && !type->Maybe(Type::Receiver())) {
return type;
}
return Type::Primitive();
}
Type* Typer::Visitor::ToBoolean(Type* type, Typer* t) {
if (type->Is(Type::Boolean())) return type;
if (type->Is(t->falsish)) return t->singleton_false;
if (type->Is(Type::DetectableReceiver())) return t->singleton_true;
if (type->Is(Type::OrderedNumber()) && (type->Max() < 0 || 0 < type->Min())) {
return t->singleton_true; // Ruled out nan, -0 and +0.
}
return Type::Boolean();
}
Type* Typer::Visitor::ToNumber(Type* type, Typer* t) {
if (type->Is(Type::Number())) return type;
if (type->Is(Type::Undefined())) return Type::NaN();
if (type->Is(t->singleton_false)) return t->singleton_zero;
if (type->Is(t->singleton_true)) return t->singleton_one;
if (type->Is(Type::Boolean())) return t->zero_or_one;
return Type::Number();
}
Type* Typer::Visitor::ToString(Type* type, Typer* t) {
if (type->Is(Type::String())) return type;
return Type::String();
}
Type* Typer::Visitor::NumberToInt32(Type* type, Typer* t) {
// TODO(neis): DCHECK(type->Is(Type::Number()));
if (type->Is(Type::Signed32())) return type;
if (type->Is(t->zeroish)) return t->singleton_zero;
return Type::Signed32();
}
Type* Typer::Visitor::NumberToUint32(Type* type, Typer* t) {
// TODO(neis): DCHECK(type->Is(Type::Number()));
if (type->Is(Type::Unsigned32())) return type;
if (type->Is(t->zeroish)) return t->singleton_zero;
return Type::Unsigned32();
}
// -----------------------------------------------------------------------------
// Control operators.
Bounds Typer::Visitor::TypeStart(Node* node) {
return Bounds(Type::Internal());
return Bounds(Type::Internal(zone()));
}
// Common operators.
Bounds Typer::Visitor::TypeParameter(Node* node) {
return Bounds::Unbounded(zone());
}
Bounds Typer::Visitor::TypeInt32Constant(Node* node) {
Factory* f = zone()->isolate()->factory();
Handle<Object> number = f->NewNumber(OpParameter<int32_t>(node));
return Bounds(Type::Intersect(
Type::Range(number, number, zone()), Type::UntaggedInt32(), zone()));
// TODO(titzer): only call Type::Of() if the type is not already known.
return Bounds(Type::Of(OpParameter<int32_t>(node), zone()));
}
Bounds Typer::Visitor::TypeInt64Constant(Node* node) {
return Bounds(Type::Internal()); // TODO(rossberg): Add int64 bitset type?
// TODO(titzer): only call Type::Of() if the type is not already known.
return Bounds(
Type::Of(static_cast<double>(OpParameter<int64_t>(node)), zone()));
}
Bounds Typer::Visitor::TypeFloat32Constant(Node* node) {
return Bounds(Type::Intersect(
Type::Of(OpParameter<float>(node), zone()),
Type::UntaggedFloat32(), zone()));
// TODO(titzer): only call Type::Of() if the type is not already known.
return Bounds(Type::Of(OpParameter<float>(node), zone()));
}
Bounds Typer::Visitor::TypeFloat64Constant(Node* node) {
return Bounds(Type::Intersect(
Type::Of(OpParameter<double>(node), zone()),
Type::UntaggedFloat64(), zone()));
// TODO(titzer): only call Type::Of() if the type is not already known.
return Bounds(Type::Of(OpParameter<double>(node), zone()));
}
Bounds Typer::Visitor::TypeNumberConstant(Node* node) {
Factory* f = zone()->isolate()->factory();
return Bounds(Type::Constant(
f->NewNumber(OpParameter<double>(node)), zone()));
// TODO(titzer): only call Type::Of() if the type is not already known.
return Bounds(Type::Of(OpParameter<double>(node), zone()));
}
......@@ -471,7 +289,7 @@ Bounds Typer::Visitor::TypeHeapConstant(Node* node) {
Bounds Typer::Visitor::TypeExternalConstant(Node* node) {
return Bounds(Type::Internal());
return Bounds(Type::Internal(zone()));
}
......@@ -504,12 +322,12 @@ Bounds Typer::Visitor::TypeFinish(Node* node) {
Bounds Typer::Visitor::TypeFrameState(Node* node) {
// TODO(rossberg): Ideally FrameState wouldn't have a value output.
return Bounds(Type::Internal());
return Bounds(Type::Internal(zone()));
}
Bounds Typer::Visitor::TypeStateValues(Node* node) {
return Bounds(Type::Internal());
return Bounds(Type::Internal(zone()));
}
......@@ -526,339 +344,159 @@ Bounds Typer::Visitor::TypeProjection(Node* node) {
// JS comparison operators.
Type* Typer::Visitor::JSEqualTyper(Type* lhs, Type* rhs, Typer* t) {
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return t->singleton_false;
if (lhs->Is(t->undefined_or_null) && rhs->Is(t->undefined_or_null)) {
return t->singleton_true;
}
if (lhs->Is(Type::Number()) && rhs->Is(Type::Number()) &&
(lhs->Max() < rhs->Min() || lhs->Min() > rhs->Max())) {
return t->singleton_false;
}
if (lhs->IsConstant() && rhs->Is(lhs)) {
// Types are equal and are inhabited only by a single semantic value,
// which is not nan due to the earlier check.
// TODO(neis): Extend this to Range(x,x), MinusZero, ...?
return t->singleton_true;
}
return Type::Boolean();
}
Type* Typer::Visitor::JSNotEqualTyper(Type* lhs, Type* rhs, Typer* t) {
return Invert(JSEqualTyper(lhs, rhs, t), t);
}
static Type* JSType(Type* type) {
if (type->Is(Type::Boolean())) return Type::Boolean();
if (type->Is(Type::String())) return Type::String();
if (type->Is(Type::Number())) return Type::Number();
if (type->Is(Type::Undefined())) return Type::Undefined();
if (type->Is(Type::Null())) return Type::Null();
if (type->Is(Type::Symbol())) return Type::Symbol();
if (type->Is(Type::Receiver())) return Type::Receiver(); // JS "Object"
return Type::Any();
}
Type* Typer::Visitor::JSStrictEqualTyper(Type* lhs, Type* rhs, Typer* t) {
if (!JSType(lhs)->Maybe(JSType(rhs))) return t->singleton_false;
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return t->singleton_false;
if (lhs->Is(Type::Number()) && rhs->Is(Type::Number()) &&
(lhs->Max() < rhs->Min() || lhs->Min() > rhs->Max())) {
return t->singleton_false;
}
if (lhs->IsConstant() && rhs->Is(lhs)) {
// Types are equal and are inhabited only by a single semantic value,
// which is not nan due to the earlier check.
return t->singleton_true;
#define DEFINE_METHOD(x) \
Bounds Typer::Visitor::Type##x(Node* node) { \
return Bounds(Type::Boolean(zone())); \
}
return Type::Boolean();
}
Type* Typer::Visitor::JSStrictNotEqualTyper(Type* lhs, Type* rhs, Typer* t) {
return Invert(JSStrictEqualTyper(lhs, rhs, t), t);
}
// The EcmaScript specification defines the four relational comparison operators
// (<, <=, >=, >) with the help of a single abstract one. It behaves like <
// but returns undefined when the inputs cannot be compared.
// We implement the typing analogously.
Type* Typer::Visitor::JSCompareTyper(Type* lhs, Type* rhs, Typer* t) {
lhs = ToPrimitive(lhs, t);
rhs = ToPrimitive(rhs, t);
if (lhs->Maybe(Type::String()) && rhs->Maybe(Type::String())) {
return Type::Boolean();
}
lhs = ToNumber(lhs, t);
rhs = ToNumber(rhs, t);
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::Undefined();
if (lhs->IsConstant() && rhs->Is(lhs)) {
// Types are equal and are inhabited only by a single semantic value,
// which is not NaN due to the previous check.
return t->singleton_false;
}
if (lhs->Min() >= rhs->Max()) return t->singleton_false;
if (lhs->Max() < rhs->Min() &&
!lhs->Maybe(Type::NaN()) && !rhs->Maybe(Type::NaN())) {
return t->singleton_true;
}
return Type::Boolean();
}
Type* Typer::Visitor::JSLessThanTyper(Type* lhs, Type* rhs, Typer* t) {
return FalsifyUndefined(JSCompareTyper(lhs, rhs, t), t);
}
Type* Typer::Visitor::JSGreaterThanTyper(Type* lhs, Type* rhs, Typer* t) {
return FalsifyUndefined(JSCompareTyper(rhs, lhs, t), t);
}
JS_COMPARE_BINOP_LIST(DEFINE_METHOD)
#undef DEFINE_METHOD
Type* Typer::Visitor::JSLessThanOrEqualTyper(Type* lhs, Type* rhs, Typer* t) {
return FalsifyUndefined(Invert(JSCompareTyper(rhs, lhs, t), t), t);
}
// JS bitwise operators.
Type* Typer::Visitor::JSGreaterThanOrEqualTyper(
Type* lhs, Type* rhs, Typer* t) {
return FalsifyUndefined(Invert(JSCompareTyper(lhs, rhs, t), t), t);
Bounds Typer::Visitor::TypeJSBitwiseOr(Node* node) {
Bounds left = OperandType(node, 0);
Bounds right = OperandType(node, 1);
Type* upper = Type::Union(left.upper, right.upper, zone());
if (!upper->Is(Type::Signed32())) upper = Type::Signed32(zone());
Type* lower = Type::Intersect(Type::SignedSmall(zone()), upper, zone());
return Bounds(lower, upper);
}
// JS bitwise operators.
Type* Typer::Visitor::JSBitwiseOrTyper(Type* lhs, Type* rhs, Typer* t) {
Factory* f = t->zone()->isolate()->factory();
lhs = NumberToInt32(ToNumber(lhs, t), t);
rhs = NumberToInt32(ToNumber(rhs, t), t);
double lmin = lhs->Min();
double rmin = rhs->Min();
double lmax = lhs->Max();
double rmax = rhs->Max();
// Or-ing any two values results in a value no smaller than their minimum.
// Even no smaller than their maximum if both values are non-negative.
Handle<Object> min = f->NewNumber(
lmin >= 0 && rmin >= 0 ? std::max(lmin, rmin) : std::min(lmin, rmin));
if (lmax < 0 || rmax < 0) {
// Or-ing two values of which at least one is negative results in a negative
// value.
Handle<Object> max = f->NewNumber(-1);
return Type::Range(min, max, t->zone());
}
Handle<Object> max = f->NewNumber(Type::Signed32()->Max());
return Type::Range(min, max, t->zone());
// TODO(neis): Be precise for singleton inputs, here and elsewhere.
}
Type* Typer::Visitor::JSBitwiseAndTyper(Type* lhs, Type* rhs, Typer* t) {
Factory* f = t->zone()->isolate()->factory();
lhs = NumberToInt32(ToNumber(lhs, t), t);
rhs = NumberToInt32(ToNumber(rhs, t), t);
double lmin = lhs->Min();
double rmin = rhs->Min();
double lmax = lhs->Max();
double rmax = rhs->Max();
// And-ing any two values results in a value no larger than their maximum.
// Even no larger than their minimum if both values are non-negative.
Handle<Object> max = f->NewNumber(
lmin >= 0 && rmin >= 0 ? std::min(lmax, rmax) : std::max(lmax, rmax));
if (lmin >= 0 || rmin >= 0) {
// And-ing two values of which at least one is non-negative results in a
// non-negative value.
Handle<Object> min = f->NewNumber(0);
return Type::Range(min, max, t->zone());
}
Handle<Object> min = f->NewNumber(Type::Signed32()->Min());
return Type::Range(min, max, t->zone());
Bounds Typer::Visitor::TypeJSBitwiseAnd(Node* node) {
Bounds left = OperandType(node, 0);
Bounds right = OperandType(node, 1);
Type* upper = Type::Union(left.upper, right.upper, zone());
if (!upper->Is(Type::Signed32())) upper = Type::Signed32(zone());
Type* lower = Type::Intersect(Type::SignedSmall(zone()), upper, zone());
return Bounds(lower, upper);
}
Type* Typer::Visitor::JSBitwiseXorTyper(Type* lhs, Type* rhs, Typer* t) {
lhs = NumberToInt32(ToNumber(lhs, t), t);
rhs = NumberToInt32(ToNumber(rhs, t), t);
double lmin = lhs->Min();
double rmin = rhs->Min();
double lmax = lhs->Max();
double rmax = rhs->Max();
if ((lmin >= 0 && rmin >= 0) || (lmax < 0 && rmax < 0)) {
// Xor-ing negative or non-negative values results in a non-negative value.
return t->non_negative_signed32;
}
if ((lmax < 0 && rmin >= 0) || (lmin >= 0 && rmax < 0)) {
// Xor-ing a negative and a non-negative value results in a negative value.
return t->negative_signed32;
}
return Type::Signed32();
Bounds Typer::Visitor::TypeJSBitwiseXor(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Signed32(zone()));
}
Type* Typer::Visitor::JSShiftLeftTyper(Type* lhs, Type* rhs, Typer* t) {
return Type::Signed32();
Bounds Typer::Visitor::TypeJSShiftLeft(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Signed32(zone()));
}
Type* Typer::Visitor::JSShiftRightTyper(Type* lhs, Type* rhs, Typer* t) {
lhs = NumberToInt32(ToNumber(lhs, t), t);
Factory* f = t->zone()->isolate()->factory();
if (lhs->Min() >= 0) {
// Right-shifting a non-negative value cannot make it negative, nor larger.
Handle<Object> min = f->NewNumber(0);
Handle<Object> max = f->NewNumber(lhs->Max());
return Type::Range(min, max, t->zone());
}
if (lhs->Max() < 0) {
// Right-shifting a negative value cannot make it non-negative, nor smaller.
Handle<Object> min = f->NewNumber(lhs->Min());
Handle<Object> max = f->NewNumber(-1);
return Type::Range(min, max, t->zone());
}
return Type::Signed32();
Bounds Typer::Visitor::TypeJSShiftRight(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Signed32(zone()));
}
Type* Typer::Visitor::JSShiftRightLogicalTyper(Type* lhs, Type* rhs, Typer* t) {
lhs = NumberToUint32(ToNumber(lhs, t), t);
Factory* f = t->zone()->isolate()->factory();
// Logical right-shifting any value cannot make it larger.
Handle<Object> min = f->NewNumber(0);
Handle<Object> max = f->NewNumber(lhs->Max());
return Type::Range(min, max, t->zone());
Bounds Typer::Visitor::TypeJSShiftRightLogical(Node* node) {
return Bounds(Type::UnsignedSmall(zone()), Type::Unsigned32(zone()));
}
// JS arithmetic operators.
Type* Typer::Visitor::JSAddTyper(Type* lhs, Type* rhs, Typer* t) {
lhs = ToPrimitive(lhs, t);
rhs = ToPrimitive(rhs, t);
if (lhs->Maybe(Type::String()) || rhs->Maybe(Type::String())) {
if (lhs->Is(Type::String()) || rhs->Is(Type::String())) {
return Type::String();
} else {
return Type::NumberOrString();
}
}
lhs = ToNumber(lhs, t);
rhs = ToNumber(rhs, t);
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
// TODO(neis): Do some analysis.
// TODO(neis): Deal with numeric bitsets here and elsewhere.
return Type::Number();
Bounds Typer::Visitor::TypeJSAdd(Node* node) {
Bounds left = OperandType(node, 0);
Bounds right = OperandType(node, 1);
Type* lower =
left.lower->Is(Type::None()) || right.lower->Is(Type::None()) ?
Type::None(zone()) :
left.lower->Is(Type::Number()) && right.lower->Is(Type::Number()) ?
Type::SignedSmall(zone()) :
left.lower->Is(Type::String()) || right.lower->Is(Type::String()) ?
Type::String(zone()) : Type::None(zone());
Type* upper =
left.upper->Is(Type::None()) && right.upper->Is(Type::None()) ?
Type::None(zone()) :
left.upper->Is(Type::Number()) && right.upper->Is(Type::Number()) ?
Type::Number(zone()) :
left.upper->Is(Type::String()) || right.upper->Is(Type::String()) ?
Type::String(zone()) : Type::NumberOrString(zone());
return Bounds(lower, upper);
}
Type* Typer::Visitor::JSSubtractTyper(Type* lhs, Type* rhs, Typer* t) {
lhs = ToNumber(lhs, t);
rhs = ToNumber(rhs, t);
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
// TODO(neis): Do some analysis.
return Type::Number();
Bounds Typer::Visitor::TypeJSSubtract(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
Type* Typer::Visitor::JSMultiplyTyper(Type* lhs, Type* rhs, Typer* t) {
lhs = ToNumber(lhs, t);
rhs = ToNumber(rhs, t);
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
// TODO(neis): Do some analysis.
return Type::Number();
Bounds Typer::Visitor::TypeJSMultiply(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
Type* Typer::Visitor::JSDivideTyper(Type* lhs, Type* rhs, Typer* t) {
lhs = ToNumber(lhs, t);
rhs = ToNumber(rhs, t);
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
// TODO(neis): Do some analysis.
return Type::Number();
Bounds Typer::Visitor::TypeJSDivide(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
Type* Typer::Visitor::JSModulusTyper(Type* lhs, Type* rhs, Typer* t) {
lhs = ToNumber(lhs, t);
rhs = ToNumber(rhs, t);
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
// TODO(neis): Do some analysis.
return Type::Number();
Bounds Typer::Visitor::TypeJSModulus(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
// JS unary operators.
Type* Typer::Visitor::JSUnaryNotTyper(Type* type, Typer* t) {
return Invert(ToBoolean(type, t), t);
}
Bounds Typer::Visitor::TypeJSUnaryNot(Node* node) {
return TypeUnaryOp(node, JSUnaryNotTyper);
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeJSTypeOf(Node* node) {
return Bounds(Type::InternalizedString());
return Bounds(Type::InternalizedString(zone()));
}
// JS conversion operators.
Bounds Typer::Visitor::TypeJSToBoolean(Node* node) {
return TypeUnaryOp(node, ToBoolean);
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeJSToNumber(Node* node) {
return TypeUnaryOp(node, ToNumber);
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
Bounds Typer::Visitor::TypeJSToString(Node* node) {
return TypeUnaryOp(node, ToString);
return Bounds(Type::None(zone()), Type::String(zone()));
}
Bounds Typer::Visitor::TypeJSToName(Node* node) {
return Bounds(Type::None(), Type::Name());
return Bounds(Type::None(zone()), Type::Name(zone()));
}
Bounds Typer::Visitor::TypeJSToObject(Node* node) {
return Bounds(Type::None(), Type::Receiver());
return Bounds(Type::None(zone()), Type::Receiver(zone()));
}
// JS object operators.
Bounds Typer::Visitor::TypeJSCreate(Node* node) {
return Bounds(Type::None(), Type::Object());
return Bounds(Type::None(zone()), Type::Object(zone()));
}
Type* Typer::Visitor::JSLoadPropertyTyper(Type* object, Type* name, Typer* t) {
Bounds Typer::Visitor::TypeJSLoadProperty(Node* node) {
Bounds object = OperandType(node, 0);
Bounds name = OperandType(node, 1);
Bounds result = Bounds::Unbounded(zone());
// TODO(rossberg): Use range types and sized array types to filter undefined.
if (object->IsArray() && name->Is(Type::Integral32())) {
return Type::Union(
object->AsArray()->Element(), Type::Undefined(), t->zone());
if (object.lower->IsArray() && name.lower->Is(Type::Integral32())) {
result.lower = Type::Union(
object.lower->AsArray()->Element(), Type::Undefined(zone()), zone());
}
return Type::Any();
}
Bounds Typer::Visitor::TypeJSLoadProperty(Node* node) {
return TypeBinaryOp(node, JSLoadPropertyTyper);
if (object.upper->IsArray() && name.upper->Is(Type::Integral32())) {
result.upper = Type::Union(
object.upper->AsArray()->Element(), Type::Undefined(zone()), zone());
}
return result;
}
......@@ -880,23 +518,22 @@ Bounds Typer::Visitor::TypeJSStoreNamed(Node* node) {
Bounds Typer::Visitor::TypeJSDeleteProperty(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeJSHasProperty(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeJSInstanceOf(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
// JS context operators.
Bounds Typer::Visitor::TypeJSLoadContext(Node* node) {
Bounds outer = OperandType(node, 0);
DCHECK(outer.upper->Maybe(Type::Internal()));
......@@ -931,7 +568,7 @@ Bounds Typer::Visitor::TypeJSLoadContext(Node* node) {
handle(context.ToHandleChecked()->get(static_cast<int>(access.index())),
isolate());
Type* lower = TypeConstant(value);
return Bounds(lower, Type::Any());
return Bounds(lower, Type::Any(zone()));
}
}
......@@ -981,24 +618,23 @@ Bounds Typer::Visitor::TypeJSCreateGlobalContext(Node* node) {
// JS other operators.
Bounds Typer::Visitor::TypeJSYield(Node* node) {
return Bounds::Unbounded(zone());
}
Bounds Typer::Visitor::TypeJSCallConstruct(Node* node) {
return Bounds(Type::None(), Type::Receiver());
}
Type* Typer::Visitor::JSCallFunctionTyper(Type* fun, Typer* t) {
return fun->IsFunction() ? fun->AsFunction()->Result() : Type::Any();
return Bounds(Type::None(zone()), Type::Receiver(zone()));
}
Bounds Typer::Visitor::TypeJSCallFunction(Node* node) {
return TypeUnaryOp(node, JSCallFunctionTyper); // We ignore argument types.
Bounds fun = OperandType(node, 0);
Type* lower = fun.lower->IsFunction()
? fun.lower->AsFunction()->Result() : Type::None(zone());
Type* upper = fun.upper->IsFunction()
? fun.upper->AsFunction()->Result() : Type::Any(zone());
return Bounds(lower, upper);
}
......@@ -1014,172 +650,143 @@ Bounds Typer::Visitor::TypeJSDebugger(Node* node) {
// Simplified operators.
Bounds Typer::Visitor::TypeBooleanNot(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeBooleanToNumber(Node* node) {
return Bounds(Type::Number());
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberEqual(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeNumberLessThan(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeNumberLessThanOrEqual(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeNumberAdd(Node* node) {
return Bounds(Type::Number());
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberSubtract(Node* node) {
return Bounds(Type::Number());
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberMultiply(Node* node) {
return Bounds(Type::Number());
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberDivide(Node* node) {
return Bounds(Type::Number());
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberModulus(Node* node) {
return Bounds(Type::Number());
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberToInt32(Node* node) {
return TypeUnaryOp(node, NumberToInt32);
Bounds arg = OperandType(node, 0);
Type* s32 = Type::Signed32(zone());
Type* lower = arg.lower->Is(s32) ? arg.lower : s32;
Type* upper = arg.upper->Is(s32) ? arg.upper : s32;
return Bounds(lower, upper);
}
Bounds Typer::Visitor::TypeNumberToUint32(Node* node) {
return TypeUnaryOp(node, NumberToUint32);
Bounds arg = OperandType(node, 0);
Type* u32 = Type::Unsigned32(zone());
Type* lower = arg.lower->Is(u32) ? arg.lower : u32;
Type* upper = arg.upper->Is(u32) ? arg.upper : u32;
return Bounds(lower, upper);
}
Bounds Typer::Visitor::TypeReferenceEqual(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeStringEqual(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeStringLessThan(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeStringLessThanOrEqual(Node* node) {
return Bounds(Type::Boolean());
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeStringAdd(Node* node) {
return Bounds(Type::String());
}
static Type* ChangeRepresentation(Type* type, Type* rep, Zone* zone) {
// TODO(neis): Enable when expressible.
/*
return Type::Union(
Type::Intersect(type, Type::Semantic(), zone),
Type::Intersect(rep, Type::Representation(), zone), zone);
*/
return type;
return Bounds(Type::String(zone()));
}
Bounds Typer::Visitor::TypeChangeTaggedToInt32(Node* node) {
Bounds arg = OperandType(node, 0);
// TODO(neis): DCHECK(arg.upper->Is(Type::Signed32()));
return Bounds(
ChangeRepresentation(arg.lower, Type::UntaggedInt32(), zone()),
ChangeRepresentation(arg.upper, Type::UntaggedInt32(), zone()));
// TODO(titzer): type is type of input, representation is Word32.
return Bounds(Type::Integral32());
}
Bounds Typer::Visitor::TypeChangeTaggedToUint32(Node* node) {
Bounds arg = OperandType(node, 0);
// TODO(neis): DCHECK(arg.upper->Is(Type::Unsigned32()));
return Bounds(
ChangeRepresentation(arg.lower, Type::UntaggedInt32(), zone()),
ChangeRepresentation(arg.upper, Type::UntaggedInt32(), zone()));
return Bounds(Type::Integral32()); // TODO(titzer): add appropriate rep
}
Bounds Typer::Visitor::TypeChangeTaggedToFloat64(Node* node) {
Bounds arg = OperandType(node, 0);
// TODO(neis): DCHECK(arg.upper->Is(Type::Number()));
return Bounds(
ChangeRepresentation(arg.lower, Type::UntaggedFloat64(), zone()),
ChangeRepresentation(arg.upper, Type::UntaggedFloat64(), zone()));
// TODO(titzer): type is type of input, representation is Float64.
return Bounds(Type::Number());
}
Bounds Typer::Visitor::TypeChangeInt32ToTagged(Node* node) {
Bounds arg = OperandType(node, 0);
// TODO(neis): DCHECK(arg.upper->Is(Type::Signed32()));
return Bounds(
ChangeRepresentation(arg.lower, Type::Tagged(), zone()),
ChangeRepresentation(arg.upper, Type::Tagged(), zone()));
// TODO(titzer): type is type of input, representation is Tagged.
return Bounds(Type::Integral32());
}
Bounds Typer::Visitor::TypeChangeUint32ToTagged(Node* node) {
Bounds arg = OperandType(node, 0);
// TODO(neis): DCHECK(arg.upper->Is(Type::Unsigned32()));
return Bounds(
ChangeRepresentation(arg.lower, Type::Tagged(), zone()),
ChangeRepresentation(arg.upper, Type::Tagged(), zone()));
// TODO(titzer): type is type of input, representation is Tagged.
return Bounds(Type::Unsigned32());
}
Bounds Typer::Visitor::TypeChangeFloat64ToTagged(Node* node) {
Bounds arg = OperandType(node, 0);
// TODO(neis): CHECK(arg.upper->Is(Type::Number()));
return Bounds(
ChangeRepresentation(arg.lower, Type::Tagged(), zone()),
ChangeRepresentation(arg.upper, Type::Tagged(), zone()));
// TODO(titzer): type is type of input, representation is Tagged.
return Bounds(Type::Number());
}
Bounds Typer::Visitor::TypeChangeBoolToBit(Node* node) {
Bounds arg = OperandType(node, 0);
// TODO(neis): DCHECK(arg.upper->Is(Type::Boolean()));
return Bounds(
ChangeRepresentation(arg.lower, Type::UntaggedInt1(), zone()),
ChangeRepresentation(arg.upper, Type::UntaggedInt1(), zone()));
// TODO(titzer): type is type of input, representation is Bit.
return Bounds(Type::Boolean());
}
Bounds Typer::Visitor::TypeChangeBitToBool(Node* node) {
Bounds arg = OperandType(node, 0);
// TODO(neis): DCHECK(arg.upper->Is(Type::Boolean()));
return Bounds(
ChangeRepresentation(arg.lower, Type::TaggedPtr(), zone()),
ChangeRepresentation(arg.upper, Type::TaggedPtr(), zone()));
// TODO(titzer): type is type of input, representation is Tagged.
return Bounds(Type::Boolean());
}
......
......@@ -36,17 +36,6 @@ class Typer {
class WidenVisitor;
Zone* zone_;
Type* negative_signed32;
Type* non_negative_signed32;
Type* undefined_or_null;
Type* singleton_false;
Type* singleton_true;
Type* singleton_zero;
Type* singleton_one;
Type* zero_or_one;
Type* zeroish;
Type* falsish;
Type* integer;
Type* number_fun0_;
Type* number_fun1_;
Type* number_fun2_;
......
......@@ -344,7 +344,7 @@ double TypeImpl<Config>::BitsetType::Max(bitset bits) {
DisallowHeapAllocation no_allocation;
DCHECK(Is(bits, kNumber));
const BitsetMin* mins = BitsetMins();
bool mz = SEMANTIC(bits & kMinusZero);
bool mz = bits & kMinusZero;
if (BitsetType::Is(mins[BitsetMinsSize()-1].bits, bits)) {
return +V8_INFINITY;
}
......
......@@ -242,9 +242,6 @@ namespace internal {
*
* E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1.
*
* NOTE: OtherSigned32 (OS32) and OU31 (OtherUnsigned31) are empty if Smis are
* 32-bit wide. They should thus never be used directly, only indirectly
* via e.g. Number.
*/
#define PROPER_BITSET_TYPE_LIST(V) \
......
......@@ -86,7 +86,6 @@
'compiler/test-schedule.cc',
'compiler/test-scheduler.cc',
'compiler/test-simplified-lowering.cc',
'compiler/test-typer.cc',
'cctest.cc',
'gay-fixed.cc',
'gay-precision.cc',
......
......@@ -227,7 +227,7 @@ TEST(NumberTypes) {
FOR_FLOAT64_INPUTS(i) {
double value = *i;
Node* node = T.Constant(value);
CHECK(T.upper(node)->Is(Type::Of(value, T.main_zone())));
CHECK(T.upper(node)->Equals(Type::Of(value, T.main_zone())));
}
}
......
......@@ -262,15 +262,16 @@ TEST(NumberBinops) {
static void CheckToI32(Node* old_input, Node* new_input, bool is_signed) {
Type* old_type = NodeProperties::GetBounds(old_input).upper;
Type* new_type = NodeProperties::GetBounds(new_input).upper;
Type* expected_type = I32Type(is_signed);
CHECK(new_type->Is(expected_type));
if (old_type->Is(expected_type)) {
CHECK_EQ(old_input, new_input);
} else if (new_input->opcode() == IrOpcode::kNumberConstant) {
CHECK(NodeProperties::GetBounds(new_input).upper->Is(expected_type));
double v = OpParameter<double>(new_input);
double e = static_cast<double>(is_signed ? FastD2I(v) : FastD2UI(v));
CHECK_EQ(e, v);
} else {
CHECK_EQ(NumberToI32(is_signed), new_input->opcode());
}
}
......
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This tests the correctness of the typer.
//
// For simplicity, it currently only tests it on expression operators that have
// a direct equivalent in C++. Also, testing is currently limited to ranges as
// input types.
#include <functional>
#include "src/compiler/node-properties-inl.h"
#include "src/compiler/typer.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/graph-builder-tester.h"
using namespace v8::internal;
using namespace v8::internal::compiler;
class TyperTester : public HandleAndZoneScope, public GraphAndBuilders {
public:
TyperTester()
: GraphAndBuilders(main_zone()),
typer_(main_zone()),
javascript_(main_zone()) {
Node* s = graph()->NewNode(common()->Start(3));
graph()->SetStart(s);
context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start());
rng_ = isolate()->random_number_generator();
integers.push_back(0);
integers.push_back(0);
integers.push_back(-1);
integers.push_back(+1);
integers.push_back(-V8_INFINITY);
integers.push_back(+V8_INFINITY);
for (int i = 0; i < 5; ++i) {
double x = rng_->NextInt();
integers.push_back(x);
x *= rng_->NextInt();
if (!IsMinusZero(x)) integers.push_back(x);
}
int32s.push_back(0);
int32s.push_back(0);
int32s.push_back(-1);
int32s.push_back(+1);
int32s.push_back(kMinInt);
int32s.push_back(kMaxInt);
for (int i = 0; i < 10; ++i) {
int32s.push_back(rng_->NextInt());
}
}
Typer typer_;
JSOperatorBuilder javascript_;
Node* context_node_;
v8::base::RandomNumberGenerator* rng_;
std::vector<double> integers;
std::vector<double> int32s;
Isolate* isolate() { return main_isolate(); }
Graph* graph() { return main_graph_; }
CommonOperatorBuilder* common() { return &main_common_; }
Node* Parameter(int index = 0) {
return graph()->NewNode(common()->Parameter(index), graph()->start());
}
Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) {
Node* p0 = Parameter(0);
Node* p1 = Parameter(1);
NodeProperties::SetBounds(p0, Bounds(lhs));
NodeProperties::SetBounds(p1, Bounds(rhs));
Node* n = graph()->NewNode(
op, p0, p1, context_node_, graph()->start(), graph()->start());
typer_.Init(n);
return NodeProperties::GetBounds(n).upper;
}
Type* RandomRange(bool int32 = false) {
std::vector<double>& numbers = int32 ? int32s : integers;
Factory* f = isolate()->factory();
int i = rng_->NextInt(static_cast<int>(numbers.size()));
int j = rng_->NextInt(static_cast<int>(numbers.size()));
i::Handle<i::Object> min = f->NewNumber(numbers[i]);
i::Handle<i::Object> max = f->NewNumber(numbers[j]);
if (min->Number() > max->Number()) std::swap(min, max);
return Type::Range(min, max, main_zone());
}
double RandomInt(double min, double max) {
switch (rng_->NextInt(4)) {
case 0: return min;
case 1: return max;
default: break;
}
if (min == +V8_INFINITY) return +V8_INFINITY;
if (max == -V8_INFINITY) return -V8_INFINITY;
if (min == -V8_INFINITY && max == +V8_INFINITY) {
return rng_->NextInt() * static_cast<double>(rng_->NextInt());
}
double result = nearbyint(min + (max - min) * rng_->NextDouble());
if (IsMinusZero(result)) return 0;
if (std::isnan(result)) return rng_->NextInt(2) ? min : max;
DCHECK(min <= result && result <= max);
return result;
}
double RandomInt(Type::RangeType* range) {
return RandomInt(range->Min()->Number(), range->Max()->Number());
}
template <class BinaryFunction>
void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) {
for (int i = 0; i < 100; ++i) {
Type::RangeType* r1 = RandomRange()->AsRange();
Type::RangeType* r2 = RandomRange()->AsRange();
Type* expected_type = TypeBinaryOp(op, r1, r2);
double x1 = RandomInt(r1);
double x2 = RandomInt(r2);
double result_value = opfun(x1, x2);
Type* result_type = Type::Constant(
isolate()->factory()->NewNumber(result_value), main_zone());
CHECK(result_type->Is(expected_type));
}
}
template <class BinaryFunction>
void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) {
for (int i = 0; i < 100; ++i) {
Type::RangeType* r1 = RandomRange()->AsRange();
Type::RangeType* r2 = RandomRange()->AsRange();
Type* expected_type = TypeBinaryOp(op, r1, r2);
double x1 = RandomInt(r1);
double x2 = RandomInt(r2);
bool result_value = opfun(x1, x2);
Type* result_type = Type::Constant(result_value ?
isolate()->factory()->true_value() :
isolate()->factory()->false_value(), main_zone());
CHECK(result_type->Is(expected_type));
}
}
template <class BinaryFunction>
void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) {
for (int i = 0; i < 100; ++i) {
Type::RangeType* r1 = RandomRange(true)->AsRange();
Type::RangeType* r2 = RandomRange(true)->AsRange();
Type* expected_type = TypeBinaryOp(op, r1, r2);
int32_t x1 = static_cast<int32_t>(RandomInt(r1));
int32_t x2 = static_cast<int32_t>(RandomInt(r2));
double result_value = opfun(x1, x2);
Type* result_type = Type::Constant(
isolate()->factory()->NewNumber(result_value), main_zone());
CHECK(result_type->Is(expected_type));
}
}
};
static int32_t shift_left(int32_t x, int32_t y) { return x << y; }
static int32_t shift_right(int32_t x, int32_t y) { return x >> y; }
static int32_t bit_or(int32_t x, int32_t y) { return x | y; }
static int32_t bit_and(int32_t x, int32_t y) { return x & y; }
static int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; }
TEST(TypeJSAdd) {
TyperTester t;
t.TestBinaryArithOp(t.javascript_.Subtract(), std::plus<double>());
}
TEST(TypeJSSubtract) {
TyperTester t;
t.TestBinaryArithOp(t.javascript_.Subtract(), std::minus<double>());
}
TEST(TypeJSMultiply) {
TyperTester t;
t.TestBinaryArithOp(t.javascript_.Multiply(), std::multiplies<double>());
}
TEST(TypeJSDivide) {
TyperTester t;
t.TestBinaryArithOp(t.javascript_.Divide(), std::divides<double>());
}
TEST(TypeJSBitwiseOr) {
TyperTester t;
t.TestBinaryBitOp(t.javascript_.BitwiseOr(), bit_or);
}
TEST(TypeJSBitwiseAnd) {
TyperTester t;
t.TestBinaryBitOp(t.javascript_.BitwiseAnd(), bit_and);
}
TEST(TypeJSBitwiseXor) {
TyperTester t;
t.TestBinaryBitOp(t.javascript_.BitwiseXor(), bit_xor);
}
TEST(TypeJSShiftLeft) {
TyperTester t;
t.TestBinaryBitOp(t.javascript_.ShiftLeft(), shift_left);
}
TEST(TypeJSShiftRight) {
TyperTester t;
t.TestBinaryBitOp(t.javascript_.ShiftRight(), shift_right);
}
TEST(TypeJSLessThan) {
TyperTester t;
t.TestBinaryCompareOp(t.javascript_.LessThan(), std::less<double>());
}
TEST(TypeJSLessThanOrEqual) {
TyperTester t;
t.TestBinaryCompareOp(
t.javascript_.LessThanOrEqual(), std::less_equal<double>());
}
TEST(TypeJSGreaterThan) {
TyperTester t;
t.TestBinaryCompareOp(t.javascript_.GreaterThan(), std::greater<double>());
}
TEST(TypeJSGreaterThanOrEqual) {
TyperTester t;
t.TestBinaryCompareOp(
t.javascript_.GreaterThanOrEqual(), std::greater_equal<double>());
}
TEST(TypeJSEqual) {
TyperTester t;
t.TestBinaryCompareOp(t.javascript_.Equal(), std::equal_to<double>());
}
TEST(TypeJSNotEqual) {
TyperTester t;
t.TestBinaryCompareOp(t.javascript_.NotEqual(), std::not_equal_to<double>());
}
// For numbers there's no difference between strict and non-strict equality.
TEST(TypeJSStrictEqual) {
TyperTester t;
t.TestBinaryCompareOp(t.javascript_.StrictEqual(), std::equal_to<double>());
}
TEST(TypeJSStrictNotEqual) {
TyperTester t;
t.TestBinaryCompareOp(
t.javascript_.StrictNotEqual(), std::not_equal_to<double>());
}
......@@ -97,12 +97,7 @@ class Types {
: region_(region), rng_(isolate->random_number_generator()) {
#define DECLARE_TYPE(name, value) \
name = Type::name(region); \
if (SmiValuesAre31Bits() || \
(!Type::name(region)->Equals(Type::OtherSigned32()) && \
!Type::name(region)->Equals(Type::OtherUnsigned31()))) { \
/* Hack: Avoid generating those empty bitset types. */ \
types.push_back(name); \
}
types.push_back(name);
PROPER_BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
......@@ -289,17 +284,11 @@ class Types {
int j = rng_->NextInt(n);
#define PICK_BITSET_TYPE(type, value) \
if (j-- == 0) { \
if (!SmiValuesAre31Bits() && \
(Type::type(region_)->Equals(Type::OtherSigned32()) || \
Type::type(region_)->Equals(Type::OtherUnsigned31()))) { \
/* Hack: Avoid generating those empty bitset types. */ \
continue; \
} \
TypeHandle tmp = Type::Intersect( \
result, Type::type(region_), region_); \
if (tmp->Is(Type::None()) && i != 0) { \
break; \
} else { \
} { \
result = tmp; \
continue; \
} \
......@@ -2190,13 +2179,6 @@ TEST(NowOf) {
}
TEST(MinMax) {
CcTest::InitializeVM();
ZoneTests().MinMax();
HeapTests().MinMax();
}
TEST(BitsetGlb) {
CcTest::InitializeVM();
ZoneTests().BitsetGlb();
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment