ARM64: Optimize MathRoundI

Optimize code generated for MathRoundI based on technique used in MathRoundD.

BUG=
R=ulan@chromium.org

Review URL: https://codereview.chromium.org/276283003

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@21267 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent b785aeda
......@@ -4111,9 +4111,9 @@ void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
DoubleRegister input = ToDoubleRegister(instr->value());
DoubleRegister temp1 = ToDoubleRegister(instr->temp1());
DoubleRegister temp = ToDoubleRegister(instr->temp1());
DoubleRegister dot_five = double_scratch();
Register result = ToRegister(instr->result());
Label try_rounding;
Label done;
// Math.round() rounds to the nearest integer, with ties going towards
......@@ -4124,42 +4124,41 @@ void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
// that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
// result of -0.0.
DoubleRegister dot_five = double_scratch();
// Add 0.5 and round towards -infinity.
__ Fmov(dot_five, 0.5);
__ Fabs(temp1, input);
__ Fcmp(temp1, dot_five);
// If input is in [-0.5, -0], the result is -0.
// If input is in [+0, +0.5[, the result is +0.
// If the input is +0.5, the result is 1.
__ B(hi, &try_rounding); // hi so NaN will also branch.
__ Fadd(temp, input, dot_five);
__ Fcvtms(result, temp);
// The result is correct if:
// result is not 0, as the input could be NaN or [-0.5, -0.0].
// result is not 1, as 0.499...94 will wrongly map to 1.
// result fits in 32 bits.
__ Cmp(result, Operand(result.W(), SXTW));
__ Ccmp(result, 1, ZFlag, eq);
__ B(hi, &done);
// At this point, we have to handle possible inputs of NaN or numbers in the
// range [-0.5, 1.5[, or numbers larger than 32 bits.
// Deoptimize if the result > 1, as it must be larger than 32 bits.
__ Cmp(result, 1);
DeoptimizeIf(hi, instr->environment());
// Deoptimize for negative inputs, which at this point are only numbers in
// the range [-0.5, -0.0]
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ Fmov(result, input);
DeoptimizeIfNegative(result, instr->environment()); // [-0.5, -0.0].
DeoptimizeIfNegative(result, instr->environment());
}
__ Fcmp(input, dot_five);
__ Mov(result, 1); // +0.5.
// Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
// flag kBailoutOnMinusZero, will return 0 (xzr).
__ Csel(result, result, xzr, eq);
__ B(&done);
__ Bind(&try_rounding);
// Since we're providing a 32-bit result, we can implement ties-to-infinity by
// adding 0.5 to the input, then taking the floor of the result. This does not
// work for very large positive doubles because adding 0.5 would cause an
// intermediate rounding stage, so a different approach is necessary when a
// double result is needed.
__ Fadd(temp1, input, dot_five);
__ Fcvtms(result, temp1);
// Deopt if
// * the input was NaN
// * the result is not representable using a 32-bit integer.
__ Fcmp(input, 0.0);
__ Ccmp(result, Operand(result.W(), SXTW), NoFlag, vc);
DeoptimizeIf(ne, instr->environment());
// Deoptimize if the input was NaN.
__ Fcmp(input, dot_five);
DeoptimizeIf(vs, instr->environment());
// Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
// if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
// else 0; we avoid dealing with 0.499...94 directly.
__ Cset(result, ge);
__ Bind(&done);
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment