Commit d4ad10b3 authored by jgruber's avatar jgruber Committed by Commit bot

[builtins] Move builtins into own files

R=yangguo@chromium.org
BUG=v8:5197

Review-Url: https://codereview.chromium.org/2165593002
Cr-Commit-Position: refs/heads/master@{#37885}
parent 6ce36869
......@@ -873,6 +873,23 @@ v8_source_set("v8_base") {
"src/bootstrapper.cc",
"src/bootstrapper.h",
"src/builtins/builtins-array.cc",
"src/builtins/builtins-arraybuffer.cc",
"src/builtins/builtins-boolean.cc",
"src/builtins/builtins-dataview.cc",
"src/builtins/builtins-date.cc",
"src/builtins/builtins-function.cc",
"src/builtins/builtins-global.cc",
"src/builtins/builtins-internal.cc",
"src/builtins/builtins-json.cc",
"src/builtins/builtins-math.cc",
"src/builtins/builtins-number.cc",
"src/builtins/builtins-object.cc",
"src/builtins/builtins-proxy.cc",
"src/builtins/builtins-reflect.cc",
"src/builtins/builtins-sharedarraybuffer.cc",
"src/builtins/builtins-string.cc",
"src/builtins/builtins-symbol.cc",
"src/builtins/builtins-typedarray.cc",
"src/builtins/builtins-utils.h",
"src/builtins/builtins.cc",
"src/builtins/builtins.h",
......
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 21.1 ArrayBuffer Objects
// ES6 section 24.1.2.1 ArrayBuffer ( length ) for the [[Call]] case.
BUILTIN(ArrayBufferConstructor) {
HandleScope scope(isolate);
Handle<JSFunction> target = args.target<JSFunction>();
DCHECK(*target == target->native_context()->array_buffer_fun() ||
*target == target->native_context()->shared_array_buffer_fun());
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kConstructorNotFunction,
handle(target->shared()->name(), isolate)));
}
// ES6 section 24.1.2.1 ArrayBuffer ( length ) for the [[Construct]] case.
BUILTIN(ArrayBufferConstructor_ConstructStub) {
HandleScope scope(isolate);
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target());
Handle<Object> length = args.atOrUndefined(isolate, 1);
DCHECK(*target == target->native_context()->array_buffer_fun() ||
*target == target->native_context()->shared_array_buffer_fun());
Handle<Object> number_length;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, number_length,
Object::ToInteger(isolate, length));
if (number_length->Number() < 0.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidArrayBufferLength));
}
Handle<JSObject> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
JSObject::New(target, new_target));
size_t byte_length;
if (!TryNumberToSize(isolate, *number_length, &byte_length)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidArrayBufferLength));
}
SharedFlag shared_flag =
(*target == target->native_context()->array_buffer_fun())
? SharedFlag::kNotShared
: SharedFlag::kShared;
if (!JSArrayBuffer::SetupAllocatingData(Handle<JSArrayBuffer>::cast(result),
isolate, byte_length, true,
shared_flag)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kArrayBufferAllocationFailed));
}
return *result;
}
// ES6 section 24.1.4.1 get ArrayBuffer.prototype.byteLength
BUILTIN(ArrayBufferPrototypeGetByteLength) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSArrayBuffer, array_buffer,
"get ArrayBuffer.prototype.byteLength");
if (array_buffer->is_shared()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kIncompatibleMethodReceiver,
isolate->factory()->NewStringFromAsciiChecked(
"get ArrayBuffer.prototype.byteLength"),
args.receiver()));
}
// TODO(franzih): According to the ES6 spec, we should throw a TypeError
// here if the JSArrayBuffer is detached.
return array_buffer->byte_length();
}
// ES6 section 24.1.3.1 ArrayBuffer.isView ( arg )
BUILTIN(ArrayBufferIsView) {
SealHandleScope shs(isolate);
DCHECK_EQ(2, args.length());
Object* arg = args[1];
return isolate->heap()->ToBoolean(arg->IsJSArrayBufferView());
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 19.3 Boolean Objects
// ES6 section 19.3.1.1 Boolean ( value ) for the [[Call]] case.
BUILTIN(BooleanConstructor) {
HandleScope scope(isolate);
Handle<Object> value = args.atOrUndefined(isolate, 1);
return isolate->heap()->ToBoolean(value->BooleanValue());
}
// ES6 section 19.3.1.1 Boolean ( value ) for the [[Construct]] case.
BUILTIN(BooleanConstructor_ConstructStub) {
HandleScope scope(isolate);
Handle<Object> value = args.atOrUndefined(isolate, 1);
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target());
DCHECK(*target == target->native_context()->boolean_function());
Handle<JSObject> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
JSObject::New(target, new_target));
Handle<JSValue>::cast(result)->set_value(
isolate->heap()->ToBoolean(value->BooleanValue()));
return *result;
}
// ES6 section 19.3.3.2 Boolean.prototype.toString ( )
void Builtins::Generate_BooleanPrototypeToString(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
Node* value = assembler->ToThisValue(
context, receiver, PrimitiveType::kBoolean, "Boolean.prototype.toString");
Node* result = assembler->LoadObjectField(value, Oddball::kToStringOffset);
assembler->Return(result);
}
// ES6 section 19.3.3.3 Boolean.prototype.valueOf ( )
void Builtins::Generate_BooleanPrototypeValueOf(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
Node* result = assembler->ToThisValue(
context, receiver, PrimitiveType::kBoolean, "Boolean.prototype.valueOf");
assembler->Return(result);
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 24.2 DataView Objects
// ES6 section 24.2.2 The DataView Constructor for the [[Call]] case.
BUILTIN(DataViewConstructor) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError(MessageTemplate::kConstructorNotFunction,
isolate->factory()->NewStringFromAsciiChecked("DataView")));
}
// ES6 section 24.2.2 The DataView Constructor for the [[Construct]] case.
BUILTIN(DataViewConstructor_ConstructStub) {
HandleScope scope(isolate);
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target());
Handle<Object> buffer = args.atOrUndefined(isolate, 1);
Handle<Object> byte_offset = args.atOrUndefined(isolate, 2);
Handle<Object> byte_length = args.atOrUndefined(isolate, 3);
// 2. If Type(buffer) is not Object, throw a TypeError exception.
// 3. If buffer does not have an [[ArrayBufferData]] internal slot, throw a
// TypeError exception.
if (!buffer->IsJSArrayBuffer()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kDataViewNotArrayBuffer));
}
Handle<JSArrayBuffer> array_buffer = Handle<JSArrayBuffer>::cast(buffer);
// 4. Let numberOffset be ? ToNumber(byteOffset).
Handle<Object> number_offset;
if (byte_offset->IsUndefined(isolate)) {
// We intentionally violate the specification at this point to allow
// for new DataView(buffer) invocations to be equivalent to the full
// new DataView(buffer, 0) invocation.
number_offset = handle(Smi::FromInt(0), isolate);
} else {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, number_offset,
Object::ToNumber(byte_offset));
}
// 5. Let offset be ToInteger(numberOffset).
Handle<Object> offset;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, offset,
Object::ToInteger(isolate, number_offset));
// 6. If numberOffset ≠ offset or offset < 0, throw a RangeError exception.
if (number_offset->Number() != offset->Number() || offset->Number() < 0.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidDataViewOffset));
}
// 7. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
// We currently violate the specification at this point.
// 8. Let bufferByteLength be the value of buffer's [[ArrayBufferByteLength]]
// internal slot.
double const buffer_byte_length = array_buffer->byte_length()->Number();
// 9. If offset > bufferByteLength, throw a RangeError exception
if (offset->Number() > buffer_byte_length) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidDataViewOffset));
}
Handle<Object> view_byte_length;
if (byte_length->IsUndefined(isolate)) {
// 10. If byteLength is undefined, then
// a. Let viewByteLength be bufferByteLength - offset.
view_byte_length =
isolate->factory()->NewNumber(buffer_byte_length - offset->Number());
} else {
// 11. Else,
// a. Let viewByteLength be ? ToLength(byteLength).
// b. If offset+viewByteLength > bufferByteLength, throw a RangeError
// exception
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, view_byte_length,
Object::ToLength(isolate, byte_length));
if (offset->Number() + view_byte_length->Number() > buffer_byte_length) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidDataViewLength));
}
}
// 12. Let O be ? OrdinaryCreateFromConstructor(NewTarget,
// "%DataViewPrototype%", «[[DataView]], [[ViewedArrayBuffer]],
// [[ByteLength]], [[ByteOffset]]»).
// 13. Set O's [[DataView]] internal slot to true.
Handle<JSObject> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
JSObject::New(target, new_target));
for (int i = 0; i < ArrayBufferView::kInternalFieldCount; ++i) {
Handle<JSDataView>::cast(result)->SetInternalField(i, Smi::FromInt(0));
}
// 14. Set O's [[ViewedArrayBuffer]] internal slot to buffer.
Handle<JSDataView>::cast(result)->set_buffer(*array_buffer);
// 15. Set O's [[ByteLength]] internal slot to viewByteLength.
Handle<JSDataView>::cast(result)->set_byte_length(*view_byte_length);
// 16. Set O's [[ByteOffset]] internal slot to offset.
Handle<JSDataView>::cast(result)->set_byte_offset(*offset);
// 17. Return O.
return *result;
}
// ES6 section 24.2.4.1 get DataView.prototype.buffer
BUILTIN(DataViewPrototypeGetBuffer) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDataView, data_view, "get DataView.prototype.buffer");
return data_view->buffer();
}
// ES6 section 24.2.4.2 get DataView.prototype.byteLength
BUILTIN(DataViewPrototypeGetByteLength) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDataView, data_view, "get DataView.prototype.byteLength");
// TODO(bmeurer): According to the ES6 spec, we should throw a TypeError
// here if the JSArrayBuffer of the {data_view} was neutered.
return data_view->byte_length();
}
// ES6 section 24.2.4.3 get DataView.prototype.byteOffset
BUILTIN(DataViewPrototypeGetByteOffset) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDataView, data_view, "get DataView.prototype.byteOffset");
// TODO(bmeurer): According to the ES6 spec, we should throw a TypeError
// here if the JSArrayBuffer of the {data_view} was neutered.
return data_view->byte_offset();
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
#include "src/dateparser-inl.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 20.3 Date Objects
namespace {
// ES6 section 20.3.1.1 Time Values and Time Range
const double kMinYear = -1000000.0;
const double kMaxYear = -kMinYear;
const double kMinMonth = -10000000.0;
const double kMaxMonth = -kMinMonth;
// 20.3.1.2 Day Number and Time within Day
const double kMsPerDay = 86400000.0;
// ES6 section 20.3.1.11 Hours, Minutes, Second, and Milliseconds
const double kMsPerSecond = 1000.0;
const double kMsPerMinute = 60000.0;
const double kMsPerHour = 3600000.0;
// ES6 section 20.3.1.14 MakeDate (day, time)
double MakeDate(double day, double time) {
if (std::isfinite(day) && std::isfinite(time)) {
return time + day * kMsPerDay;
}
return std::numeric_limits<double>::quiet_NaN();
}
// ES6 section 20.3.1.13 MakeDay (year, month, date)
double MakeDay(double year, double month, double date) {
if ((kMinYear <= year && year <= kMaxYear) &&
(kMinMonth <= month && month <= kMaxMonth) && std::isfinite(date)) {
int y = FastD2I(year);
int m = FastD2I(month);
y += m / 12;
m %= 12;
if (m < 0) {
m += 12;
y -= 1;
}
DCHECK_LE(0, m);
DCHECK_LT(m, 12);
// kYearDelta is an arbitrary number such that:
// a) kYearDelta = -1 (mod 400)
// b) year + kYearDelta > 0 for years in the range defined by
// ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
// Jan 1 1970. This is required so that we don't run into integer
// division of negative numbers.
// c) there shouldn't be an overflow for 32-bit integers in the following
// operations.
static const int kYearDelta = 399999;
static const int kBaseDay =
365 * (1970 + kYearDelta) + (1970 + kYearDelta) / 4 -
(1970 + kYearDelta) / 100 + (1970 + kYearDelta) / 400;
int day_from_year = 365 * (y + kYearDelta) + (y + kYearDelta) / 4 -
(y + kYearDelta) / 100 + (y + kYearDelta) / 400 -
kBaseDay;
if ((y % 4 != 0) || (y % 100 == 0 && y % 400 != 0)) {
static const int kDayFromMonth[] = {0, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334};
day_from_year += kDayFromMonth[m];
} else {
static const int kDayFromMonth[] = {0, 31, 60, 91, 121, 152,
182, 213, 244, 274, 305, 335};
day_from_year += kDayFromMonth[m];
}
return static_cast<double>(day_from_year - 1) + date;
}
return std::numeric_limits<double>::quiet_NaN();
}
// ES6 section 20.3.1.12 MakeTime (hour, min, sec, ms)
double MakeTime(double hour, double min, double sec, double ms) {
if (std::isfinite(hour) && std::isfinite(min) && std::isfinite(sec) &&
std::isfinite(ms)) {
double const h = DoubleToInteger(hour);
double const m = DoubleToInteger(min);
double const s = DoubleToInteger(sec);
double const milli = DoubleToInteger(ms);
return h * kMsPerHour + m * kMsPerMinute + s * kMsPerSecond + milli;
}
return std::numeric_limits<double>::quiet_NaN();
}
// ES6 section 20.3.1.15 TimeClip (time)
double TimeClip(double time) {
if (-DateCache::kMaxTimeInMs <= time && time <= DateCache::kMaxTimeInMs) {
return DoubleToInteger(time) + 0.0;
}
return std::numeric_limits<double>::quiet_NaN();
}
const char* kShortWeekDays[] = {"Sun", "Mon", "Tue", "Wed",
"Thu", "Fri", "Sat"};
const char* kShortMonths[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
// ES6 section 20.3.1.16 Date Time String Format
double ParseDateTimeString(Handle<String> str) {
Isolate* const isolate = str->GetIsolate();
str = String::Flatten(str);
// TODO(bmeurer): Change DateParser to not use the FixedArray.
Handle<FixedArray> tmp =
isolate->factory()->NewFixedArray(DateParser::OUTPUT_SIZE);
DisallowHeapAllocation no_gc;
String::FlatContent str_content = str->GetFlatContent();
bool result;
if (str_content.IsOneByte()) {
result = DateParser::Parse(isolate, str_content.ToOneByteVector(), *tmp);
} else {
result = DateParser::Parse(isolate, str_content.ToUC16Vector(), *tmp);
}
if (!result) return std::numeric_limits<double>::quiet_NaN();
double const day = MakeDay(tmp->get(0)->Number(), tmp->get(1)->Number(),
tmp->get(2)->Number());
double const time = MakeTime(tmp->get(3)->Number(), tmp->get(4)->Number(),
tmp->get(5)->Number(), tmp->get(6)->Number());
double date = MakeDate(day, time);
if (tmp->get(7)->IsNull(isolate)) {
if (!std::isnan(date)) {
date = isolate->date_cache()->ToUTC(static_cast<int64_t>(date));
}
} else {
date -= tmp->get(7)->Number() * 1000.0;
}
return date;
}
enum ToDateStringMode { kDateOnly, kTimeOnly, kDateAndTime };
// ES6 section 20.3.4.41.1 ToDateString(tv)
void ToDateString(double time_val, Vector<char> str, DateCache* date_cache,
ToDateStringMode mode = kDateAndTime) {
if (std::isnan(time_val)) {
SNPrintF(str, "Invalid Date");
return;
}
int64_t time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = date_cache->ToLocal(time_ms);
int year, month, day, weekday, hour, min, sec, ms;
date_cache->BreakDownTime(local_time_ms, &year, &month, &day, &weekday, &hour,
&min, &sec, &ms);
int timezone_offset = -date_cache->TimezoneOffset(time_ms);
int timezone_hour = std::abs(timezone_offset) / 60;
int timezone_min = std::abs(timezone_offset) % 60;
const char* local_timezone = date_cache->LocalTimezone(time_ms);
switch (mode) {
case kDateOnly:
SNPrintF(str, "%s %s %02d %4d", kShortWeekDays[weekday],
kShortMonths[month], day, year);
return;
case kTimeOnly:
SNPrintF(str, "%02d:%02d:%02d GMT%c%02d%02d (%s)", hour, min, sec,
(timezone_offset < 0) ? '-' : '+', timezone_hour, timezone_min,
local_timezone);
return;
case kDateAndTime:
SNPrintF(str, "%s %s %02d %4d %02d:%02d:%02d GMT%c%02d%02d (%s)",
kShortWeekDays[weekday], kShortMonths[month], day, year, hour,
min, sec, (timezone_offset < 0) ? '-' : '+', timezone_hour,
timezone_min, local_timezone);
return;
}
UNREACHABLE();
}
Object* SetLocalDateValue(Handle<JSDate> date, double time_val) {
if (time_val >= -DateCache::kMaxTimeBeforeUTCInMs &&
time_val <= DateCache::kMaxTimeBeforeUTCInMs) {
Isolate* const isolate = date->GetIsolate();
time_val = isolate->date_cache()->ToUTC(static_cast<int64_t>(time_val));
} else {
time_val = std::numeric_limits<double>::quiet_NaN();
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
} // namespace
// ES6 section 20.3.2 The Date Constructor for the [[Call]] case.
BUILTIN(DateConstructor) {
HandleScope scope(isolate);
double const time_val = JSDate::CurrentTimeValue(isolate);
char buffer[128];
ToDateString(time_val, ArrayVector(buffer), isolate->date_cache());
RETURN_RESULT_OR_FAILURE(
isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer)));
}
// ES6 section 20.3.2 The Date Constructor for the [[Construct]] case.
BUILTIN(DateConstructor_ConstructStub) {
HandleScope scope(isolate);
int const argc = args.length() - 1;
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target());
double time_val;
if (argc == 0) {
time_val = JSDate::CurrentTimeValue(isolate);
} else if (argc == 1) {
Handle<Object> value = args.at<Object>(1);
if (value->IsJSDate()) {
time_val = Handle<JSDate>::cast(value)->value()->Number();
} else {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value,
Object::ToPrimitive(value));
if (value->IsString()) {
time_val = ParseDateTimeString(Handle<String>::cast(value));
} else {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value,
Object::ToNumber(value));
time_val = value->Number();
}
}
} else {
Handle<Object> year_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year_object,
Object::ToNumber(args.at<Object>(1)));
Handle<Object> month_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month_object,
Object::ToNumber(args.at<Object>(2)));
double year = year_object->Number();
double month = month_object->Number();
double date = 1.0, hours = 0.0, minutes = 0.0, seconds = 0.0, ms = 0.0;
if (argc >= 3) {
Handle<Object> date_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date_object,
Object::ToNumber(args.at<Object>(3)));
date = date_object->Number();
if (argc >= 4) {
Handle<Object> hours_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, hours_object, Object::ToNumber(args.at<Object>(4)));
hours = hours_object->Number();
if (argc >= 5) {
Handle<Object> minutes_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, minutes_object, Object::ToNumber(args.at<Object>(5)));
minutes = minutes_object->Number();
if (argc >= 6) {
Handle<Object> seconds_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, seconds_object, Object::ToNumber(args.at<Object>(6)));
seconds = seconds_object->Number();
if (argc >= 7) {
Handle<Object> ms_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, ms_object, Object::ToNumber(args.at<Object>(7)));
ms = ms_object->Number();
}
}
}
}
}
if (!std::isnan(year)) {
double const y = DoubleToInteger(year);
if (0.0 <= y && y <= 99) year = 1900 + y;
}
double const day = MakeDay(year, month, date);
double const time = MakeTime(hours, minutes, seconds, ms);
time_val = MakeDate(day, time);
if (time_val >= -DateCache::kMaxTimeBeforeUTCInMs &&
time_val <= DateCache::kMaxTimeBeforeUTCInMs) {
time_val = isolate->date_cache()->ToUTC(static_cast<int64_t>(time_val));
} else {
time_val = std::numeric_limits<double>::quiet_NaN();
}
}
RETURN_RESULT_OR_FAILURE(isolate, JSDate::New(target, new_target, time_val));
}
// ES6 section 20.3.3.1 Date.now ( )
BUILTIN(DateNow) {
HandleScope scope(isolate);
return *isolate->factory()->NewNumber(JSDate::CurrentTimeValue(isolate));
}
// ES6 section 20.3.3.2 Date.parse ( string )
BUILTIN(DateParse) {
HandleScope scope(isolate);
Handle<String> string;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, string,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
return *isolate->factory()->NewNumber(ParseDateTimeString(string));
}
// ES6 section 20.3.3.4 Date.UTC (year,month,date,hours,minutes,seconds,ms)
BUILTIN(DateUTC) {
HandleScope scope(isolate);
int const argc = args.length() - 1;
double year = std::numeric_limits<double>::quiet_NaN();
double month = std::numeric_limits<double>::quiet_NaN();
double date = 1.0, hours = 0.0, minutes = 0.0, seconds = 0.0, ms = 0.0;
if (argc >= 1) {
Handle<Object> year_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year_object,
Object::ToNumber(args.at<Object>(1)));
year = year_object->Number();
if (argc >= 2) {
Handle<Object> month_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month_object,
Object::ToNumber(args.at<Object>(2)));
month = month_object->Number();
if (argc >= 3) {
Handle<Object> date_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, date_object, Object::ToNumber(args.at<Object>(3)));
date = date_object->Number();
if (argc >= 4) {
Handle<Object> hours_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, hours_object, Object::ToNumber(args.at<Object>(4)));
hours = hours_object->Number();
if (argc >= 5) {
Handle<Object> minutes_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, minutes_object, Object::ToNumber(args.at<Object>(5)));
minutes = minutes_object->Number();
if (argc >= 6) {
Handle<Object> seconds_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, seconds_object,
Object::ToNumber(args.at<Object>(6)));
seconds = seconds_object->Number();
if (argc >= 7) {
Handle<Object> ms_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, ms_object, Object::ToNumber(args.at<Object>(7)));
ms = ms_object->Number();
}
}
}
}
}
}
}
if (!std::isnan(year)) {
double const y = DoubleToInteger(year);
if (0.0 <= y && y <= 99) year = 1900 + y;
}
double const day = MakeDay(year, month, date);
double const time = MakeTime(hours, minutes, seconds, ms);
return *isolate->factory()->NewNumber(TimeClip(MakeDate(day, time)));
}
// ES6 section 20.3.4.20 Date.prototype.setDate ( date )
BUILTIN(DatePrototypeSetDate) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setDate");
Handle<Object> value = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, Object::ToNumber(value));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int const days = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
time_val = MakeDate(MakeDay(year, month, value->Number()), time_within_day);
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.21 Date.prototype.setFullYear (year, month, date)
BUILTIN(DatePrototypeSetFullYear) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setFullYear");
int const argc = args.length() - 1;
Handle<Object> year = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year, Object::ToNumber(year));
double y = year->Number(), m = 0.0, dt = 1.0;
int time_within_day = 0;
if (!std::isnan(date->value()->Number())) {
int64_t const time_ms = static_cast<int64_t>(date->value()->Number());
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int const days = isolate->date_cache()->DaysFromTime(local_time_ms);
time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
m = month;
dt = day;
}
if (argc >= 2) {
Handle<Object> month = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month));
m = month->Number();
if (argc >= 3) {
Handle<Object> date = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date));
dt = date->Number();
}
}
double time_val = MakeDate(MakeDay(y, m, dt), time_within_day);
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.22 Date.prototype.setHours(hour, min, sec, ms)
BUILTIN(DatePrototypeSetHours) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setHours");
int const argc = args.length() - 1;
Handle<Object> hour = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, hour, Object::ToNumber(hour));
double h = hour->Number();
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int day = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day);
double m = (time_within_day / (60 * 1000)) % 60;
double s = (time_within_day / 1000) % 60;
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> min = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min));
m = min->Number();
if (argc >= 3) {
Handle<Object> sec = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
s = sec->Number();
if (argc >= 4) {
Handle<Object> ms = args.at<Object>(4);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
}
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.23 Date.prototype.setMilliseconds(ms)
BUILTIN(DatePrototypeSetMilliseconds) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setMilliseconds");
Handle<Object> ms = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int day = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
int m = (time_within_day / (60 * 1000)) % 60;
int s = (time_within_day / 1000) % 60;
time_val = MakeDate(day, MakeTime(h, m, s, ms->Number()));
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.24 Date.prototype.setMinutes ( min, sec, ms )
BUILTIN(DatePrototypeSetMinutes) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setMinutes");
int const argc = args.length() - 1;
Handle<Object> min = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int day = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
double m = min->Number();
double s = (time_within_day / 1000) % 60;
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> sec = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
s = sec->Number();
if (argc >= 3) {
Handle<Object> ms = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.25 Date.prototype.setMonth ( month, date )
BUILTIN(DatePrototypeSetMonth) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setMonth");
int const argc = args.length() - 1;
Handle<Object> month = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int days = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days);
int year, unused, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &unused, &day);
double m = month->Number();
double dt = day;
if (argc >= 2) {
Handle<Object> date = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date));
dt = date->Number();
}
time_val = MakeDate(MakeDay(year, m, dt), time_within_day);
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.26 Date.prototype.setSeconds ( sec, ms )
BUILTIN(DatePrototypeSetSeconds) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setSeconds");
int const argc = args.length() - 1;
Handle<Object> sec = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int day = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
double m = (time_within_day / (60 * 1000)) % 60;
double s = sec->Number();
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> ms = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.27 Date.prototype.setTime ( time )
BUILTIN(DatePrototypeSetTime) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setTime");
Handle<Object> value = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, Object::ToNumber(value));
return *JSDate::SetValue(date, TimeClip(value->Number()));
}
// ES6 section 20.3.4.28 Date.prototype.setUTCDate ( date )
BUILTIN(DatePrototypeSetUTCDate) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCDate");
Handle<Object> value = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, Object::ToNumber(value));
if (std::isnan(date->value()->Number())) return date->value();
int64_t const time_ms = static_cast<int64_t>(date->value()->Number());
int const days = isolate->date_cache()->DaysFromTime(time_ms);
int const time_within_day = isolate->date_cache()->TimeInDay(time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
double const time_val =
MakeDate(MakeDay(year, month, value->Number()), time_within_day);
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.29 Date.prototype.setUTCFullYear (year, month, date)
BUILTIN(DatePrototypeSetUTCFullYear) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCFullYear");
int const argc = args.length() - 1;
Handle<Object> year = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year, Object::ToNumber(year));
double y = year->Number(), m = 0.0, dt = 1.0;
int time_within_day = 0;
if (!std::isnan(date->value()->Number())) {
int64_t const time_ms = static_cast<int64_t>(date->value()->Number());
int const days = isolate->date_cache()->DaysFromTime(time_ms);
time_within_day = isolate->date_cache()->TimeInDay(time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
m = month;
dt = day;
}
if (argc >= 2) {
Handle<Object> month = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month));
m = month->Number();
if (argc >= 3) {
Handle<Object> date = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date));
dt = date->Number();
}
}
double const time_val = MakeDate(MakeDay(y, m, dt), time_within_day);
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.30 Date.prototype.setUTCHours(hour, min, sec, ms)
BUILTIN(DatePrototypeSetUTCHours) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCHours");
int const argc = args.length() - 1;
Handle<Object> hour = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, hour, Object::ToNumber(hour));
double h = hour->Number();
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int day = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day);
double m = (time_within_day / (60 * 1000)) % 60;
double s = (time_within_day / 1000) % 60;
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> min = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min));
m = min->Number();
if (argc >= 3) {
Handle<Object> sec = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
s = sec->Number();
if (argc >= 4) {
Handle<Object> ms = args.at<Object>(4);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
}
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.31 Date.prototype.setUTCMilliseconds(ms)
BUILTIN(DatePrototypeSetUTCMilliseconds) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCMilliseconds");
Handle<Object> ms = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int day = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
int m = (time_within_day / (60 * 1000)) % 60;
int s = (time_within_day / 1000) % 60;
time_val = MakeDate(day, MakeTime(h, m, s, ms->Number()));
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.32 Date.prototype.setUTCMinutes ( min, sec, ms )
BUILTIN(DatePrototypeSetUTCMinutes) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCMinutes");
int const argc = args.length() - 1;
Handle<Object> min = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int day = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
double m = min->Number();
double s = (time_within_day / 1000) % 60;
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> sec = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
s = sec->Number();
if (argc >= 3) {
Handle<Object> ms = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.31 Date.prototype.setUTCMonth ( month, date )
BUILTIN(DatePrototypeSetUTCMonth) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCMonth");
int const argc = args.length() - 1;
Handle<Object> month = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int days = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, days);
int year, unused, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &unused, &day);
double m = month->Number();
double dt = day;
if (argc >= 2) {
Handle<Object> date = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date));
dt = date->Number();
}
time_val = MakeDate(MakeDay(year, m, dt), time_within_day);
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.34 Date.prototype.setUTCSeconds ( sec, ms )
BUILTIN(DatePrototypeSetUTCSeconds) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCSeconds");
int const argc = args.length() - 1;
Handle<Object> sec = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int day = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
double m = (time_within_day / (60 * 1000)) % 60;
double s = sec->Number();
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> ms = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.35 Date.prototype.toDateString ( )
BUILTIN(DatePrototypeToDateString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toDateString");
char buffer[128];
ToDateString(date->value()->Number(), ArrayVector(buffer),
isolate->date_cache(), kDateOnly);
RETURN_RESULT_OR_FAILURE(
isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer)));
}
// ES6 section 20.3.4.36 Date.prototype.toISOString ( )
BUILTIN(DatePrototypeToISOString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toISOString");
double const time_val = date->value()->Number();
if (std::isnan(time_val)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidTimeValue));
}
int64_t const time_ms = static_cast<int64_t>(time_val);
int year, month, day, weekday, hour, min, sec, ms;
isolate->date_cache()->BreakDownTime(time_ms, &year, &month, &day, &weekday,
&hour, &min, &sec, &ms);
char buffer[128];
if (year >= 0 && year <= 9999) {
SNPrintF(ArrayVector(buffer), "%04d-%02d-%02dT%02d:%02d:%02d.%03dZ", year,
month + 1, day, hour, min, sec, ms);
} else if (year < 0) {
SNPrintF(ArrayVector(buffer), "-%06d-%02d-%02dT%02d:%02d:%02d.%03dZ", -year,
month + 1, day, hour, min, sec, ms);
} else {
SNPrintF(ArrayVector(buffer), "+%06d-%02d-%02dT%02d:%02d:%02d.%03dZ", year,
month + 1, day, hour, min, sec, ms);
}
return *isolate->factory()->NewStringFromAsciiChecked(buffer);
}
// ES6 section 20.3.4.41 Date.prototype.toString ( )
BUILTIN(DatePrototypeToString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toString");
char buffer[128];
ToDateString(date->value()->Number(), ArrayVector(buffer),
isolate->date_cache());
RETURN_RESULT_OR_FAILURE(
isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer)));
}
// ES6 section 20.3.4.42 Date.prototype.toTimeString ( )
BUILTIN(DatePrototypeToTimeString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toTimeString");
char buffer[128];
ToDateString(date->value()->Number(), ArrayVector(buffer),
isolate->date_cache(), kTimeOnly);
RETURN_RESULT_OR_FAILURE(
isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer)));
}
// ES6 section 20.3.4.43 Date.prototype.toUTCString ( )
BUILTIN(DatePrototypeToUTCString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toUTCString");
double const time_val = date->value()->Number();
if (std::isnan(time_val)) {
return *isolate->factory()->NewStringFromAsciiChecked("Invalid Date");
}
char buffer[128];
int64_t time_ms = static_cast<int64_t>(time_val);
int year, month, day, weekday, hour, min, sec, ms;
isolate->date_cache()->BreakDownTime(time_ms, &year, &month, &day, &weekday,
&hour, &min, &sec, &ms);
SNPrintF(ArrayVector(buffer), "%s, %02d %s %4d %02d:%02d:%02d GMT",
kShortWeekDays[weekday], day, kShortMonths[month], year, hour, min,
sec);
return *isolate->factory()->NewStringFromAsciiChecked(buffer);
}
// ES6 section 20.3.4.44 Date.prototype.valueOf ( )
BUILTIN(DatePrototypeValueOf) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.valueOf");
return date->value();
}
// ES6 section 20.3.4.45 Date.prototype [ @@toPrimitive ] ( hint )
BUILTIN(DatePrototypeToPrimitive) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CHECK_RECEIVER(JSReceiver, receiver, "Date.prototype [ @@toPrimitive ]");
Handle<Object> hint = args.at<Object>(1);
RETURN_RESULT_OR_FAILURE(isolate, JSDate::ToPrimitive(receiver, hint));
}
// ES6 section B.2.4.1 Date.prototype.getYear ( )
BUILTIN(DatePrototypeGetYear) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.getYear");
double time_val = date->value()->Number();
if (std::isnan(time_val)) return date->value();
int64_t time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int days = isolate->date_cache()->DaysFromTime(local_time_ms);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
return Smi::FromInt(year - 1900);
}
// ES6 section B.2.4.2 Date.prototype.setYear ( year )
BUILTIN(DatePrototypeSetYear) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setYear");
Handle<Object> year = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year, Object::ToNumber(year));
double m = 0.0, dt = 1.0, y = year->Number();
if (0.0 <= y && y <= 99.0) {
y = 1900.0 + DoubleToInteger(y);
}
int time_within_day = 0;
if (!std::isnan(date->value()->Number())) {
int64_t const time_ms = static_cast<int64_t>(date->value()->Number());
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int const days = isolate->date_cache()->DaysFromTime(local_time_ms);
time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
m = month;
dt = day;
}
double time_val = MakeDate(MakeDay(y, m, dt), time_within_day);
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.37 Date.prototype.toJSON ( key )
BUILTIN(DatePrototypeToJson) {
HandleScope scope(isolate);
Handle<Object> receiver = args.atOrUndefined(isolate, 0);
Handle<JSReceiver> receiver_obj;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver_obj,
Object::ToObject(isolate, receiver));
Handle<Object> primitive;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, primitive,
Object::ToPrimitive(receiver_obj, ToPrimitiveHint::kNumber));
if (primitive->IsNumber() && !std::isfinite(primitive->Number())) {
return isolate->heap()->null_value();
} else {
Handle<String> name =
isolate->factory()->NewStringFromAsciiChecked("toISOString");
Handle<Object> function;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, function,
Object::GetProperty(receiver_obj, name));
if (!function->IsCallable()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledNonCallable, name));
}
RETURN_RESULT_OR_FAILURE(
isolate, Execution::Call(isolate, function, receiver_obj, 0, NULL));
}
}
// static
void Builtins::Generate_DatePrototypeGetDate(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kDay);
}
// static
void Builtins::Generate_DatePrototypeGetDay(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kWeekday);
}
// static
void Builtins::Generate_DatePrototypeGetFullYear(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kYear);
}
// static
void Builtins::Generate_DatePrototypeGetHours(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kHour);
}
// static
void Builtins::Generate_DatePrototypeGetMilliseconds(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMillisecond);
}
// static
void Builtins::Generate_DatePrototypeGetMinutes(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMinute);
}
// static
void Builtins::Generate_DatePrototypeGetMonth(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMonth);
}
// static
void Builtins::Generate_DatePrototypeGetSeconds(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kSecond);
}
// static
void Builtins::Generate_DatePrototypeGetTime(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kDateValue);
}
// static
void Builtins::Generate_DatePrototypeGetTimezoneOffset(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kTimezoneOffset);
}
// static
void Builtins::Generate_DatePrototypeGetUTCDate(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kDayUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCDay(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kWeekdayUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCFullYear(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kYearUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCHours(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kHourUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCMilliseconds(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMillisecondUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCMinutes(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMinuteUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCMonth(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMonthUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCSeconds(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kSecondUTC);
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
#include "src/string-builder.h"
namespace v8 {
namespace internal {
namespace {
bool AllowDynamicFunction(Isolate* isolate, Handle<JSFunction> target,
Handle<JSObject> target_global_proxy) {
if (FLAG_allow_unsafe_function_constructor) return true;
HandleScopeImplementer* impl = isolate->handle_scope_implementer();
Handle<Context> responsible_context = impl->LastEnteredContext();
if (responsible_context.is_null()) {
responsible_context = impl->MicrotaskContext();
// TODO(jochen): Remove this.
if (responsible_context.is_null()) {
return true;
}
}
if (*responsible_context == target->context()) return true;
return isolate->MayAccess(responsible_context, target_global_proxy);
}
// ES6 section 19.2.1.1.1 CreateDynamicFunction
MaybeHandle<Object> CreateDynamicFunction(Isolate* isolate,
BuiltinArguments args,
const char* token) {
// Compute number of arguments, ignoring the receiver.
DCHECK_LE(1, args.length());
int const argc = args.length() - 1;
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSObject> target_global_proxy(target->global_proxy(), isolate);
if (!AllowDynamicFunction(isolate, target, target_global_proxy)) {
isolate->CountUsage(v8::Isolate::kFunctionConstructorReturnedUndefined);
return isolate->factory()->undefined_value();
}
// Build the source string.
Handle<String> source;
{
IncrementalStringBuilder builder(isolate);
builder.AppendCharacter('(');
builder.AppendCString(token);
builder.AppendCharacter('(');
bool parenthesis_in_arg_string = false;
if (argc > 1) {
for (int i = 1; i < argc; ++i) {
if (i > 1) builder.AppendCharacter(',');
Handle<String> param;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, param, Object::ToString(isolate, args.at<Object>(i)),
Object);
param = String::Flatten(param);
builder.AppendString(param);
// If the formal parameters string include ) - an illegal
// character - it may make the combined function expression
// compile. We avoid this problem by checking for this early on.
DisallowHeapAllocation no_gc; // Ensure vectors stay valid.
String::FlatContent param_content = param->GetFlatContent();
for (int i = 0, length = param->length(); i < length; ++i) {
if (param_content.Get(i) == ')') {
parenthesis_in_arg_string = true;
break;
}
}
}
// If the formal parameters include an unbalanced block comment, the
// function must be rejected. Since JavaScript does not allow nested
// comments we can include a trailing block comment to catch this.
builder.AppendCString("\n/**/");
}
builder.AppendCString(") {\n");
if (argc > 0) {
Handle<String> body;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, body, Object::ToString(isolate, args.at<Object>(argc)),
Object);
builder.AppendString(body);
}
builder.AppendCString("\n})");
ASSIGN_RETURN_ON_EXCEPTION(isolate, source, builder.Finish(), Object);
// The SyntaxError must be thrown after all the (observable) ToString
// conversions are done.
if (parenthesis_in_arg_string) {
THROW_NEW_ERROR(isolate,
NewSyntaxError(MessageTemplate::kParenthesisInArgString),
Object);
}
}
// Compile the string in the constructor and not a helper so that errors to
// come from here.
Handle<JSFunction> function;
{
ASSIGN_RETURN_ON_EXCEPTION(
isolate, function,
Builtins::CompileString(handle(target->native_context(), isolate),
source, ONLY_SINGLE_FUNCTION_LITERAL),
Object);
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, result,
Execution::Call(isolate, function, target_global_proxy, 0, nullptr),
Object);
function = Handle<JSFunction>::cast(result);
function->shared()->set_name_should_print_as_anonymous(true);
}
// If new.target is equal to target then the function created
// is already correctly setup and nothing else should be done
// here. But if new.target is not equal to target then we are
// have a Function builtin subclassing case and therefore the
// function has wrong initial map. To fix that we create a new
// function object with correct initial map.
Handle<Object> unchecked_new_target = args.new_target();
if (!unchecked_new_target->IsUndefined(isolate) &&
!unchecked_new_target.is_identical_to(target)) {
Handle<JSReceiver> new_target =
Handle<JSReceiver>::cast(unchecked_new_target);
Handle<Map> initial_map;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, initial_map,
JSFunction::GetDerivedMap(isolate, target, new_target), Object);
Handle<SharedFunctionInfo> shared_info(function->shared(), isolate);
Handle<Map> map = Map::AsLanguageMode(
initial_map, shared_info->language_mode(), shared_info->kind());
Handle<Context> context(function->context(), isolate);
function = isolate->factory()->NewFunctionFromSharedFunctionInfo(
map, shared_info, context, NOT_TENURED);
}
return function;
}
} // namespace
// ES6 section 19.2.1.1 Function ( p1, p2, ... , pn, body )
BUILTIN(FunctionConstructor) {
HandleScope scope(isolate);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, CreateDynamicFunction(isolate, args, "function"));
return *result;
}
// ES6 section 25.2.1.1 GeneratorFunction (p1, p2, ... , pn, body)
BUILTIN(GeneratorFunctionConstructor) {
HandleScope scope(isolate);
RETURN_RESULT_OR_FAILURE(isolate,
CreateDynamicFunction(isolate, args, "function*"));
}
BUILTIN(AsyncFunctionConstructor) {
HandleScope scope(isolate);
Handle<Object> maybe_func;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, maybe_func,
CreateDynamicFunction(isolate, args, "async function"));
if (!maybe_func->IsJSFunction()) return *maybe_func;
// Do not lazily compute eval position for AsyncFunction, as they may not be
// determined after the function is resumed.
Handle<JSFunction> func = Handle<JSFunction>::cast(maybe_func);
Handle<Script> script = handle(Script::cast(func->shared()->script()));
int position = script->GetEvalPosition();
USE(position);
return *func;
}
namespace {
Object* DoFunctionBind(Isolate* isolate, BuiltinArguments args) {
HandleScope scope(isolate);
DCHECK_LE(1, args.length());
if (!args.receiver()->IsCallable()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kFunctionBind));
}
// Allocate the bound function with the given {this_arg} and {args}.
Handle<JSReceiver> target = args.at<JSReceiver>(0);
Handle<Object> this_arg = isolate->factory()->undefined_value();
ScopedVector<Handle<Object>> argv(std::max(0, args.length() - 2));
if (args.length() > 1) {
this_arg = args.at<Object>(1);
for (int i = 2; i < args.length(); ++i) {
argv[i - 2] = args.at<Object>(i);
}
}
Handle<JSBoundFunction> function;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, function,
isolate->factory()->NewJSBoundFunction(target, this_arg, argv));
LookupIterator length_lookup(target, isolate->factory()->length_string(),
target, LookupIterator::OWN);
// Setup the "length" property based on the "length" of the {target}.
// If the targets length is the default JSFunction accessor, we can keep the
// accessor that's installed by default on the JSBoundFunction. It lazily
// computes the value from the underlying internal length.
if (!target->IsJSFunction() ||
length_lookup.state() != LookupIterator::ACCESSOR ||
!length_lookup.GetAccessors()->IsAccessorInfo()) {
Handle<Object> length(Smi::FromInt(0), isolate);
Maybe<PropertyAttributes> attributes =
JSReceiver::GetPropertyAttributes(&length_lookup);
if (!attributes.IsJust()) return isolate->heap()->exception();
if (attributes.FromJust() != ABSENT) {
Handle<Object> target_length;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target_length,
Object::GetProperty(&length_lookup));
if (target_length->IsNumber()) {
length = isolate->factory()->NewNumber(std::max(
0.0, DoubleToInteger(target_length->Number()) - argv.length()));
}
}
LookupIterator it(function, isolate->factory()->length_string(), function);
DCHECK_EQ(LookupIterator::ACCESSOR, it.state());
RETURN_FAILURE_ON_EXCEPTION(isolate,
JSObject::DefineOwnPropertyIgnoreAttributes(
&it, length, it.property_attributes()));
}
// Setup the "name" property based on the "name" of the {target}.
// If the targets name is the default JSFunction accessor, we can keep the
// accessor that's installed by default on the JSBoundFunction. It lazily
// computes the value from the underlying internal name.
LookupIterator name_lookup(target, isolate->factory()->name_string(), target,
LookupIterator::OWN);
if (!target->IsJSFunction() ||
name_lookup.state() != LookupIterator::ACCESSOR ||
!name_lookup.GetAccessors()->IsAccessorInfo()) {
Handle<Object> target_name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target_name,
Object::GetProperty(&name_lookup));
Handle<String> name;
if (target_name->IsString()) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, name,
Name::ToFunctionName(Handle<String>::cast(target_name)));
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, name, isolate->factory()->NewConsString(
isolate->factory()->bound__string(), name));
} else {
name = isolate->factory()->bound__string();
}
LookupIterator it(function, isolate->factory()->name_string());
DCHECK_EQ(LookupIterator::ACCESSOR, it.state());
RETURN_FAILURE_ON_EXCEPTION(isolate,
JSObject::DefineOwnPropertyIgnoreAttributes(
&it, name, it.property_attributes()));
}
return *function;
}
} // namespace
// ES6 section 19.2.3.2 Function.prototype.bind ( thisArg, ...args )
BUILTIN(FunctionPrototypeBind) { return DoFunctionBind(isolate, args); }
// TODO(verwaest): This is a temporary helper until the FastFunctionBind stub
// can tailcall to the builtin directly.
RUNTIME_FUNCTION(Runtime_FunctionBind) {
DCHECK_EQ(2, args.length());
Arguments* incoming = reinterpret_cast<Arguments*>(args[0]);
// Rewrap the arguments as builtins arguments.
int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver;
BuiltinArguments caller_args(argc, incoming->arguments() + 1);
return DoFunctionBind(isolate, caller_args);
}
// ES6 section 19.2.3.5 Function.prototype.toString ( )
BUILTIN(FunctionPrototypeToString) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
if (receiver->IsJSBoundFunction()) {
return *JSBoundFunction::ToString(Handle<JSBoundFunction>::cast(receiver));
} else if (receiver->IsJSFunction()) {
return *JSFunction::ToString(Handle<JSFunction>::cast(receiver));
}
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Function.prototype.toString")));
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
#include "src/uri.h"
namespace v8 {
namespace internal {
// ES6 section 18.2.6.2 decodeURI (encodedURI)
BUILTIN(GlobalDecodeURI) {
HandleScope scope(isolate);
Handle<String> encoded_uri;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, encoded_uri,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate, Uri::DecodeUri(isolate, encoded_uri));
}
// ES6 section 18.2.6.3 decodeURIComponent (encodedURIComponent)
BUILTIN(GlobalDecodeURIComponent) {
HandleScope scope(isolate);
Handle<String> encoded_uri_component;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, encoded_uri_component,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(
isolate, Uri::DecodeUriComponent(isolate, encoded_uri_component));
}
// ES6 section 18.2.6.4 encodeURI (uri)
BUILTIN(GlobalEncodeURI) {
HandleScope scope(isolate);
Handle<String> uri;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, uri, Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate, Uri::EncodeUri(isolate, uri));
}
// ES6 section 18.2.6.5 encodeURIComponenet (uriComponent)
BUILTIN(GlobalEncodeURIComponent) {
HandleScope scope(isolate);
Handle<String> uri_component;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, uri_component,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate,
Uri::EncodeUriComponent(isolate, uri_component));
}
// ES6 section B.2.1.1 escape (string)
BUILTIN(GlobalEscape) {
HandleScope scope(isolate);
Handle<String> string;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, string,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate, Uri::Escape(isolate, string));
}
// ES6 section B.2.1.2 unescape (string)
BUILTIN(GlobalUnescape) {
HandleScope scope(isolate);
Handle<String> string;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, string,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate, Uri::Unescape(isolate, string));
}
// ES6 section 18.2.1 eval (x)
BUILTIN(GlobalEval) {
HandleScope scope(isolate);
Handle<Object> x = args.atOrUndefined(isolate, 1);
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSObject> target_global_proxy(target->global_proxy(), isolate);
if (!x->IsString()) return *x;
Handle<JSFunction> function;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, function,
Builtins::CompileString(handle(target->native_context(), isolate),
Handle<String>::cast(x), NO_PARSE_RESTRICTION));
RETURN_RESULT_OR_FAILURE(
isolate,
Execution::Call(isolate, function, target_global_proxy, 0, nullptr));
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
namespace v8 {
namespace internal {
BUILTIN(Illegal) {
UNREACHABLE();
return isolate->heap()->undefined_value(); // Make compiler happy.
}
BUILTIN(EmptyFunction) { return isolate->heap()->undefined_value(); }
// -----------------------------------------------------------------------------
// Throwers for restricted function properties and strict arguments object
// properties
BUILTIN(RestrictedFunctionPropertiesThrower) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kRestrictedFunctionProperties));
}
BUILTIN(RestrictedStrictArgumentsPropertiesThrower) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kStrictPoisonPill));
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
#include "src/json-parser.h"
#include "src/json-stringifier.h"
namespace v8 {
namespace internal {
// ES6 section 24.3.1 JSON.parse.
BUILTIN(JsonParse) {
HandleScope scope(isolate);
Handle<Object> source = args.atOrUndefined(isolate, 1);
Handle<Object> reviver = args.atOrUndefined(isolate, 2);
Handle<String> string;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, string,
Object::ToString(isolate, source));
string = String::Flatten(string);
RETURN_RESULT_OR_FAILURE(
isolate, string->IsSeqOneByteString()
? JsonParser<true>::Parse(isolate, string, reviver)
: JsonParser<false>::Parse(isolate, string, reviver));
}
// ES6 section 24.3.2 JSON.stringify.
BUILTIN(JsonStringify) {
HandleScope scope(isolate);
JsonStringifier stringifier(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<Object> replacer = args.atOrUndefined(isolate, 2);
Handle<Object> indent = args.atOrUndefined(isolate, 3);
RETURN_RESULT_OR_FAILURE(isolate,
stringifier.Stringify(object, replacer, indent));
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
#include "src/code-factory.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 20.2.2 Function Properties of the Math Object
// ES6 section - 20.2.2.1 Math.abs ( x )
void Builtins::Generate_MathAbs(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Abs(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.2 Math.acos ( x )
void Builtins::Generate_MathAcos(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Acos(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.3 Math.acosh ( x )
void Builtins::Generate_MathAcosh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Acosh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.4 Math.asin ( x )
void Builtins::Generate_MathAsin(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Asin(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.5 Math.asinh ( x )
void Builtins::Generate_MathAsinh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Asinh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.6 Math.atan ( x )
void Builtins::Generate_MathAtan(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atan(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.7 Math.atanh ( x )
void Builtins::Generate_MathAtanh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atanh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.8 Math.atan2 ( y, x )
void Builtins::Generate_MathAtan2(CodeStubAssembler* assembler) {
using compiler::Node;
Node* y = assembler->Parameter(1);
Node* x = assembler->Parameter(2);
Node* context = assembler->Parameter(5);
Node* y_value = assembler->TruncateTaggedToFloat64(context, y);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atan2(y_value, x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
namespace {
void Generate_MathRoundingOperation(
CodeStubAssembler* assembler,
compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* context = assembler->Parameter(4);
// We might need to loop once for ToNumber conversion.
Variable var_x(assembler, MachineRepresentation::kTagged);
Label loop(assembler, &var_x);
var_x.Bind(assembler->Parameter(1));
assembler->Goto(&loop);
assembler->Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
Label if_xissmi(assembler), if_xisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(x), &if_xissmi, &if_xisnotsmi);
assembler->Bind(&if_xissmi);
{
// Nothing to do when {x} is a Smi.
assembler->Return(x);
}
assembler->Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
Label if_xisheapnumber(assembler),
if_xisnotheapnumber(assembler, Label::kDeferred);
assembler->Branch(
assembler->WordEqual(assembler->LoadMap(x),
assembler->HeapNumberMapConstant()),
&if_xisheapnumber, &if_xisnotheapnumber);
assembler->Bind(&if_xisheapnumber);
{
Node* x_value = assembler->LoadHeapNumberValue(x);
Node* value = (assembler->*float64op)(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
assembler->Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_x.Bind(assembler->CallStub(callable, context, x));
assembler->Goto(&loop);
}
}
}
}
} // namespace
// ES6 section 20.2.2.10 Math.ceil ( x )
void Builtins::Generate_MathCeil(CodeStubAssembler* assembler) {
Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Ceil);
}
// ES6 section 20.2.2.9 Math.cbrt ( x )
void Builtins::Generate_MathCbrt(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Cbrt(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.11 Math.clz32 ( x )
void Builtins::Generate_MathClz32(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* context = assembler->Parameter(4);
// Shared entry point for the clz32 operation.
Variable var_clz32_x(assembler, MachineRepresentation::kWord32);
Label do_clz32(assembler);
// We might need to loop once for ToNumber conversion.
Variable var_x(assembler, MachineRepresentation::kTagged);
Label loop(assembler, &var_x);
var_x.Bind(assembler->Parameter(1));
assembler->Goto(&loop);
assembler->Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
Label if_xissmi(assembler), if_xisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(x), &if_xissmi, &if_xisnotsmi);
assembler->Bind(&if_xissmi);
{
var_clz32_x.Bind(assembler->SmiToWord32(x));
assembler->Goto(&do_clz32);
}
assembler->Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
Label if_xisheapnumber(assembler),
if_xisnotheapnumber(assembler, Label::kDeferred);
assembler->Branch(
assembler->WordEqual(assembler->LoadMap(x),
assembler->HeapNumberMapConstant()),
&if_xisheapnumber, &if_xisnotheapnumber);
assembler->Bind(&if_xisheapnumber);
{
var_clz32_x.Bind(assembler->TruncateHeapNumberValueToWord32(x));
assembler->Goto(&do_clz32);
}
assembler->Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_x.Bind(assembler->CallStub(callable, context, x));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&do_clz32);
{
Node* x_value = var_clz32_x.value();
Node* value = assembler->Word32Clz(x_value);
Node* result = assembler->ChangeInt32ToTagged(value);
assembler->Return(result);
}
}
// ES6 section 20.2.2.12 Math.cos ( x )
void Builtins::Generate_MathCos(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Cos(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.13 Math.cosh ( x )
void Builtins::Generate_MathCosh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Cosh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.14 Math.exp ( x )
void Builtins::Generate_MathExp(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Exp(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.16 Math.floor ( x )
void Builtins::Generate_MathFloor(CodeStubAssembler* assembler) {
Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Floor);
}
// ES6 section 20.2.2.17 Math.fround ( x )
void Builtins::Generate_MathFround(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value32 = assembler->TruncateFloat64ToFloat32(x_value);
Node* value = assembler->ChangeFloat32ToFloat64(value32);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values )
BUILTIN(MathHypot) {
HandleScope scope(isolate);
int const length = args.length() - 1;
if (length == 0) return Smi::FromInt(0);
DCHECK_LT(0, length);
double max = 0;
bool one_arg_is_nan = false;
List<double> abs_values(length);
for (int i = 0; i < length; i++) {
Handle<Object> x = args.at<Object>(i + 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, x, Object::ToNumber(x));
double abs_value = std::abs(x->Number());
if (std::isnan(abs_value)) {
one_arg_is_nan = true;
} else {
abs_values.Add(abs_value);
if (max < abs_value) {
max = abs_value;
}
}
}
if (max == V8_INFINITY) {
return *isolate->factory()->NewNumber(V8_INFINITY);
}
if (one_arg_is_nan) {
return *isolate->factory()->nan_value();
}
if (max == 0) {
return Smi::FromInt(0);
}
DCHECK_GT(max, 0);
// Kahan summation to avoid rounding errors.
// Normalize the numbers to the largest one to avoid overflow.
double sum = 0;
double compensation = 0;
for (int i = 0; i < length; i++) {
double n = abs_values.at(i) / max;
double summand = n * n - compensation;
double preliminary = sum + summand;
compensation = (preliminary - sum) - summand;
sum = preliminary;
}
return *isolate->factory()->NewNumber(std::sqrt(sum) * max);
}
// ES6 section 20.2.2.19 Math.imul ( x, y )
void Builtins::Generate_MathImul(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* y = assembler->Parameter(2);
Node* context = assembler->Parameter(5);
Node* x_value = assembler->TruncateTaggedToWord32(context, x);
Node* y_value = assembler->TruncateTaggedToWord32(context, y);
Node* value = assembler->Int32Mul(x_value, y_value);
Node* result = assembler->ChangeInt32ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.20 Math.log ( x )
void Builtins::Generate_MathLog(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.21 Math.log1p ( x )
void Builtins::Generate_MathLog1p(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log1p(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.22 Math.log10 ( x )
void Builtins::Generate_MathLog10(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log10(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.23 Math.log2 ( x )
void Builtins::Generate_MathLog2(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log2(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.15 Math.expm1 ( x )
void Builtins::Generate_MathExpm1(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Expm1(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.26 Math.pow ( x, y )
void Builtins::Generate_MathPow(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* y = assembler->Parameter(2);
Node* context = assembler->Parameter(5);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* y_value = assembler->TruncateTaggedToFloat64(context, y);
Node* value = assembler->Float64Pow(x_value, y_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.28 Math.round ( x )
void Builtins::Generate_MathRound(CodeStubAssembler* assembler) {
Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Round);
}
// ES6 section 20.2.2.29 Math.sign ( x )
void Builtins::Generate_MathSign(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
using compiler::Node;
// Convert the {x} value to a Number.
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
// Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself.
Label if_xisnegative(assembler), if_xispositive(assembler);
assembler->GotoIf(
assembler->Float64LessThan(x_value, assembler->Float64Constant(0.0)),
&if_xisnegative);
assembler->GotoIf(
assembler->Float64LessThan(assembler->Float64Constant(0.0), x_value),
&if_xispositive);
assembler->Return(assembler->ChangeFloat64ToTagged(x_value));
assembler->Bind(&if_xisnegative);
assembler->Return(assembler->SmiConstant(Smi::FromInt(-1)));
assembler->Bind(&if_xispositive);
assembler->Return(assembler->SmiConstant(Smi::FromInt(1)));
}
// ES6 section 20.2.2.30 Math.sin ( x )
void Builtins::Generate_MathSin(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Sin(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.31 Math.sinh ( x )
void Builtins::Generate_MathSinh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Sinh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.32 Math.sqrt ( x )
void Builtins::Generate_MathSqrt(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Sqrt(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.33 Math.tan ( x )
void Builtins::Generate_MathTan(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Tan(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.34 Math.tanh ( x )
void Builtins::Generate_MathTanh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Tanh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.35 Math.trunc ( x )
void Builtins::Generate_MathTrunc(CodeStubAssembler* assembler) {
Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Trunc);
}
void Builtins::Generate_MathMax(MacroAssembler* masm) {
Generate_MathMaxMin(masm, MathMaxMinKind::kMax);
}
void Builtins::Generate_MathMin(MacroAssembler* masm) {
Generate_MathMaxMin(masm, MathMaxMinKind::kMin);
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 20.1 Number Objects
// ES6 section 20.1.3.2 Number.prototype.toExponential ( fractionDigits )
BUILTIN(NumberPrototypeToExponential) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toExponential")));
}
double const value_number = value->Number();
// Convert the {fraction_digits} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits));
double const fraction_digits_number = fraction_digits->Number();
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kNumberFormatRange,
isolate->factory()->NewStringFromAsciiChecked(
"toExponential()")));
}
int const f = args.atOrUndefined(isolate, 1)->IsUndefined(isolate)
? -1
: static_cast<int>(fraction_digits_number);
char* const str = DoubleToExponentialCString(value_number, f);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.3 Number.prototype.toFixed ( fractionDigits )
BUILTIN(NumberPrototypeToFixed) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toFixed")));
}
double const value_number = value->Number();
// Convert the {fraction_digits} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits));
double const fraction_digits_number = fraction_digits->Number();
// Check if the {fraction_digits} are in the supported range.
if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kNumberFormatRange,
isolate->factory()->NewStringFromAsciiChecked(
"toFixed() digits")));
}
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
char* const str = DoubleToFixedCString(
value_number, static_cast<int>(fraction_digits_number));
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.4 Number.prototype.toLocaleString ( [ r1 [ , r2 ] ] )
BUILTIN(NumberPrototypeToLocaleString) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toLocaleString")));
}
// Turn the {value} into a String.
return *isolate->factory()->NumberToString(value);
}
// ES6 section 20.1.3.5 Number.prototype.toPrecision ( precision )
BUILTIN(NumberPrototypeToPrecision) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
Handle<Object> precision = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toPrecision")));
}
double const value_number = value->Number();
// If no {precision} was specified, just return ToString of {value}.
if (precision->IsUndefined(isolate)) {
return *isolate->factory()->NumberToString(value);
}
// Convert the {precision} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, precision,
Object::ToInteger(isolate, precision));
double const precision_number = precision->Number();
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
if (precision_number < 1.0 || precision_number > 21.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kToPrecisionFormatRange));
}
char* const str = DoubleToPrecisionCString(
value_number, static_cast<int>(precision_number));
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.6 Number.prototype.toString ( [ radix ] )
BUILTIN(NumberPrototypeToString) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
Handle<Object> radix = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toString")));
}
double const value_number = value->Number();
// If no {radix} was specified, just return ToString of {value}.
if (radix->IsUndefined(isolate)) {
return *isolate->factory()->NumberToString(value);
}
// Convert the {radix} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix,
Object::ToInteger(isolate, radix));
double const radix_number = radix->Number();
// If {radix} is 10, just return ToString of {value}.
if (radix_number == 10.0) return *isolate->factory()->NumberToString(value);
// Make sure the {radix} is within the valid range.
if (radix_number < 2.0 || radix_number > 36.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kToRadixFormatRange));
}
// Fast case where the result is a one character string.
if (IsUint32Double(value_number) && value_number < radix_number) {
// Character array used for conversion.
static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
return *isolate->factory()->LookupSingleCharacterStringFromCode(
kCharTable[static_cast<uint32_t>(value_number)]);
}
// Slow case.
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
char* const str =
DoubleToRadixCString(value_number, static_cast<int>(radix_number));
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.7 Number.prototype.valueOf ( )
void Builtins::Generate_NumberPrototypeValueOf(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
Node* result = assembler->ToThisValue(
context, receiver, PrimitiveType::kNumber, "Number.prototype.valueOf");
assembler->Return(result);
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
#include "src/code-factory.h"
#include "src/property-descriptor.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 19.1 Object Objects
void Builtins::Generate_ObjectHasOwnProperty(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Node* object = assembler->Parameter(0);
Node* key = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Label call_runtime(assembler), return_true(assembler),
return_false(assembler);
// Smi receivers do not have own properties.
Label if_objectisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(object), &return_false,
&if_objectisnotsmi);
assembler->Bind(&if_objectisnotsmi);
Node* map = assembler->LoadMap(object);
Node* instance_type = assembler->LoadMapInstanceType(map);
Variable var_index(assembler, MachineRepresentation::kWord32);
Label keyisindex(assembler), if_iskeyunique(assembler);
assembler->TryToName(key, &keyisindex, &var_index, &if_iskeyunique,
&call_runtime);
assembler->Bind(&if_iskeyunique);
assembler->TryHasOwnProperty(object, map, instance_type, key, &return_true,
&return_false, &call_runtime);
assembler->Bind(&keyisindex);
assembler->TryLookupElement(object, map, instance_type, var_index.value(),
&return_true, &return_false, &call_runtime);
assembler->Bind(&return_true);
assembler->Return(assembler->BooleanConstant(true));
assembler->Bind(&return_false);
assembler->Return(assembler->BooleanConstant(false));
assembler->Bind(&call_runtime);
assembler->Return(assembler->CallRuntime(Runtime::kObjectHasOwnProperty,
context, object, key));
}
namespace {
MUST_USE_RESULT Maybe<bool> FastAssign(Handle<JSReceiver> to,
Handle<Object> next_source) {
// Non-empty strings are the only non-JSReceivers that need to be handled
// explicitly by Object.assign.
if (!next_source->IsJSReceiver()) {
return Just(!next_source->IsString() ||
String::cast(*next_source)->length() == 0);
}
// If the target is deprecated, the object will be updated on first store. If
// the source for that store equals the target, this will invalidate the
// cached representation of the source. Preventively upgrade the target.
// Do this on each iteration since any property load could cause deprecation.
if (to->map()->is_deprecated()) {
JSObject::MigrateInstance(Handle<JSObject>::cast(to));
}
Isolate* isolate = to->GetIsolate();
Handle<Map> map(JSReceiver::cast(*next_source)->map(), isolate);
if (!map->IsJSObjectMap()) return Just(false);
if (!map->OnlyHasSimpleProperties()) return Just(false);
Handle<JSObject> from = Handle<JSObject>::cast(next_source);
if (from->elements() != isolate->heap()->empty_fixed_array()) {
return Just(false);
}
Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate);
int length = map->NumberOfOwnDescriptors();
bool stable = true;
for (int i = 0; i < length; i++) {
Handle<Name> next_key(descriptors->GetKey(i), isolate);
Handle<Object> prop_value;
// Directly decode from the descriptor array if |from| did not change shape.
if (stable) {
PropertyDetails details = descriptors->GetDetails(i);
if (!details.IsEnumerable()) continue;
if (details.kind() == kData) {
if (details.location() == kDescriptor) {
prop_value = handle(descriptors->GetValue(i), isolate);
} else {
Representation representation = details.representation();
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
prop_value = JSObject::FastPropertyAt(from, representation, index);
}
} else {
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, prop_value, JSReceiver::GetProperty(from, next_key),
Nothing<bool>());
stable = from->map() == *map;
}
} else {
// If the map did change, do a slower lookup. We are still guaranteed that
// the object has a simple shape, and that the key is a name.
LookupIterator it(from, next_key, from,
LookupIterator::OWN_SKIP_INTERCEPTOR);
if (!it.IsFound()) continue;
DCHECK(it.state() == LookupIterator::DATA ||
it.state() == LookupIterator::ACCESSOR);
if (!it.IsEnumerable()) continue;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, prop_value, Object::GetProperty(&it), Nothing<bool>());
}
LookupIterator it(to, next_key, to);
bool call_to_js = it.IsFound() && it.state() != LookupIterator::DATA;
Maybe<bool> result = Object::SetProperty(
&it, prop_value, STRICT, Object::CERTAINLY_NOT_STORE_FROM_KEYED);
if (result.IsNothing()) return result;
if (stable && call_to_js) stable = from->map() == *map;
}
return Just(true);
}
} // namespace
// ES6 19.1.2.1 Object.assign
BUILTIN(ObjectAssign) {
HandleScope scope(isolate);
Handle<Object> target = args.atOrUndefined(isolate, 1);
// 1. Let to be ? ToObject(target).
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target,
Object::ToObject(isolate, target));
Handle<JSReceiver> to = Handle<JSReceiver>::cast(target);
// 2. If only one argument was passed, return to.
if (args.length() == 2) return *to;
// 3. Let sources be the List of argument values starting with the
// second argument.
// 4. For each element nextSource of sources, in ascending index order,
for (int i = 2; i < args.length(); ++i) {
Handle<Object> next_source = args.at<Object>(i);
Maybe<bool> fast_assign = FastAssign(to, next_source);
if (fast_assign.IsNothing()) return isolate->heap()->exception();
if (fast_assign.FromJust()) continue;
// 4a. If nextSource is undefined or null, let keys be an empty List.
// 4b. Else,
// 4b i. Let from be ToObject(nextSource).
// Only non-empty strings and JSReceivers have enumerable properties.
Handle<JSReceiver> from =
Object::ToObject(isolate, next_source).ToHandleChecked();
// 4b ii. Let keys be ? from.[[OwnPropertyKeys]]().
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys, KeyAccumulator::GetKeys(
from, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES,
GetKeysConversion::kKeepNumbers));
// 4c. Repeat for each element nextKey of keys in List order,
for (int j = 0; j < keys->length(); ++j) {
Handle<Object> next_key(keys->get(j), isolate);
// 4c i. Let desc be ? from.[[GetOwnProperty]](nextKey).
PropertyDescriptor desc;
Maybe<bool> found =
JSReceiver::GetOwnPropertyDescriptor(isolate, from, next_key, &desc);
if (found.IsNothing()) return isolate->heap()->exception();
// 4c ii. If desc is not undefined and desc.[[Enumerable]] is true, then
if (found.FromJust() && desc.enumerable()) {
// 4c ii 1. Let propValue be ? Get(from, nextKey).
Handle<Object> prop_value;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, prop_value,
Runtime::GetObjectProperty(isolate, from, next_key));
// 4c ii 2. Let status be ? Set(to, nextKey, propValue, true).
Handle<Object> status;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, status, Runtime::SetObjectProperty(isolate, to, next_key,
prop_value, STRICT));
}
}
}
// 5. Return to.
return *to;
}
// ES6 section 19.1.3.4 Object.prototype.propertyIsEnumerable ( V )
BUILTIN(ObjectPrototypePropertyIsEnumerable) {
HandleScope scope(isolate);
Handle<JSReceiver> object;
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, name, Object::ToName(isolate, args.atOrUndefined(isolate, 1)));
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, object, JSReceiver::ToObject(isolate, args.receiver()));
Maybe<PropertyAttributes> maybe =
JSReceiver::GetOwnPropertyAttributes(object, name);
if (!maybe.IsJust()) return isolate->heap()->exception();
if (maybe.FromJust() == ABSENT) return isolate->heap()->false_value();
return isolate->heap()->ToBoolean((maybe.FromJust() & DONT_ENUM) == 0);
}
namespace { // anonymous namespace for ObjectProtoToString()
void IsString(CodeStubAssembler* assembler, compiler::Node* object,
CodeStubAssembler::Label* if_string,
CodeStubAssembler::Label* if_notstring) {
typedef compiler::Node Node;
typedef CodeStubAssembler::Label Label;
Label if_notsmi(assembler);
assembler->Branch(assembler->WordIsSmi(object), if_notstring, &if_notsmi);
assembler->Bind(&if_notsmi);
{
Node* instance_type = assembler->LoadInstanceType(object);
assembler->Branch(
assembler->Int32LessThan(
instance_type, assembler->Int32Constant(FIRST_NONSTRING_TYPE)),
if_string, if_notstring);
}
}
void ReturnToStringFormat(CodeStubAssembler* assembler, compiler::Node* context,
compiler::Node* string) {
typedef compiler::Node Node;
Node* lhs = assembler->HeapConstant(
assembler->factory()->NewStringFromStaticChars("[object "));
Node* rhs = assembler->HeapConstant(
assembler->factory()->NewStringFromStaticChars("]"));
Callable callable = CodeFactory::StringAdd(
assembler->isolate(), STRING_ADD_CHECK_NONE, NOT_TENURED);
assembler->Return(assembler->CallStub(
callable, context, assembler->CallStub(callable, context, lhs, string),
rhs));
}
void ReturnIfPrimitive(CodeStubAssembler* assembler,
compiler::Node* instance_type,
CodeStubAssembler::Label* return_string,
CodeStubAssembler::Label* return_boolean,
CodeStubAssembler::Label* return_number) {
assembler->GotoIf(
assembler->Int32LessThan(instance_type,
assembler->Int32Constant(FIRST_NONSTRING_TYPE)),
return_string);
assembler->GotoIf(assembler->Word32Equal(
instance_type, assembler->Int32Constant(ODDBALL_TYPE)),
return_boolean);
assembler->GotoIf(
assembler->Word32Equal(instance_type,
assembler->Int32Constant(HEAP_NUMBER_TYPE)),
return_number);
}
} // namespace
// ES6 section 19.1.3.6 Object.prototype.toString
void Builtins::Generate_ObjectProtoToString(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Label return_undefined(assembler, Label::kDeferred),
return_null(assembler, Label::kDeferred),
return_arguments(assembler, Label::kDeferred), return_array(assembler),
return_api(assembler, Label::kDeferred), return_object(assembler),
return_regexp(assembler), return_function(assembler),
return_error(assembler), return_date(assembler), return_string(assembler),
return_boolean(assembler), return_jsvalue(assembler),
return_jsproxy(assembler, Label::kDeferred), return_number(assembler);
Label if_isproxy(assembler, Label::kDeferred);
Label checkstringtag(assembler);
Label if_tostringtag(assembler), if_notostringtag(assembler);
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
assembler->GotoIf(
assembler->Word32Equal(receiver, assembler->UndefinedConstant()),
&return_undefined);
assembler->GotoIf(assembler->Word32Equal(receiver, assembler->NullConstant()),
&return_null);
assembler->GotoIf(assembler->WordIsSmi(receiver), &return_number);
Node* receiver_instance_type = assembler->LoadInstanceType(receiver);
ReturnIfPrimitive(assembler, receiver_instance_type, &return_string,
&return_boolean, &return_number);
// for proxies, check IsArray before getting @@toStringTag
Variable var_proxy_is_array(assembler, MachineRepresentation::kTagged);
var_proxy_is_array.Bind(assembler->BooleanConstant(false));
assembler->Branch(
assembler->Word32Equal(receiver_instance_type,
assembler->Int32Constant(JS_PROXY_TYPE)),
&if_isproxy, &checkstringtag);
assembler->Bind(&if_isproxy);
{
// This can throw
var_proxy_is_array.Bind(
assembler->CallRuntime(Runtime::kArrayIsArray, context, receiver));
assembler->Goto(&checkstringtag);
}
assembler->Bind(&checkstringtag);
{
Node* to_string_tag_symbol = assembler->HeapConstant(
assembler->isolate()->factory()->to_string_tag_symbol());
GetPropertyStub stub(assembler->isolate());
Callable get_property =
Callable(stub.GetCode(), stub.GetCallInterfaceDescriptor());
Node* to_string_tag_value = assembler->CallStub(
get_property, context, receiver, to_string_tag_symbol);
IsString(assembler, to_string_tag_value, &if_tostringtag,
&if_notostringtag);
assembler->Bind(&if_tostringtag);
ReturnToStringFormat(assembler, context, to_string_tag_value);
}
assembler->Bind(&if_notostringtag);
{
size_t const kNumCases = 11;
Label* case_labels[kNumCases];
int32_t case_values[kNumCases];
case_labels[0] = &return_api;
case_values[0] = JS_API_OBJECT_TYPE;
case_labels[1] = &return_api;
case_values[1] = JS_SPECIAL_API_OBJECT_TYPE;
case_labels[2] = &return_arguments;
case_values[2] = JS_ARGUMENTS_TYPE;
case_labels[3] = &return_array;
case_values[3] = JS_ARRAY_TYPE;
case_labels[4] = &return_function;
case_values[4] = JS_BOUND_FUNCTION_TYPE;
case_labels[5] = &return_function;
case_values[5] = JS_FUNCTION_TYPE;
case_labels[6] = &return_error;
case_values[6] = JS_ERROR_TYPE;
case_labels[7] = &return_date;
case_values[7] = JS_DATE_TYPE;
case_labels[8] = &return_regexp;
case_values[8] = JS_REGEXP_TYPE;
case_labels[9] = &return_jsvalue;
case_values[9] = JS_VALUE_TYPE;
case_labels[10] = &return_jsproxy;
case_values[10] = JS_PROXY_TYPE;
assembler->Switch(receiver_instance_type, &return_object, case_values,
case_labels, arraysize(case_values));
assembler->Bind(&return_undefined);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->undefined_to_string()));
assembler->Bind(&return_null);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->null_to_string()));
assembler->Bind(&return_number);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->number_to_string()));
assembler->Bind(&return_string);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->string_to_string()));
assembler->Bind(&return_boolean);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->boolean_to_string()));
assembler->Bind(&return_arguments);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->arguments_to_string()));
assembler->Bind(&return_array);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->array_to_string()));
assembler->Bind(&return_function);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->function_to_string()));
assembler->Bind(&return_error);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->error_to_string()));
assembler->Bind(&return_date);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->date_to_string()));
assembler->Bind(&return_regexp);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->regexp_to_string()));
assembler->Bind(&return_api);
{
Node* class_name =
assembler->CallRuntime(Runtime::kClassOf, context, receiver);
ReturnToStringFormat(assembler, context, class_name);
}
assembler->Bind(&return_jsvalue);
{
Node* value = assembler->LoadJSValueValue(receiver);
assembler->GotoIf(assembler->WordIsSmi(value), &return_number);
ReturnIfPrimitive(assembler, assembler->LoadInstanceType(value),
&return_string, &return_boolean, &return_number);
assembler->Goto(&return_object);
}
assembler->Bind(&return_jsproxy);
{
assembler->GotoIf(assembler->WordEqual(var_proxy_is_array.value(),
assembler->BooleanConstant(true)),
&return_array);
Node* map = assembler->LoadMap(receiver);
// Return object if the proxy {receiver} is not callable.
assembler->Branch(
assembler->Word32Equal(
assembler->Word32And(
assembler->LoadMapBitField(map),
assembler->Int32Constant(1 << Map::kIsCallable)),
assembler->Int32Constant(0)),
&return_object, &return_function);
}
// Default
assembler->Bind(&return_object);
assembler->Return(assembler->HeapConstant(
assembler->isolate()->factory()->object_to_string()));
}
}
// ES6 section 19.1.2.2 Object.create ( O [ , Properties ] )
// TODO(verwaest): Support the common cases with precached map directly in
// an Object.create stub.
BUILTIN(ObjectCreate) {
HandleScope scope(isolate);
Handle<Object> prototype = args.atOrUndefined(isolate, 1);
if (!prototype->IsNull(isolate) && !prototype->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kProtoObjectOrNull, prototype));
}
// Generate the map with the specified {prototype} based on the Object
// function's initial map from the current native context.
// TODO(bmeurer): Use a dedicated cache for Object.create; think about
// slack tracking for Object.create.
Handle<Map> map(isolate->native_context()->object_function()->initial_map(),
isolate);
if (map->prototype() != *prototype) {
if (prototype->IsNull(isolate)) {
map = isolate->object_with_null_prototype_map();
} else if (prototype->IsJSObject()) {
Handle<JSObject> js_prototype = Handle<JSObject>::cast(prototype);
if (!js_prototype->map()->is_prototype_map()) {
JSObject::OptimizeAsPrototype(js_prototype, FAST_PROTOTYPE);
}
Handle<PrototypeInfo> info =
Map::GetOrCreatePrototypeInfo(js_prototype, isolate);
// TODO(verwaest): Use inobject slack tracking for this map.
if (info->HasObjectCreateMap()) {
map = handle(info->ObjectCreateMap(), isolate);
} else {
map = Map::CopyInitialMap(map);
Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
PrototypeInfo::SetObjectCreateMap(info, map);
}
} else {
map = Map::TransitionToPrototype(map, prototype, REGULAR_PROTOTYPE);
}
}
// Actually allocate the object.
Handle<JSObject> object = isolate->factory()->NewJSObjectFromMap(map);
// Define the properties if properties was specified and is not undefined.
Handle<Object> properties = args.atOrUndefined(isolate, 2);
if (!properties->IsUndefined(isolate)) {
RETURN_FAILURE_ON_EXCEPTION(
isolate, JSReceiver::DefineProperties(isolate, object, properties));
}
return *object;
}
// ES6 section 19.1.2.3 Object.defineProperties
BUILTIN(ObjectDefineProperties) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> properties = args.at<Object>(2);
RETURN_RESULT_OR_FAILURE(
isolate, JSReceiver::DefineProperties(isolate, target, properties));
}
// ES6 section 19.1.2.4 Object.defineProperty
BUILTIN(ObjectDefineProperty) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
Handle<Object> attributes = args.at<Object>(3);
return JSReceiver::DefineProperty(isolate, target, key, attributes);
}
namespace {
template <AccessorComponent which_accessor>
Object* ObjectDefineAccessor(Isolate* isolate, Handle<Object> object,
Handle<Object> name, Handle<Object> accessor) {
// 1. Let O be ? ToObject(this value).
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ConvertReceiver(isolate, object));
// 2. If IsCallable(getter) is false, throw a TypeError exception.
if (!accessor->IsCallable()) {
MessageTemplate::Template message =
which_accessor == ACCESSOR_GETTER
? MessageTemplate::kObjectGetterExpectingFunction
: MessageTemplate::kObjectSetterExpectingFunction;
THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError(message));
}
// 3. Let desc be PropertyDescriptor{[[Get]]: getter, [[Enumerable]]: true,
// [[Configurable]]: true}.
PropertyDescriptor desc;
if (which_accessor == ACCESSOR_GETTER) {
desc.set_get(accessor);
} else {
DCHECK(which_accessor == ACCESSOR_SETTER);
desc.set_set(accessor);
}
desc.set_enumerable(true);
desc.set_configurable(true);
// 4. Let key be ? ToPropertyKey(P).
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToPropertyKey(isolate, name));
// 5. Perform ? DefinePropertyOrThrow(O, key, desc).
// To preserve legacy behavior, we ignore errors silently rather than
// throwing an exception.
Maybe<bool> success = JSReceiver::DefineOwnProperty(
isolate, receiver, name, &desc, Object::DONT_THROW);
MAYBE_RETURN(success, isolate->heap()->exception());
if (!success.FromJust()) {
isolate->CountUsage(v8::Isolate::kDefineGetterOrSetterWouldThrow);
}
// 6. Return undefined.
return isolate->heap()->undefined_value();
}
Object* ObjectLookupAccessor(Isolate* isolate, Handle<Object> object,
Handle<Object> key, AccessorComponent component) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, object,
Object::ConvertReceiver(isolate, object));
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key,
Object::ToPropertyKey(isolate, key));
bool success = false;
LookupIterator it = LookupIterator::PropertyOrElement(
isolate, object, key, &success,
LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
DCHECK(success);
for (; it.IsFound(); it.Next()) {
switch (it.state()) {
case LookupIterator::INTERCEPTOR:
case LookupIterator::NOT_FOUND:
case LookupIterator::TRANSITION:
UNREACHABLE();
case LookupIterator::ACCESS_CHECK:
if (it.HasAccess()) continue;
isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>());
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return isolate->heap()->undefined_value();
case LookupIterator::JSPROXY:
return isolate->heap()->undefined_value();
case LookupIterator::INTEGER_INDEXED_EXOTIC:
return isolate->heap()->undefined_value();
case LookupIterator::DATA:
continue;
case LookupIterator::ACCESSOR: {
Handle<Object> maybe_pair = it.GetAccessors();
if (maybe_pair->IsAccessorPair()) {
return *AccessorPair::GetComponent(
Handle<AccessorPair>::cast(maybe_pair), component);
}
}
}
}
return isolate->heap()->undefined_value();
}
} // namespace
// ES6 B.2.2.2 a.k.a.
// https://tc39.github.io/ecma262/#sec-object.prototype.__defineGetter__
BUILTIN(ObjectDefineGetter) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0); // Receiver.
Handle<Object> name = args.at<Object>(1);
Handle<Object> getter = args.at<Object>(2);
return ObjectDefineAccessor<ACCESSOR_GETTER>(isolate, object, name, getter);
}
// ES6 B.2.2.3 a.k.a.
// https://tc39.github.io/ecma262/#sec-object.prototype.__defineSetter__
BUILTIN(ObjectDefineSetter) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0); // Receiver.
Handle<Object> name = args.at<Object>(1);
Handle<Object> setter = args.at<Object>(2);
return ObjectDefineAccessor<ACCESSOR_SETTER>(isolate, object, name, setter);
}
// ES6 B.2.2.4 a.k.a.
// https://tc39.github.io/ecma262/#sec-object.prototype.__lookupGetter__
BUILTIN(ObjectLookupGetter) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
Handle<Object> name = args.at<Object>(1);
return ObjectLookupAccessor(isolate, object, name, ACCESSOR_GETTER);
}
// ES6 B.2.2.5 a.k.a.
// https://tc39.github.io/ecma262/#sec-object.prototype.__lookupSetter__
BUILTIN(ObjectLookupSetter) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
Handle<Object> name = args.at<Object>(1);
return ObjectLookupAccessor(isolate, object, name, ACCESSOR_SETTER);
}
// ES6 section 19.1.2.5 Object.freeze ( O )
BUILTIN(ObjectFreeze) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
if (object->IsJSReceiver()) {
MAYBE_RETURN(JSReceiver::SetIntegrityLevel(Handle<JSReceiver>::cast(object),
FROZEN, Object::THROW_ON_ERROR),
isolate->heap()->exception());
}
return *object;
}
// ES section 19.1.2.9 Object.getPrototypeOf ( O )
BUILTIN(ObjectGetPrototypeOf) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
RETURN_RESULT_OR_FAILURE(isolate,
JSReceiver::GetPrototype(isolate, receiver));
}
// ES6 section 19.1.2.6 Object.getOwnPropertyDescriptor ( O, P )
BUILTIN(ObjectGetOwnPropertyDescriptor) {
HandleScope scope(isolate);
// 1. Let obj be ? ToObject(O).
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
// 2. Let key be ? ToPropertyKey(P).
Handle<Object> property = args.atOrUndefined(isolate, 2);
Handle<Name> key;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key,
Object::ToName(isolate, property));
// 3. Let desc be ? obj.[[GetOwnProperty]](key).
PropertyDescriptor desc;
Maybe<bool> found =
JSReceiver::GetOwnPropertyDescriptor(isolate, receiver, key, &desc);
MAYBE_RETURN(found, isolate->heap()->exception());
// 4. Return FromPropertyDescriptor(desc).
if (!found.FromJust()) return isolate->heap()->undefined_value();
return *desc.ToObject(isolate);
}
namespace {
Object* GetOwnPropertyKeys(Isolate* isolate, BuiltinArguments args,
PropertyFilter filter) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys,
KeyAccumulator::GetKeys(receiver, KeyCollectionMode::kOwnOnly, filter,
GetKeysConversion::kConvertToString));
return *isolate->factory()->NewJSArrayWithElements(keys);
}
} // namespace
// ES6 section 19.1.2.7 Object.getOwnPropertyNames ( O )
BUILTIN(ObjectGetOwnPropertyNames) {
return GetOwnPropertyKeys(isolate, args, SKIP_SYMBOLS);
}
// ES6 section 19.1.2.8 Object.getOwnPropertySymbols ( O )
BUILTIN(ObjectGetOwnPropertySymbols) {
return GetOwnPropertyKeys(isolate, args, SKIP_STRINGS);
}
// ES#sec-object.is Object.is ( value1, value2 )
BUILTIN(ObjectIs) {
SealHandleScope shs(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> value1 = args.at<Object>(1);
Handle<Object> value2 = args.at<Object>(2);
return isolate->heap()->ToBoolean(value1->SameValue(*value2));
}
// ES6 section 19.1.2.11 Object.isExtensible ( O )
BUILTIN(ObjectIsExtensible) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Maybe<bool> result =
object->IsJSReceiver()
? JSReceiver::IsExtensible(Handle<JSReceiver>::cast(object))
: Just(false);
MAYBE_RETURN(result, isolate->heap()->exception());
return isolate->heap()->ToBoolean(result.FromJust());
}
// ES6 section 19.1.2.12 Object.isFrozen ( O )
BUILTIN(ObjectIsFrozen) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Maybe<bool> result = object->IsJSReceiver()
? JSReceiver::TestIntegrityLevel(
Handle<JSReceiver>::cast(object), FROZEN)
: Just(true);
MAYBE_RETURN(result, isolate->heap()->exception());
return isolate->heap()->ToBoolean(result.FromJust());
}
// ES6 section 19.1.2.13 Object.isSealed ( O )
BUILTIN(ObjectIsSealed) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Maybe<bool> result = object->IsJSReceiver()
? JSReceiver::TestIntegrityLevel(
Handle<JSReceiver>::cast(object), SEALED)
: Just(true);
MAYBE_RETURN(result, isolate->heap()->exception());
return isolate->heap()->ToBoolean(result.FromJust());
}
// ES6 section 19.1.2.14 Object.keys ( O )
BUILTIN(ObjectKeys) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> keys;
int enum_length = receiver->map()->EnumLength();
if (enum_length != kInvalidEnumCacheSentinel &&
JSObject::cast(*receiver)->elements() ==
isolate->heap()->empty_fixed_array()) {
DCHECK(receiver->IsJSObject());
DCHECK(!JSObject::cast(*receiver)->HasNamedInterceptor());
DCHECK(!JSObject::cast(*receiver)->IsAccessCheckNeeded());
DCHECK(!receiver->map()->has_hidden_prototype());
DCHECK(JSObject::cast(*receiver)->HasFastProperties());
if (enum_length == 0) {
keys = isolate->factory()->empty_fixed_array();
} else {
Handle<FixedArray> cache(
receiver->map()->instance_descriptors()->GetEnumCache());
keys = isolate->factory()->CopyFixedArrayUpTo(cache, enum_length);
}
} else {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys,
KeyAccumulator::GetKeys(receiver, KeyCollectionMode::kOwnOnly,
ENUMERABLE_STRINGS,
GetKeysConversion::kConvertToString));
}
return *isolate->factory()->NewJSArrayWithElements(keys, FAST_ELEMENTS);
}
BUILTIN(ObjectValues) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> values;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, values, JSReceiver::GetOwnValues(receiver, ENUMERABLE_STRINGS));
return *isolate->factory()->NewJSArrayWithElements(values);
}
BUILTIN(ObjectEntries) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> entries;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, entries,
JSReceiver::GetOwnEntries(receiver, ENUMERABLE_STRINGS));
return *isolate->factory()->NewJSArrayWithElements(entries);
}
BUILTIN(ObjectGetOwnPropertyDescriptors) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys, KeyAccumulator::GetKeys(
receiver, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES,
GetKeysConversion::kConvertToString));
Handle<JSObject> descriptors =
isolate->factory()->NewJSObject(isolate->object_function());
for (int i = 0; i < keys->length(); ++i) {
Handle<Name> key = Handle<Name>::cast(FixedArray::get(*keys, i, isolate));
PropertyDescriptor descriptor;
Maybe<bool> did_get_descriptor = JSReceiver::GetOwnPropertyDescriptor(
isolate, receiver, key, &descriptor);
MAYBE_RETURN(did_get_descriptor, isolate->heap()->exception());
if (!did_get_descriptor.FromJust()) continue;
Handle<Object> from_descriptor = descriptor.ToObject(isolate);
LookupIterator it = LookupIterator::PropertyOrElement(
isolate, descriptors, key, descriptors, LookupIterator::OWN);
Maybe<bool> success = JSReceiver::CreateDataProperty(&it, from_descriptor,
Object::DONT_THROW);
CHECK(success.FromJust());
}
return *descriptors;
}
// ES6 section 19.1.2.15 Object.preventExtensions ( O )
BUILTIN(ObjectPreventExtensions) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
if (object->IsJSReceiver()) {
MAYBE_RETURN(JSReceiver::PreventExtensions(Handle<JSReceiver>::cast(object),
Object::THROW_ON_ERROR),
isolate->heap()->exception());
}
return *object;
}
// ES6 section 19.1.2.17 Object.seal ( O )
BUILTIN(ObjectSeal) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
if (object->IsJSReceiver()) {
MAYBE_RETURN(JSReceiver::SetIntegrityLevel(Handle<JSReceiver>::cast(object),
SEALED, Object::THROW_ON_ERROR),
isolate->heap()->exception());
}
return *object;
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
namespace v8 {
namespace internal {
// ES6 section 26.2.1.1 Proxy ( target, handler ) for the [[Call]] case.
BUILTIN(ProxyConstructor) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError(MessageTemplate::kConstructorNotFunction,
isolate->factory()->NewStringFromAsciiChecked("Proxy")));
}
// ES6 section 26.2.1.1 Proxy ( target, handler ) for the [[Construct]] case.
BUILTIN(ProxyConstructor_ConstructStub) {
HandleScope scope(isolate);
DCHECK(isolate->proxy_function()->IsConstructor());
Handle<Object> target = args.atOrUndefined(isolate, 1);
Handle<Object> handler = args.atOrUndefined(isolate, 2);
RETURN_RESULT_OR_FAILURE(isolate, JSProxy::New(isolate, target, handler));
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
#include "src/property-descriptor.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 26.1 The Reflect Object
// ES6 section 26.1.3 Reflect.defineProperty
BUILTIN(ReflectDefineProperty) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
Handle<Object> attributes = args.at<Object>(3);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.defineProperty")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
PropertyDescriptor desc;
if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) {
return isolate->heap()->exception();
}
Maybe<bool> result =
JSReceiver::DefineOwnProperty(isolate, Handle<JSReceiver>::cast(target),
name, &desc, Object::DONT_THROW);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.4 Reflect.deleteProperty
BUILTIN(ReflectDeleteProperty) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.deleteProperty")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
Maybe<bool> result = JSReceiver::DeletePropertyOrElement(
Handle<JSReceiver>::cast(target), name, SLOPPY);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.6 Reflect.get
BUILTIN(ReflectGet) {
HandleScope scope(isolate);
Handle<Object> target = args.atOrUndefined(isolate, 1);
Handle<Object> key = args.atOrUndefined(isolate, 2);
Handle<Object> receiver = args.length() > 3 ? args.at<Object>(3) : target;
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.get")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
RETURN_RESULT_OR_FAILURE(
isolate, Object::GetPropertyOrElement(receiver, name,
Handle<JSReceiver>::cast(target)));
}
// ES6 section 26.1.7 Reflect.getOwnPropertyDescriptor
BUILTIN(ReflectGetOwnPropertyDescriptor) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.getOwnPropertyDescriptor")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
PropertyDescriptor desc;
Maybe<bool> found = JSReceiver::GetOwnPropertyDescriptor(
isolate, Handle<JSReceiver>::cast(target), name, &desc);
MAYBE_RETURN(found, isolate->heap()->exception());
if (!found.FromJust()) return isolate->heap()->undefined_value();
return *desc.ToObject(isolate);
}
// ES6 section 26.1.8 Reflect.getPrototypeOf
BUILTIN(ReflectGetPrototypeOf) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.getPrototypeOf")));
}
Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(target);
RETURN_RESULT_OR_FAILURE(isolate,
JSReceiver::GetPrototype(isolate, receiver));
}
// ES6 section 26.1.9 Reflect.has
BUILTIN(ReflectHas) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.has")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
Maybe<bool> result =
JSReceiver::HasProperty(Handle<JSReceiver>::cast(target), name);
return result.IsJust() ? *isolate->factory()->ToBoolean(result.FromJust())
: isolate->heap()->exception();
}
// ES6 section 26.1.10 Reflect.isExtensible
BUILTIN(ReflectIsExtensible) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.isExtensible")));
}
Maybe<bool> result =
JSReceiver::IsExtensible(Handle<JSReceiver>::cast(target));
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.11 Reflect.ownKeys
BUILTIN(ReflectOwnKeys) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.ownKeys")));
}
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys,
KeyAccumulator::GetKeys(Handle<JSReceiver>::cast(target),
KeyCollectionMode::kOwnOnly, ALL_PROPERTIES,
GetKeysConversion::kConvertToString));
return *isolate->factory()->NewJSArrayWithElements(keys);
}
// ES6 section 26.1.12 Reflect.preventExtensions
BUILTIN(ReflectPreventExtensions) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.preventExtensions")));
}
Maybe<bool> result = JSReceiver::PreventExtensions(
Handle<JSReceiver>::cast(target), Object::DONT_THROW);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.13 Reflect.set
BUILTIN(ReflectSet) {
HandleScope scope(isolate);
Handle<Object> target = args.atOrUndefined(isolate, 1);
Handle<Object> key = args.atOrUndefined(isolate, 2);
Handle<Object> value = args.atOrUndefined(isolate, 3);
Handle<Object> receiver = args.length() > 4 ? args.at<Object>(4) : target;
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.set")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
LookupIterator it = LookupIterator::PropertyOrElement(
isolate, receiver, name, Handle<JSReceiver>::cast(target));
Maybe<bool> result = Object::SetSuperProperty(
&it, value, SLOPPY, Object::MAY_BE_STORE_FROM_KEYED);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.14 Reflect.setPrototypeOf
BUILTIN(ReflectSetPrototypeOf) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> proto = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.setPrototypeOf")));
}
if (!proto->IsJSReceiver() && !proto->IsNull(isolate)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kProtoObjectOrNull, proto));
}
Maybe<bool> result = JSReceiver::SetPrototype(
Handle<JSReceiver>::cast(target), proto, true, Object::DONT_THROW);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
#include "src/code-factory.h"
namespace v8 {
namespace internal {
// ES7 sharedmem 6.3.4.1 get SharedArrayBuffer.prototype.byteLength
BUILTIN(SharedArrayBufferPrototypeGetByteLength) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSArrayBuffer, array_buffer,
"get SharedArrayBuffer.prototype.byteLength");
if (!array_buffer->is_shared()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kIncompatibleMethodReceiver,
isolate->factory()->NewStringFromAsciiChecked(
"get SharedArrayBuffer.prototype.byteLength"),
args.receiver()));
}
return array_buffer->byte_length();
}
namespace {
void ValidateSharedTypedArray(CodeStubAssembler* a, compiler::Node* tagged,
compiler::Node* context,
compiler::Node** out_instance_type,
compiler::Node** out_backing_store) {
using namespace compiler;
CodeStubAssembler::Label is_smi(a), not_smi(a), is_typed_array(a),
not_typed_array(a), is_shared(a), not_shared(a), is_float_or_clamped(a),
not_float_or_clamped(a), invalid(a);
// Fail if it is not a heap object.
a->Branch(a->WordIsSmi(tagged), &is_smi, &not_smi);
a->Bind(&is_smi);
a->Goto(&invalid);
// Fail if the array's instance type is not JSTypedArray.
a->Bind(&not_smi);
a->Branch(a->WordEqual(a->LoadInstanceType(tagged),
a->Int32Constant(JS_TYPED_ARRAY_TYPE)),
&is_typed_array, &not_typed_array);
a->Bind(&not_typed_array);
a->Goto(&invalid);
// Fail if the array's JSArrayBuffer is not shared.
a->Bind(&is_typed_array);
Node* array_buffer = a->LoadObjectField(tagged, JSTypedArray::kBufferOffset);
Node* is_buffer_shared = a->BitFieldDecode<JSArrayBuffer::IsShared>(
a->LoadObjectField(array_buffer, JSArrayBuffer::kBitFieldSlot));
a->Branch(is_buffer_shared, &is_shared, &not_shared);
a->Bind(&not_shared);
a->Goto(&invalid);
// Fail if the array's element type is float32, float64 or clamped.
a->Bind(&is_shared);
Node* elements_instance_type = a->LoadInstanceType(
a->LoadObjectField(tagged, JSObject::kElementsOffset));
STATIC_ASSERT(FIXED_INT8_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_INT16_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_INT32_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_UINT8_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_UINT16_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_UINT32_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
a->Branch(a->Int32LessThan(elements_instance_type,
a->Int32Constant(FIXED_FLOAT32_ARRAY_TYPE)),
&not_float_or_clamped, &is_float_or_clamped);
a->Bind(&is_float_or_clamped);
a->Goto(&invalid);
a->Bind(&invalid);
a->CallRuntime(Runtime::kThrowNotIntegerSharedTypedArrayError, context,
tagged);
a->Return(a->UndefinedConstant());
a->Bind(&not_float_or_clamped);
*out_instance_type = elements_instance_type;
Node* backing_store =
a->LoadObjectField(array_buffer, JSArrayBuffer::kBackingStoreOffset);
Node* byte_offset = a->ChangeUint32ToWord(a->TruncateTaggedToWord32(
context,
a->LoadObjectField(tagged, JSArrayBufferView::kByteOffsetOffset)));
*out_backing_store = a->IntPtrAdd(backing_store, byte_offset);
}
// https://tc39.github.io/ecmascript_sharedmem/shmem.html#Atomics.ValidateAtomicAccess
compiler::Node* ConvertTaggedAtomicIndexToWord32(CodeStubAssembler* a,
compiler::Node* tagged,
compiler::Node* context) {
using namespace compiler;
CodeStubAssembler::Variable var_result(a, MachineRepresentation::kWord32);
Callable to_number = CodeFactory::ToNumber(a->isolate());
Node* number_index = a->CallStub(to_number, context, tagged);
CodeStubAssembler::Label done(a, &var_result);
CodeStubAssembler::Label if_numberissmi(a), if_numberisnotsmi(a);
a->Branch(a->WordIsSmi(number_index), &if_numberissmi, &if_numberisnotsmi);
a->Bind(&if_numberissmi);
{
var_result.Bind(a->SmiToWord32(number_index));
a->Goto(&done);
}
a->Bind(&if_numberisnotsmi);
{
Node* number_index_value = a->LoadHeapNumberValue(number_index);
Node* access_index = a->TruncateFloat64ToWord32(number_index_value);
Node* test_index = a->ChangeInt32ToFloat64(access_index);
CodeStubAssembler::Label if_indexesareequal(a), if_indexesarenotequal(a);
a->Branch(a->Float64Equal(number_index_value, test_index),
&if_indexesareequal, &if_indexesarenotequal);
a->Bind(&if_indexesareequal);
{
var_result.Bind(access_index);
a->Goto(&done);
}
a->Bind(&if_indexesarenotequal);
a->Return(
a->CallRuntime(Runtime::kThrowInvalidAtomicAccessIndexError, context));
}
a->Bind(&done);
return var_result.value();
}
void ValidateAtomicIndex(CodeStubAssembler* a, compiler::Node* index_word,
compiler::Node* array_length_word,
compiler::Node* context) {
using namespace compiler;
// Check if the index is in bounds. If not, throw RangeError.
CodeStubAssembler::Label if_inbounds(a), if_notinbounds(a);
a->Branch(
a->WordOr(a->Int32LessThan(index_word, a->Int32Constant(0)),
a->Int32GreaterThanOrEqual(index_word, array_length_word)),
&if_notinbounds, &if_inbounds);
a->Bind(&if_notinbounds);
a->Return(
a->CallRuntime(Runtime::kThrowInvalidAtomicAccessIndexError, context));
a->Bind(&if_inbounds);
}
} // anonymous namespace
void Builtins::Generate_AtomicsLoad(CodeStubAssembler* a) {
using namespace compiler;
Node* array = a->Parameter(1);
Node* index = a->Parameter(2);
Node* context = a->Parameter(3 + 2);
Node* instance_type;
Node* backing_store;
ValidateSharedTypedArray(a, array, context, &instance_type, &backing_store);
Node* index_word32 = ConvertTaggedAtomicIndexToWord32(a, index, context);
Node* array_length_word32 = a->TruncateTaggedToWord32(
context, a->LoadObjectField(array, JSTypedArray::kLengthOffset));
ValidateAtomicIndex(a, index_word32, array_length_word32, context);
Node* index_word = a->ChangeUint32ToWord(index_word32);
CodeStubAssembler::Label i8(a), u8(a), i16(a), u16(a), i32(a), u32(a),
other(a);
int32_t case_values[] = {
FIXED_INT8_ARRAY_TYPE, FIXED_UINT8_ARRAY_TYPE, FIXED_INT16_ARRAY_TYPE,
FIXED_UINT16_ARRAY_TYPE, FIXED_INT32_ARRAY_TYPE, FIXED_UINT32_ARRAY_TYPE,
};
CodeStubAssembler::Label* case_labels[] = {
&i8, &u8, &i16, &u16, &i32, &u32,
};
a->Switch(instance_type, &other, case_values, case_labels,
arraysize(case_labels));
a->Bind(&i8);
a->Return(
a->SmiTag(a->AtomicLoad(MachineType::Int8(), backing_store, index_word)));
a->Bind(&u8);
a->Return(a->SmiTag(
a->AtomicLoad(MachineType::Uint8(), backing_store, index_word)));
a->Bind(&i16);
a->Return(a->SmiTag(a->AtomicLoad(MachineType::Int16(), backing_store,
a->WordShl(index_word, 1))));
a->Bind(&u16);
a->Return(a->SmiTag(a->AtomicLoad(MachineType::Uint16(), backing_store,
a->WordShl(index_word, 1))));
a->Bind(&i32);
a->Return(a->ChangeInt32ToTagged(a->AtomicLoad(
MachineType::Int32(), backing_store, a->WordShl(index_word, 2))));
a->Bind(&u32);
a->Return(a->ChangeUint32ToTagged(a->AtomicLoad(
MachineType::Uint32(), backing_store, a->WordShl(index_word, 2))));
// This shouldn't happen, we've already validated the type.
a->Bind(&other);
a->Return(a->Int32Constant(0));
}
void Builtins::Generate_AtomicsStore(CodeStubAssembler* a) {
using namespace compiler;
Node* array = a->Parameter(1);
Node* index = a->Parameter(2);
Node* value = a->Parameter(3);
Node* context = a->Parameter(4 + 2);
Node* instance_type;
Node* backing_store;
ValidateSharedTypedArray(a, array, context, &instance_type, &backing_store);
Node* index_word32 = ConvertTaggedAtomicIndexToWord32(a, index, context);
Node* array_length_word32 = a->TruncateTaggedToWord32(
context, a->LoadObjectField(array, JSTypedArray::kLengthOffset));
ValidateAtomicIndex(a, index_word32, array_length_word32, context);
Node* index_word = a->ChangeUint32ToWord(index_word32);
Callable to_integer = CodeFactory::ToInteger(a->isolate());
Node* value_integer = a->CallStub(to_integer, context, value);
Node* value_word32 = a->TruncateTaggedToWord32(context, value_integer);
CodeStubAssembler::Label u8(a), u16(a), u32(a), other(a);
int32_t case_values[] = {
FIXED_INT8_ARRAY_TYPE, FIXED_UINT8_ARRAY_TYPE, FIXED_INT16_ARRAY_TYPE,
FIXED_UINT16_ARRAY_TYPE, FIXED_INT32_ARRAY_TYPE, FIXED_UINT32_ARRAY_TYPE,
};
CodeStubAssembler::Label* case_labels[] = {
&u8, &u8, &u16, &u16, &u32, &u32,
};
a->Switch(instance_type, &other, case_values, case_labels,
arraysize(case_labels));
a->Bind(&u8);
a->AtomicStore(MachineRepresentation::kWord8, backing_store, index_word,
value_word32);
a->Return(value_integer);
a->Bind(&u16);
a->SmiTag(a->AtomicStore(MachineRepresentation::kWord16, backing_store,
a->WordShl(index_word, 1), value_word32));
a->Return(value_integer);
a->Bind(&u32);
a->AtomicStore(MachineRepresentation::kWord32, backing_store,
a->WordShl(index_word, 2), value_word32);
a->Return(value_integer);
// This shouldn't happen, we've already validated the type.
a->Bind(&other);
a->Return(a->Int32Constant(0));
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
#include "src/code-factory.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 21.1 String Objects
// ES6 section 21.1.2.1 String.fromCharCode ( ...codeUnits )
void Builtins::Generate_StringFromCharCode(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* code = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
// Check if we have exactly one argument (plus the implicit receiver), i.e.
// if the parent frame is not an arguments adaptor frame.
Label if_oneargument(assembler), if_notoneargument(assembler);
Node* parent_frame_pointer = assembler->LoadParentFramePointer();
Node* parent_frame_type =
assembler->Load(MachineType::Pointer(), parent_frame_pointer,
assembler->IntPtrConstant(
CommonFrameConstants::kContextOrFrameTypeOffset));
assembler->Branch(
assembler->WordEqual(
parent_frame_type,
assembler->SmiConstant(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))),
&if_notoneargument, &if_oneargument);
assembler->Bind(&if_oneargument);
{
// Single argument case, perform fast single character string cache lookup
// for one-byte code units, or fall back to creating a single character
// string on the fly otherwise.
Node* code32 = assembler->TruncateTaggedToWord32(context, code);
Node* code16 = assembler->Word32And(
code32, assembler->Int32Constant(String::kMaxUtf16CodeUnit));
Node* result = assembler->StringFromCharCode(code16);
assembler->Return(result);
}
assembler->Bind(&if_notoneargument);
{
// Determine the resulting string length.
Node* parent_frame_length =
assembler->Load(MachineType::Pointer(), parent_frame_pointer,
assembler->IntPtrConstant(
ArgumentsAdaptorFrameConstants::kLengthOffset));
Node* length = assembler->SmiToWord(parent_frame_length);
// Assume that the resulting string contains only one-byte characters.
Node* result = assembler->AllocateSeqOneByteString(context, length);
// Truncate all input parameters and append them to the resulting string.
Variable var_offset(assembler, MachineType::PointerRepresentation());
Label loop(assembler, &var_offset), done_loop(assembler);
var_offset.Bind(assembler->IntPtrConstant(0));
assembler->Goto(&loop);
assembler->Bind(&loop);
{
// Load the current {offset}.
Node* offset = var_offset.value();
// Check if we're done with the string.
assembler->GotoIf(assembler->WordEqual(offset, length), &done_loop);
// Load the next code point and truncate it to a 16-bit value.
Node* code = assembler->Load(
MachineType::AnyTagged(), parent_frame_pointer,
assembler->IntPtrAdd(
assembler->WordShl(assembler->IntPtrSub(length, offset),
assembler->IntPtrConstant(kPointerSizeLog2)),
assembler->IntPtrConstant(
CommonFrameConstants::kFixedFrameSizeAboveFp -
kPointerSize)));
Node* code32 = assembler->TruncateTaggedToWord32(context, code);
Node* code16 = assembler->Word32And(
code32, assembler->Int32Constant(String::kMaxUtf16CodeUnit));
// Check if {code16} fits into a one-byte string.
Label if_codeisonebyte(assembler), if_codeistwobyte(assembler);
assembler->Branch(
assembler->Int32LessThanOrEqual(
code16, assembler->Int32Constant(String::kMaxOneByteCharCode)),
&if_codeisonebyte, &if_codeistwobyte);
assembler->Bind(&if_codeisonebyte);
{
// The {code16} fits into the SeqOneByteString {result}.
assembler->StoreNoWriteBarrier(
MachineRepresentation::kWord8, result,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqOneByteString::kHeaderSize -
kHeapObjectTag),
offset),
code16);
var_offset.Bind(
assembler->IntPtrAdd(offset, assembler->IntPtrConstant(1)));
assembler->Goto(&loop);
}
assembler->Bind(&if_codeistwobyte);
{
// Allocate a SeqTwoByteString to hold the resulting string.
Node* cresult = assembler->AllocateSeqTwoByteString(context, length);
// Copy all characters that were previously written to the
// SeqOneByteString in {result} over to the new {cresult}.
Variable var_coffset(assembler, MachineType::PointerRepresentation());
Label cloop(assembler, &var_coffset), done_cloop(assembler);
var_coffset.Bind(assembler->IntPtrConstant(0));
assembler->Goto(&cloop);
assembler->Bind(&cloop);
{
Node* coffset = var_coffset.value();
assembler->GotoIf(assembler->WordEqual(coffset, offset), &done_cloop);
Node* ccode = assembler->Load(
MachineType::Uint8(), result,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqOneByteString::kHeaderSize -
kHeapObjectTag),
coffset));
assembler->StoreNoWriteBarrier(
MachineRepresentation::kWord16, cresult,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqTwoByteString::kHeaderSize -
kHeapObjectTag),
assembler->WordShl(coffset, 1)),
ccode);
var_coffset.Bind(
assembler->IntPtrAdd(coffset, assembler->IntPtrConstant(1)));
assembler->Goto(&cloop);
}
// Write the pending {code16} to {offset}.
assembler->Bind(&done_cloop);
assembler->StoreNoWriteBarrier(
MachineRepresentation::kWord16, cresult,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqTwoByteString::kHeaderSize -
kHeapObjectTag),
assembler->WordShl(offset, 1)),
code16);
// Copy the remaining parameters to the SeqTwoByteString {cresult}.
Label floop(assembler, &var_offset), done_floop(assembler);
assembler->Goto(&floop);
assembler->Bind(&floop);
{
// Compute the next {offset}.
Node* offset = assembler->IntPtrAdd(var_offset.value(),
assembler->IntPtrConstant(1));
// Check if we're done with the string.
assembler->GotoIf(assembler->WordEqual(offset, length), &done_floop);
// Load the next code point and truncate it to a 16-bit value.
Node* code = assembler->Load(
MachineType::AnyTagged(), parent_frame_pointer,
assembler->IntPtrAdd(
assembler->WordShl(
assembler->IntPtrSub(length, offset),
assembler->IntPtrConstant(kPointerSizeLog2)),
assembler->IntPtrConstant(
CommonFrameConstants::kFixedFrameSizeAboveFp -
kPointerSize)));
Node* code32 = assembler->TruncateTaggedToWord32(context, code);
Node* code16 = assembler->Word32And(
code32, assembler->Int32Constant(String::kMaxUtf16CodeUnit));
// Store the truncated {code} point at the next offset.
assembler->StoreNoWriteBarrier(
MachineRepresentation::kWord16, cresult,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqTwoByteString::kHeaderSize -
kHeapObjectTag),
assembler->WordShl(offset, 1)),
code16);
var_offset.Bind(offset);
assembler->Goto(&floop);
}
// Return the SeqTwoByteString.
assembler->Bind(&done_floop);
assembler->Return(cresult);
}
}
assembler->Bind(&done_loop);
assembler->Return(result);
}
}
namespace { // for String.fromCodePoint
bool IsValidCodePoint(Isolate* isolate, Handle<Object> value) {
if (!value->IsNumber() && !Object::ToNumber(value).ToHandle(&value)) {
return false;
}
if (Object::ToInteger(isolate, value).ToHandleChecked()->Number() !=
value->Number()) {
return false;
}
if (value->Number() < 0 || value->Number() > 0x10FFFF) {
return false;
}
return true;
}
uc32 NextCodePoint(Isolate* isolate, BuiltinArguments args, int index) {
Handle<Object> value = args.at<Object>(1 + index);
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, value, Object::ToNumber(value), -1);
if (!IsValidCodePoint(isolate, value)) {
isolate->Throw(*isolate->factory()->NewRangeError(
MessageTemplate::kInvalidCodePoint, value));
return -1;
}
return DoubleToUint32(value->Number());
}
} // namespace
// ES6 section 21.1.2.2 String.fromCodePoint ( ...codePoints )
BUILTIN(StringFromCodePoint) {
HandleScope scope(isolate);
int const length = args.length() - 1;
if (length == 0) return isolate->heap()->empty_string();
DCHECK_LT(0, length);
// Optimistically assume that the resulting String contains only one byte
// characters.
List<uint8_t> one_byte_buffer(length);
uc32 code = 0;
int index;
for (index = 0; index < length; index++) {
code = NextCodePoint(isolate, args, index);
if (code < 0) {
return isolate->heap()->exception();
}
if (code > String::kMaxOneByteCharCode) {
break;
}
one_byte_buffer.Add(code);
}
if (index == length) {
RETURN_RESULT_OR_FAILURE(isolate, isolate->factory()->NewStringFromOneByte(
one_byte_buffer.ToConstVector()));
}
List<uc16> two_byte_buffer(length - index);
while (true) {
if (code <= unibrow::Utf16::kMaxNonSurrogateCharCode) {
two_byte_buffer.Add(code);
} else {
two_byte_buffer.Add(unibrow::Utf16::LeadSurrogate(code));
two_byte_buffer.Add(unibrow::Utf16::TrailSurrogate(code));
}
if (++index == length) {
break;
}
code = NextCodePoint(isolate, args, index);
if (code < 0) {
return isolate->heap()->exception();
}
}
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
isolate->factory()->NewRawTwoByteString(one_byte_buffer.length() +
two_byte_buffer.length()));
CopyChars(result->GetChars(), one_byte_buffer.ToConstVector().start(),
one_byte_buffer.length());
CopyChars(result->GetChars() + one_byte_buffer.length(),
two_byte_buffer.ToConstVector().start(), two_byte_buffer.length());
return *result;
}
// ES6 section 21.1.3.1 String.prototype.charAt ( pos )
void Builtins::Generate_StringPrototypeCharAt(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* receiver = assembler->Parameter(0);
Node* position = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
// Check that {receiver} is coercible to Object and convert it to a String.
receiver =
assembler->ToThisString(context, receiver, "String.prototype.charAt");
// Convert the {position} to a Smi and check that it's in bounds of the
// {receiver}.
// TODO(bmeurer): Find an abstraction for this!
{
// Check if the {position} is already a Smi.
Variable var_position(assembler, MachineRepresentation::kTagged);
var_position.Bind(position);
Label if_positionissmi(assembler),
if_positionisnotsmi(assembler, Label::kDeferred);
assembler->Branch(assembler->WordIsSmi(position), &if_positionissmi,
&if_positionisnotsmi);
assembler->Bind(&if_positionisnotsmi);
{
// Convert the {position} to an Integer via the ToIntegerStub.
Callable callable = CodeFactory::ToInteger(assembler->isolate());
Node* index = assembler->CallStub(callable, context, position);
// Check if the resulting {index} is now a Smi.
Label if_indexissmi(assembler, Label::kDeferred),
if_indexisnotsmi(assembler, Label::kDeferred);
assembler->Branch(assembler->WordIsSmi(index), &if_indexissmi,
&if_indexisnotsmi);
assembler->Bind(&if_indexissmi);
{
var_position.Bind(index);
assembler->Goto(&if_positionissmi);
}
assembler->Bind(&if_indexisnotsmi);
{
// The ToIntegerStub canonicalizes everything in Smi range to Smi
// representation, so any HeapNumber returned is not in Smi range.
// The only exception here is -0.0, which we treat as 0.
Node* index_value = assembler->LoadHeapNumberValue(index);
Label if_indexiszero(assembler, Label::kDeferred),
if_indexisnotzero(assembler, Label::kDeferred);
assembler->Branch(assembler->Float64Equal(
index_value, assembler->Float64Constant(0.0)),
&if_indexiszero, &if_indexisnotzero);
assembler->Bind(&if_indexiszero);
{
var_position.Bind(assembler->SmiConstant(Smi::FromInt(0)));
assembler->Goto(&if_positionissmi);
}
assembler->Bind(&if_indexisnotzero);
{
// The {index} is some other integral Number, that is definitely
// neither -0.0 nor in Smi range.
assembler->Return(assembler->EmptyStringConstant());
}
}
}
assembler->Bind(&if_positionissmi);
position = var_position.value();
// Determine the actual length of the {receiver} String.
Node* receiver_length =
assembler->LoadObjectField(receiver, String::kLengthOffset);
// Return "" if the Smi {position} is outside the bounds of the {receiver}.
Label if_positioninbounds(assembler),
if_positionnotinbounds(assembler, Label::kDeferred);
assembler->Branch(assembler->SmiAboveOrEqual(position, receiver_length),
&if_positionnotinbounds, &if_positioninbounds);
assembler->Bind(&if_positionnotinbounds);
assembler->Return(assembler->EmptyStringConstant());
assembler->Bind(&if_positioninbounds);
}
// Load the character code at the {position} from the {receiver}.
Node* code = assembler->StringCharCodeAt(receiver, position);
// And return the single character string with only that {code}.
Node* result = assembler->StringFromCharCode(code);
assembler->Return(result);
}
// ES6 section 21.1.3.2 String.prototype.charCodeAt ( pos )
void Builtins::Generate_StringPrototypeCharCodeAt(
CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* receiver = assembler->Parameter(0);
Node* position = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
// Check that {receiver} is coercible to Object and convert it to a String.
receiver =
assembler->ToThisString(context, receiver, "String.prototype.charCodeAt");
// Convert the {position} to a Smi and check that it's in bounds of the
// {receiver}.
// TODO(bmeurer): Find an abstraction for this!
{
// Check if the {position} is already a Smi.
Variable var_position(assembler, MachineRepresentation::kTagged);
var_position.Bind(position);
Label if_positionissmi(assembler),
if_positionisnotsmi(assembler, Label::kDeferred);
assembler->Branch(assembler->WordIsSmi(position), &if_positionissmi,
&if_positionisnotsmi);
assembler->Bind(&if_positionisnotsmi);
{
// Convert the {position} to an Integer via the ToIntegerStub.
Callable callable = CodeFactory::ToInteger(assembler->isolate());
Node* index = assembler->CallStub(callable, context, position);
// Check if the resulting {index} is now a Smi.
Label if_indexissmi(assembler, Label::kDeferred),
if_indexisnotsmi(assembler, Label::kDeferred);
assembler->Branch(assembler->WordIsSmi(index), &if_indexissmi,
&if_indexisnotsmi);
assembler->Bind(&if_indexissmi);
{
var_position.Bind(index);
assembler->Goto(&if_positionissmi);
}
assembler->Bind(&if_indexisnotsmi);
{
// The ToIntegerStub canonicalizes everything in Smi range to Smi
// representation, so any HeapNumber returned is not in Smi range.
// The only exception here is -0.0, which we treat as 0.
Node* index_value = assembler->LoadHeapNumberValue(index);
Label if_indexiszero(assembler, Label::kDeferred),
if_indexisnotzero(assembler, Label::kDeferred);
assembler->Branch(assembler->Float64Equal(
index_value, assembler->Float64Constant(0.0)),
&if_indexiszero, &if_indexisnotzero);
assembler->Bind(&if_indexiszero);
{
var_position.Bind(assembler->SmiConstant(Smi::FromInt(0)));
assembler->Goto(&if_positionissmi);
}
assembler->Bind(&if_indexisnotzero);
{
// The {index} is some other integral Number, that is definitely
// neither -0.0 nor in Smi range.
assembler->Return(assembler->NaNConstant());
}
}
}
assembler->Bind(&if_positionissmi);
position = var_position.value();
// Determine the actual length of the {receiver} String.
Node* receiver_length =
assembler->LoadObjectField(receiver, String::kLengthOffset);
// Return NaN if the Smi {position} is outside the bounds of the {receiver}.
Label if_positioninbounds(assembler),
if_positionnotinbounds(assembler, Label::kDeferred);
assembler->Branch(assembler->SmiAboveOrEqual(position, receiver_length),
&if_positionnotinbounds, &if_positioninbounds);
assembler->Bind(&if_positionnotinbounds);
assembler->Return(assembler->NaNConstant());
assembler->Bind(&if_positioninbounds);
}
// Load the character at the {position} from the {receiver}.
Node* value = assembler->StringCharCodeAt(receiver, position);
Node* result = assembler->SmiFromWord32(value);
assembler->Return(result);
}
// ES6 section 21.1.3.25 String.prototype.toString ()
void Builtins::Generate_StringPrototypeToString(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
Node* result = assembler->ToThisValue(
context, receiver, PrimitiveType::kString, "String.prototype.toString");
assembler->Return(result);
}
// ES6 section 21.1.3.27 String.prototype.trim ()
BUILTIN(StringPrototypeTrim) {
HandleScope scope(isolate);
TO_THIS_STRING(string, "String.prototype.trim");
return *String::Trim(string, String::kTrim);
}
// Non-standard WebKit extension
BUILTIN(StringPrototypeTrimLeft) {
HandleScope scope(isolate);
TO_THIS_STRING(string, "String.prototype.trimLeft");
return *String::Trim(string, String::kTrimLeft);
}
// Non-standard WebKit extension
BUILTIN(StringPrototypeTrimRight) {
HandleScope scope(isolate);
TO_THIS_STRING(string, "String.prototype.trimRight");
return *String::Trim(string, String::kTrimRight);
}
// ES6 section 21.1.3.28 String.prototype.valueOf ( )
void Builtins::Generate_StringPrototypeValueOf(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
Node* result = assembler->ToThisValue(
context, receiver, PrimitiveType::kString, "String.prototype.valueOf");
assembler->Return(result);
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 19.4 Symbol Objects
// ES6 section 19.4.1.1 Symbol ( [ description ] ) for the [[Call]] case.
BUILTIN(SymbolConstructor) {
HandleScope scope(isolate);
Handle<Symbol> result = isolate->factory()->NewSymbol();
Handle<Object> description = args.atOrUndefined(isolate, 1);
if (!description->IsUndefined(isolate)) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, description,
Object::ToString(isolate, description));
result->set_name(*description);
}
return *result;
}
// ES6 section 19.4.1.1 Symbol ( [ description ] ) for the [[Construct]] case.
BUILTIN(SymbolConstructor_ConstructStub) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotConstructor,
isolate->factory()->Symbol_string()));
}
// ES6 section 19.4.3.4 Symbol.prototype [ @@toPrimitive ] ( hint )
void Builtins::Generate_SymbolPrototypeToPrimitive(
CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(4);
Node* result =
assembler->ToThisValue(context, receiver, PrimitiveType::kSymbol,
"Symbol.prototype [ @@toPrimitive ]");
assembler->Return(result);
}
// ES6 section 19.4.3.2 Symbol.prototype.toString ( )
void Builtins::Generate_SymbolPrototypeToString(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
Node* value = assembler->ToThisValue(
context, receiver, PrimitiveType::kSymbol, "Symbol.prototype.toString");
Node* result =
assembler->CallRuntime(Runtime::kSymbolDescriptiveString, context, value);
assembler->Return(result);
}
// ES6 section 19.4.3.3 Symbol.prototype.valueOf ( )
void Builtins::Generate_SymbolPrototypeValueOf(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
Node* result = assembler->ToThisValue(
context, receiver, PrimitiveType::kSymbol, "Symbol.prototype.valueOf");
assembler->Return(result);
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 22.2 TypedArray Objects
// ES6 section 22.2.3.1 get %TypedArray%.prototype.buffer
BUILTIN(TypedArrayPrototypeBuffer) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSTypedArray, typed_array, "get TypedArray.prototype.buffer");
return *typed_array->GetBuffer();
}
namespace {
void Generate_TypedArrayProtoypeGetter(CodeStubAssembler* assembler,
const char* method_name,
int object_offset) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
// Check if the {receiver} is actually a JSTypedArray.
Label if_receiverisincompatible(assembler, Label::kDeferred);
assembler->GotoIf(assembler->WordIsSmi(receiver), &if_receiverisincompatible);
Node* receiver_instance_type = assembler->LoadInstanceType(receiver);
assembler->GotoUnless(
assembler->Word32Equal(receiver_instance_type,
assembler->Int32Constant(JS_TYPED_ARRAY_TYPE)),
&if_receiverisincompatible);
// Check if the {receiver}'s JSArrayBuffer was neutered.
Node* receiver_buffer =
assembler->LoadObjectField(receiver, JSTypedArray::kBufferOffset);
Node* receiver_buffer_bit_field = assembler->LoadObjectField(
receiver_buffer, JSArrayBuffer::kBitFieldOffset, MachineType::Uint32());
Label if_receiverisneutered(assembler, Label::kDeferred);
assembler->GotoUnless(
assembler->Word32Equal(
assembler->Word32And(
receiver_buffer_bit_field,
assembler->Int32Constant(JSArrayBuffer::WasNeutered::kMask)),
assembler->Int32Constant(0)),
&if_receiverisneutered);
assembler->Return(assembler->LoadObjectField(receiver, object_offset));
assembler->Bind(&if_receiverisneutered);
{
// The {receiver}s buffer was neutered, default to zero.
assembler->Return(assembler->SmiConstant(0));
}
assembler->Bind(&if_receiverisincompatible);
{
// The {receiver} is not a valid JSGeneratorObject.
Node* result = assembler->CallRuntime(
Runtime::kThrowIncompatibleMethodReceiver, context,
assembler->HeapConstant(assembler->factory()->NewStringFromAsciiChecked(
method_name, TENURED)),
receiver);
assembler->Return(result); // Never reached.
}
}
} // namespace
// ES6 section 22.2.3.2 get %TypedArray%.prototype.byteLength
void Builtins::Generate_TypedArrayPrototypeByteLength(
CodeStubAssembler* assembler) {
Generate_TypedArrayProtoypeGetter(assembler,
"get TypedArray.prototype.byteLength",
JSTypedArray::kByteLengthOffset);
}
// ES6 section 22.2.3.3 get %TypedArray%.prototype.byteOffset
void Builtins::Generate_TypedArrayPrototypeByteOffset(
CodeStubAssembler* assembler) {
Generate_TypedArrayProtoypeGetter(assembler,
"get TypedArray.prototype.byteOffset",
JSTypedArray::kByteOffsetOffset);
}
// ES6 section 22.2.3.18 get %TypedArray%.prototype.length
void Builtins::Generate_TypedArrayPrototypeLength(
CodeStubAssembler* assembler) {
Generate_TypedArrayProtoypeGetter(assembler,
"get TypedArray.prototype.length",
JSTypedArray::kLengthOffset);
}
} // namespace internal
} // namespace v8
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -401,6 +401,7 @@ namespace internal {
CPP(NumberPrototypeToString) \
/* ES6 section 20.1.3.7 Number.prototype.valueOf ( ) */ \
TFJ(NumberPrototypeValueOf, 1) \
\
/* Object */ \
CPP(ObjectAssign) \
CPP(ObjectCreate) \
......@@ -575,6 +576,10 @@ class Builtins {
static void Generate_Adaptor(MacroAssembler* masm, Address builtin_address,
ExitFrameType exit_frame_type);
static MaybeHandle<JSFunction> CompileString(Handle<Context> context,
Handle<String> source,
ParseRestriction restriction);
private:
Builtins();
......
......@@ -486,7 +486,24 @@
'bit-vector.h',
'bootstrapper.cc',
'bootstrapper.h',
'builtins/builtins-arraybuffer.cc',
'builtins/builtins-array.cc',
'builtins/builtins-boolean.cc',
'builtins/builtins-dataview.cc',
'builtins/builtins-date.cc',
'builtins/builtins-function.cc',
'builtins/builtins-global.cc',
'builtins/builtins-internal.cc',
'builtins/builtins-json.cc',
'builtins/builtins-math.cc',
'builtins/builtins-number.cc',
'builtins/builtins-object.cc',
'builtins/builtins-proxy.cc',
'builtins/builtins-reflect.cc',
'builtins/builtins-sharedarraybuffer.cc',
'builtins/builtins-string.cc',
'builtins/builtins-symbol.cc',
'builtins/builtins-typedarray.cc',
'builtins/builtins-utils.h',
'builtins/builtins.cc',
'builtins/builtins.h',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment