ARM64: updated literal pool implementation.

Currently the literal pool implemetation is inherited from the arm 32-bit port
and it shares the same limitations: 4k of range and 1000 entries max. In arm64
the load literal has a 1MB range giving us more flexibility.

Immutable entries are now shared.

BUG=
R=rmcilroy@chromium.org

Review URL: https://codereview.chromium.org/338523005

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@21924 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 16d5587c
This diff is collapsed.
......@@ -7,6 +7,7 @@
#include <list>
#include <map>
#include <vector>
#include "src/arm64/instructions-arm64.h"
#include "src/assembler.h"
......@@ -740,6 +741,55 @@ class MemOperand {
};
class ConstPool {
public:
explicit ConstPool(Assembler* assm)
: assm_(assm),
first_use_(-1),
shared_entries_count(0) {}
void RecordEntry(intptr_t data, RelocInfo::Mode mode);
int EntryCount() const {
return shared_entries_count + unique_entries_.size();
}
bool IsEmpty() const {
return shared_entries_.empty() && unique_entries_.empty();
}
// Distance in bytes between the current pc and the first instruction
// using the pool. If there are no pending entries return kMaxInt.
int DistanceToFirstUse();
// Offset after which instructions using the pool will be out of range.
int MaxPcOffset();
// Maximum size the constant pool can be with current entries. It always
// includes alignment padding and branch over.
int WorstCaseSize();
// Size in bytes of the literal pool *if* it is emitted at the current
// pc. The size will include the branch over the pool if it was requested.
int SizeIfEmittedAtCurrentPc(bool require_jump);
// Emit the literal pool at the current pc with a branch over the pool if
// requested.
void Emit(bool require_jump);
// Discard any pending pool entries.
void Clear();
private:
bool CanBeShared(RelocInfo::Mode mode);
void EmitMarker();
void EmitGuard();
void EmitEntries();
Assembler* assm_;
// Keep track of the first instruction requiring a constant pool entry
// since the previous constant pool was emitted.
int first_use_;
// values, pc offset(s) of entries which can be shared.
std::multimap<uint64_t, int> shared_entries_;
// Number of distinct literal in shared entries.
int shared_entries_count;
// values, pc offset of entries which cannot be shared.
std::vector<std::pair<uint64_t, int> > unique_entries_;
};
// -----------------------------------------------------------------------------
// Assembler.
......@@ -763,7 +813,7 @@ class Assembler : public AssemblerBase {
virtual ~Assembler();
virtual void AbortedCodeGeneration() {
num_pending_reloc_info_ = 0;
constpool_.Clear();
}
// System functions ---------------------------------------------------------
......@@ -912,9 +962,7 @@ class Assembler : public AssemblerBase {
static bool IsConstantPoolAt(Instruction* instr);
static int ConstantPoolSizeAt(Instruction* instr);
// See Assembler::CheckConstPool for more info.
void ConstantPoolMarker(uint32_t size);
void EmitPoolGuard();
void ConstantPoolGuard();
// Prevent veneer pool emission until EndBlockVeneerPool is called.
// Call to this function can be nested but must be followed by an equal
......@@ -1695,7 +1743,9 @@ class Assembler : public AssemblerBase {
// Code generation helpers --------------------------------------------------
unsigned num_pending_reloc_info() const { return num_pending_reloc_info_; }
bool IsConstPoolEmpty() const { return constpool_.IsEmpty(); }
Instruction* pc() const { return Instruction::Cast(pc_); }
Instruction* InstructionAt(int offset) const {
return reinterpret_cast<Instruction*>(buffer_ + offset);
......@@ -2019,6 +2069,11 @@ class Assembler : public AssemblerBase {
// instructions.
void BlockConstPoolFor(int instructions);
// Set how far from current pc the next constant pool check will be.
void SetNextConstPoolCheckIn(int instructions) {
next_constant_pool_check_ = pc_offset() + instructions * kInstructionSize;
}
// Emit the instruction at pc_.
void Emit(Instr instruction) {
STATIC_ASSERT(sizeof(*pc_) == 1);
......@@ -2050,12 +2105,13 @@ class Assembler : public AssemblerBase {
int next_constant_pool_check_;
// Constant pool generation
// Pools are emitted in the instruction stream, preferably after unconditional
// jumps or after returns from functions (in dead code locations).
// If a long code sequence does not contain unconditional jumps, it is
// necessary to emit the constant pool before the pool gets too far from the
// location it is accessed from. In this case, we emit a jump over the emitted
// constant pool.
// Pools are emitted in the instruction stream. They are emitted when:
// * the distance to the first use is above a pre-defined distance or
// * the numbers of entries in the pool is above a pre-defined size or
// * code generation is finished
// If a pool needs to be emitted before code generation is finished a branch
// over the emitted pool will be inserted.
// Constants in the pool may be addresses of functions that gets relocated;
// if so, a relocation info entry is associated to the constant pool entry.
......@@ -2063,34 +2119,22 @@ class Assembler : public AssemblerBase {
// expensive. By default we only check again once a number of instructions
// has been generated. That also means that the sizing of the buffers is not
// an exact science, and that we rely on some slop to not overrun buffers.
static const int kCheckConstPoolIntervalInst = 128;
static const int kCheckConstPoolInterval =
kCheckConstPoolIntervalInst * kInstructionSize;
// Constants in pools are accessed via pc relative addressing, which can
// reach +/-4KB thereby defining a maximum distance between the instruction
// and the accessed constant.
static const int kMaxDistToConstPool = 4 * KB;
static const int kMaxNumPendingRelocInfo =
kMaxDistToConstPool / kInstructionSize;
// Average distance beetween a constant pool and the first instruction
// accessing the constant pool. Longer distance should result in less I-cache
// pollution.
// In practice the distance will be smaller since constant pool emission is
// forced after function return and sometimes after unconditional branches.
static const int kAvgDistToConstPool =
kMaxDistToConstPool - kCheckConstPoolInterval;
static const int kCheckConstPoolInterval = 128;
// Distance to first use after a which a pool will be emitted. Pool entries
// are accessed with pc relative load therefore this cannot be more than
// 1 * MB. Since constant pool emission checks are interval based this value
// is an approximation.
static const int kApproxMaxDistToConstPool = 64 * KB;
// Number of pool entries after which a pool will be emitted. Since constant
// pool emission checks are interval based this value is an approximation.
static const int kApproxMaxPoolEntryCount = 512;
// Emission of the constant pool may be blocked in some code sequences.
int const_pool_blocked_nesting_; // Block emission if this is not zero.
int no_const_pool_before_; // Block emission before this pc offset.
// Keep track of the first instruction requiring a constant pool entry
// since the previous constant pool was emitted.
int first_const_pool_use_;
// Emission of the veneer pools may be blocked in some code sequences.
int veneer_pool_blocked_nesting_; // Block emission if this is not zero.
......@@ -2106,10 +2150,8 @@ class Assembler : public AssemblerBase {
// If every instruction in a long sequence is accessing the pool, we need one
// pending relocation entry per instruction.
// the buffer of pending relocation info
RelocInfo pending_reloc_info_[kMaxNumPendingRelocInfo];
// number of pending reloc info entries in the buffer
int num_pending_reloc_info_;
// The pending constant pool.
ConstPool constpool_;
// Relocation for a type-recording IC has the AST id added to it. This
// member variable is a way to pass the information from the call site to
......@@ -2196,6 +2238,7 @@ class Assembler : public AssemblerBase {
PositionsRecorder positions_recorder_;
friend class PositionsRecorder;
friend class EnsureSpace;
friend class ConstPool;
};
class PatchingAssembler : public Assembler {
......@@ -2228,7 +2271,7 @@ class PatchingAssembler : public Assembler {
// Verify we have generated the number of instruction we expected.
ASSERT((pc_offset() + kGap) == buffer_size_);
// Verify no relocation information has been emitted.
ASSERT(num_pending_reloc_info() == 0);
ASSERT(IsConstPoolEmpty());
// Flush the Instruction cache.
size_t length = buffer_size_ - kGap;
CPU::FlushICache(buffer_, length);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment