Commit ba6e17c4 authored by yangguo@chromium.org's avatar yangguo@chromium.org

Split off remaining runtime functions in runtime.cc.

R=bmeurer@chromium.org

Review URL: https://codereview.chromium.org/638423003

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@24533 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 39600838
......@@ -825,19 +825,23 @@ source_set("v8_base") {
"src/rewriter.h",
"src/runtime-profiler.cc",
"src/runtime-profiler.h",
"src/runtime/runtime-api.cc",
"src/runtime/runtime-array.cc",
"src/runtime/runtime-classes.cc",
"src/runtime/runtime-collections.cc",
"src/runtime/runtime-compiler.cc",
"src/runtime/runtime-i18n.cc",
"src/runtime/runtime-date.cc",
"src/runtime/runtime-debug.cc",
"src/runtime/runtime-function.cc",
"src/runtime/runtime-generator.cc",
"src/runtime/runtime-i18n.cc",
"src/runtime/runtime-internal.cc",
"src/runtime/runtime-json.cc",
"src/runtime/runtime-literals.cc",
"src/runtime/runtime-liveedit.cc",
"src/runtime/runtime-maths.cc",
"src/runtime/runtime-numbers.cc",
"src/runtime/runtime-object.cc",
"src/runtime/runtime-observe.cc",
"src/runtime/runtime-proxy.cc",
"src/runtime/runtime-regexp.cc",
......
......@@ -254,7 +254,7 @@ macro OVERRIDE_SUBJECT(override) = ((override)[(override).length - 1]);
macro OVERRIDE_CAPTURE(override, index) = ((override)[(index)]);
# PropertyDescriptor return value indices - must match
# PropertyDescriptorIndices in runtime.cc.
# PropertyDescriptorIndices in runtime-object.cc.
const IS_ACCESSOR_INDEX = 0;
const VALUE_INDEX = 1;
const GETTER_INDEX = 2;
......
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/arguments.h"
#include "src/bootstrapper.h"
#include "src/runtime/runtime.h"
#include "src/runtime/runtime-utils.h"
namespace v8 {
namespace internal {
RUNTIME_FUNCTION(Runtime_CreateApiFunction) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
return *isolate->factory()->CreateApiFunction(data, prototype);
}
RUNTIME_FUNCTION(Runtime_IsTemplate) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(Object, arg, 0);
bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
return isolate->heap()->ToBoolean(result);
}
RUNTIME_FUNCTION(Runtime_GetTemplateField) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_CHECKED(HeapObject, templ, 0);
CONVERT_SMI_ARG_CHECKED(index, 1);
int offset = index * kPointerSize + HeapObject::kHeaderSize;
InstanceType type = templ->map()->instance_type();
RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
type == OBJECT_TEMPLATE_INFO_TYPE);
RUNTIME_ASSERT(offset > 0);
if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
} else {
RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
}
return *HeapObject::RawField(templ, offset);
}
// Transform getter or setter into something DefineAccessor can handle.
static Handle<Object> InstantiateAccessorComponent(Isolate* isolate,
Handle<Object> component) {
if (component->IsUndefined()) return isolate->factory()->undefined_value();
Handle<FunctionTemplateInfo> info =
Handle<FunctionTemplateInfo>::cast(component);
return Utils::OpenHandle(*Utils::ToLocal(info)->GetFunction());
}
RUNTIME_FUNCTION(Runtime_DefineApiAccessorProperty) {
HandleScope scope(isolate);
DCHECK(args.length() == 5);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
CONVERT_SMI_ARG_CHECKED(attribute, 4);
RUNTIME_ASSERT(getter->IsUndefined() || getter->IsFunctionTemplateInfo());
RUNTIME_ASSERT(setter->IsUndefined() || setter->IsFunctionTemplateInfo());
RUNTIME_ASSERT(PropertyDetails::AttributesField::is_valid(
static_cast<PropertyAttributes>(attribute)));
RETURN_FAILURE_ON_EXCEPTION(
isolate, JSObject::DefineAccessor(
object, name, InstantiateAccessorComponent(isolate, getter),
InstantiateAccessorComponent(isolate, setter),
static_cast<PropertyAttributes>(attribute)));
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AddPropertyForTemplate) {
HandleScope scope(isolate);
RUNTIME_ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
RUNTIME_ASSERT(
(unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
// Compute attributes.
PropertyAttributes attributes =
static_cast<PropertyAttributes>(unchecked_attributes);
#ifdef DEBUG
bool duplicate;
if (key->IsName()) {
LookupIterator it(object, Handle<Name>::cast(key),
LookupIterator::OWN_SKIP_INTERCEPTOR);
Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
DCHECK(maybe.has_value);
duplicate = it.IsFound();
} else {
uint32_t index = 0;
RUNTIME_ASSERT(key->ToArrayIndex(&index));
Maybe<bool> maybe = JSReceiver::HasOwnElement(object, index);
if (!maybe.has_value) return isolate->heap()->exception();
duplicate = maybe.value;
}
if (duplicate) {
Handle<Object> args[1] = {key};
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError("duplicate_template_property", HandleVector(args, 1)));
}
#endif
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Runtime::DefineObjectProperty(object, key, value, attributes));
return *result;
}
}
} // namespace v8::internal
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/arguments.h"
#include "src/runtime/runtime.h"
#include "src/runtime/runtime-utils.h"
namespace v8 {
namespace internal {
RUNTIME_FUNCTION(Runtime_FinishArrayPrototypeSetup) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0);
Object* length = prototype->length();
RUNTIME_ASSERT(length->IsSmi() && Smi::cast(length)->value() == 0);
RUNTIME_ASSERT(prototype->HasFastSmiOrObjectElements());
// This is necessary to enable fast checks for absence of elements
// on Array.prototype and below.
prototype->set_elements(isolate->heap()->empty_fixed_array());
return Smi::FromInt(0);
}
static void InstallBuiltin(Isolate* isolate, Handle<JSObject> holder,
const char* name, Builtins::Name builtin_name) {
Handle<String> key = isolate->factory()->InternalizeUtf8String(name);
Handle<Code> code(isolate->builtins()->builtin(builtin_name));
Handle<JSFunction> optimized =
isolate->factory()->NewFunctionWithoutPrototype(key, code);
optimized->shared()->DontAdaptArguments();
JSObject::AddProperty(holder, key, optimized, NONE);
}
RUNTIME_FUNCTION(Runtime_SpecialArrayFunctions) {
HandleScope scope(isolate);
DCHECK(args.length() == 0);
Handle<JSObject> holder =
isolate->factory()->NewJSObject(isolate->object_function());
InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop);
InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush);
InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift);
InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift);
InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice);
InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice);
InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat);
return *holder;
}
RUNTIME_FUNCTION(Runtime_TransitionElementsKind) {
HandleScope scope(isolate);
RUNTIME_ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
CONVERT_ARG_HANDLE_CHECKED(Map, map, 1);
JSObject::TransitionElementsKind(array, map->elements_kind());
return *array;
}
// Push an object unto an array of objects if it is not already in the
// array. Returns true if the element was pushed on the stack and
// false otherwise.
RUNTIME_FUNCTION(Runtime_PushIfAbsent) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, element, 1);
RUNTIME_ASSERT(array->HasFastSmiOrObjectElements());
int length = Smi::cast(array->length())->value();
FixedArray* elements = FixedArray::cast(array->elements());
for (int i = 0; i < length; i++) {
if (elements->get(i) == *element) return isolate->heap()->false_value();
}
// Strict not needed. Used for cycle detection in Array join implementation.
RETURN_FAILURE_ON_EXCEPTION(
isolate, JSObject::SetFastElement(array, length, element, SLOPPY, true));
return isolate->heap()->true_value();
}
/**
* A simple visitor visits every element of Array's.
* The backend storage can be a fixed array for fast elements case,
* or a dictionary for sparse array. Since Dictionary is a subtype
* of FixedArray, the class can be used by both fast and slow cases.
* The second parameter of the constructor, fast_elements, specifies
* whether the storage is a FixedArray or Dictionary.
*
* An index limit is used to deal with the situation that a result array
* length overflows 32-bit non-negative integer.
*/
class ArrayConcatVisitor {
public:
ArrayConcatVisitor(Isolate* isolate, Handle<FixedArray> storage,
bool fast_elements)
: isolate_(isolate),
storage_(Handle<FixedArray>::cast(
isolate->global_handles()->Create(*storage))),
index_offset_(0u),
fast_elements_(fast_elements),
exceeds_array_limit_(false) {}
~ArrayConcatVisitor() { clear_storage(); }
void visit(uint32_t i, Handle<Object> elm) {
if (i > JSObject::kMaxElementCount - index_offset_) {
exceeds_array_limit_ = true;
return;
}
uint32_t index = index_offset_ + i;
if (fast_elements_) {
if (index < static_cast<uint32_t>(storage_->length())) {
storage_->set(index, *elm);
return;
}
// Our initial estimate of length was foiled, possibly by
// getters on the arrays increasing the length of later arrays
// during iteration.
// This shouldn't happen in anything but pathological cases.
SetDictionaryMode();
// Fall-through to dictionary mode.
}
DCHECK(!fast_elements_);
Handle<SeededNumberDictionary> dict(
SeededNumberDictionary::cast(*storage_));
Handle<SeededNumberDictionary> result =
SeededNumberDictionary::AtNumberPut(dict, index, elm);
if (!result.is_identical_to(dict)) {
// Dictionary needed to grow.
clear_storage();
set_storage(*result);
}
}
void increase_index_offset(uint32_t delta) {
if (JSObject::kMaxElementCount - index_offset_ < delta) {
index_offset_ = JSObject::kMaxElementCount;
} else {
index_offset_ += delta;
}
// If the initial length estimate was off (see special case in visit()),
// but the array blowing the limit didn't contain elements beyond the
// provided-for index range, go to dictionary mode now.
if (fast_elements_ &&
index_offset_ >
static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
SetDictionaryMode();
}
}
bool exceeds_array_limit() { return exceeds_array_limit_; }
Handle<JSArray> ToArray() {
Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
Handle<Object> length =
isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
Handle<Map> map = JSObject::GetElementsTransitionMap(
array, fast_elements_ ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
array->set_map(*map);
array->set_length(*length);
array->set_elements(*storage_);
return array;
}
private:
// Convert storage to dictionary mode.
void SetDictionaryMode() {
DCHECK(fast_elements_);
Handle<FixedArray> current_storage(*storage_);
Handle<SeededNumberDictionary> slow_storage(
SeededNumberDictionary::New(isolate_, current_storage->length()));
uint32_t current_length = static_cast<uint32_t>(current_storage->length());
for (uint32_t i = 0; i < current_length; i++) {
HandleScope loop_scope(isolate_);
Handle<Object> element(current_storage->get(i), isolate_);
if (!element->IsTheHole()) {
Handle<SeededNumberDictionary> new_storage =
SeededNumberDictionary::AtNumberPut(slow_storage, i, element);
if (!new_storage.is_identical_to(slow_storage)) {
slow_storage = loop_scope.CloseAndEscape(new_storage);
}
}
}
clear_storage();
set_storage(*slow_storage);
fast_elements_ = false;
}
inline void clear_storage() {
GlobalHandles::Destroy(Handle<Object>::cast(storage_).location());
}
inline void set_storage(FixedArray* storage) {
storage_ =
Handle<FixedArray>::cast(isolate_->global_handles()->Create(storage));
}
Isolate* isolate_;
Handle<FixedArray> storage_; // Always a global handle.
// Index after last seen index. Always less than or equal to
// JSObject::kMaxElementCount.
uint32_t index_offset_;
bool fast_elements_ : 1;
bool exceeds_array_limit_ : 1;
};
static uint32_t EstimateElementCount(Handle<JSArray> array) {
uint32_t length = static_cast<uint32_t>(array->length()->Number());
int element_count = 0;
switch (array->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
// Fast elements can't have lengths that are not representable by
// a 32-bit signed integer.
DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
int fast_length = static_cast<int>(length);
Handle<FixedArray> elements(FixedArray::cast(array->elements()));
for (int i = 0; i < fast_length; i++) {
if (!elements->get(i)->IsTheHole()) element_count++;
}
break;
}
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS: {
// Fast elements can't have lengths that are not representable by
// a 32-bit signed integer.
DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
int fast_length = static_cast<int>(length);
if (array->elements()->IsFixedArray()) {
DCHECK(FixedArray::cast(array->elements())->length() == 0);
break;
}
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(array->elements()));
for (int i = 0; i < fast_length; i++) {
if (!elements->is_the_hole(i)) element_count++;
}
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> dictionary(
SeededNumberDictionary::cast(array->elements()));
int capacity = dictionary->Capacity();
for (int i = 0; i < capacity; i++) {
Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate());
if (dictionary->IsKey(*key)) {
element_count++;
}
}
break;
}
case SLOPPY_ARGUMENTS_ELEMENTS:
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case EXTERNAL_##TYPE##_ELEMENTS: \
case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
// External arrays are always dense.
return length;
}
// As an estimate, we assume that the prototype doesn't contain any
// inherited elements.
return element_count;
}
template <class ExternalArrayClass, class ElementType>
static void IterateExternalArrayElements(Isolate* isolate,
Handle<JSObject> receiver,
bool elements_are_ints,
bool elements_are_guaranteed_smis,
ArrayConcatVisitor* visitor) {
Handle<ExternalArrayClass> array(
ExternalArrayClass::cast(receiver->elements()));
uint32_t len = static_cast<uint32_t>(array->length());
DCHECK(visitor != NULL);
if (elements_are_ints) {
if (elements_are_guaranteed_smis) {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope(isolate);
Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))),
isolate);
visitor->visit(j, e);
}
} else {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope(isolate);
int64_t val = static_cast<int64_t>(array->get_scalar(j));
if (Smi::IsValid(static_cast<intptr_t>(val))) {
Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate);
visitor->visit(j, e);
} else {
Handle<Object> e =
isolate->factory()->NewNumber(static_cast<ElementType>(val));
visitor->visit(j, e);
}
}
}
} else {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope(isolate);
Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j));
visitor->visit(j, e);
}
}
}
// Used for sorting indices in a List<uint32_t>.
static int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
uint32_t a = *ap;
uint32_t b = *bp;
return (a == b) ? 0 : (a < b) ? -1 : 1;
}
static void CollectElementIndices(Handle<JSObject> object, uint32_t range,
List<uint32_t>* indices) {
Isolate* isolate = object->GetIsolate();
ElementsKind kind = object->GetElementsKind();
switch (kind) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
Handle<FixedArray> elements(FixedArray::cast(object->elements()));
uint32_t length = static_cast<uint32_t>(elements->length());
if (range < length) length = range;
for (uint32_t i = 0; i < length; i++) {
if (!elements->get(i)->IsTheHole()) {
indices->Add(i);
}
}
break;
}
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
if (object->elements()->IsFixedArray()) {
DCHECK(object->elements()->length() == 0);
break;
}
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(object->elements()));
uint32_t length = static_cast<uint32_t>(elements->length());
if (range < length) length = range;
for (uint32_t i = 0; i < length; i++) {
if (!elements->is_the_hole(i)) {
indices->Add(i);
}
}
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> dict(
SeededNumberDictionary::cast(object->elements()));
uint32_t capacity = dict->Capacity();
for (uint32_t j = 0; j < capacity; j++) {
HandleScope loop_scope(isolate);
Handle<Object> k(dict->KeyAt(j), isolate);
if (dict->IsKey(*k)) {
DCHECK(k->IsNumber());
uint32_t index = static_cast<uint32_t>(k->Number());
if (index < range) {
indices->Add(index);
}
}
}
break;
}
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case TYPE##_ELEMENTS: \
case EXTERNAL_##TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
{
uint32_t length = static_cast<uint32_t>(
FixedArrayBase::cast(object->elements())->length());
if (range <= length) {
length = range;
// We will add all indices, so we might as well clear it first
// and avoid duplicates.
indices->Clear();
}
for (uint32_t i = 0; i < length; i++) {
indices->Add(i);
}
if (length == range) return; // All indices accounted for already.
break;
}
case SLOPPY_ARGUMENTS_ELEMENTS: {
MaybeHandle<Object> length_obj =
Object::GetProperty(object, isolate->factory()->length_string());
double length_num = length_obj.ToHandleChecked()->Number();
uint32_t length = static_cast<uint32_t>(DoubleToInt32(length_num));
ElementsAccessor* accessor = object->GetElementsAccessor();
for (uint32_t i = 0; i < length; i++) {
if (accessor->HasElement(object, object, i)) {
indices->Add(i);
}
}
break;
}
}
PrototypeIterator iter(isolate, object);
if (!iter.IsAtEnd()) {
// The prototype will usually have no inherited element indices,
// but we have to check.
CollectElementIndices(
Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), range,
indices);
}
}
/**
* A helper function that visits elements of a JSArray in numerical
* order.
*
* The visitor argument called for each existing element in the array
* with the element index and the element's value.
* Afterwards it increments the base-index of the visitor by the array
* length.
* Returns false if any access threw an exception, otherwise true.
*/
static bool IterateElements(Isolate* isolate, Handle<JSArray> receiver,
ArrayConcatVisitor* visitor) {
uint32_t length = static_cast<uint32_t>(receiver->length()->Number());
switch (receiver->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
// Run through the elements FixedArray and use HasElement and GetElement
// to check the prototype for missing elements.
Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
int fast_length = static_cast<int>(length);
DCHECK(fast_length <= elements->length());
for (int j = 0; j < fast_length; j++) {
HandleScope loop_scope(isolate);
Handle<Object> element_value(elements->get(j), isolate);
if (!element_value->IsTheHole()) {
visitor->visit(j, element_value);
} else {
Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
if (!maybe.has_value) return false;
if (maybe.value) {
// Call GetElement on receiver, not its prototype, or getters won't
// have the correct receiver.
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element_value,
Object::GetElement(isolate, receiver, j), false);
visitor->visit(j, element_value);
}
}
}
break;
}
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
// Empty array is FixedArray but not FixedDoubleArray.
if (length == 0) break;
// Run through the elements FixedArray and use HasElement and GetElement
// to check the prototype for missing elements.
if (receiver->elements()->IsFixedArray()) {
DCHECK(receiver->elements()->length() == 0);
break;
}
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(receiver->elements()));
int fast_length = static_cast<int>(length);
DCHECK(fast_length <= elements->length());
for (int j = 0; j < fast_length; j++) {
HandleScope loop_scope(isolate);
if (!elements->is_the_hole(j)) {
double double_value = elements->get_scalar(j);
Handle<Object> element_value =
isolate->factory()->NewNumber(double_value);
visitor->visit(j, element_value);
} else {
Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
if (!maybe.has_value) return false;
if (maybe.value) {
// Call GetElement on receiver, not its prototype, or getters won't
// have the correct receiver.
Handle<Object> element_value;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element_value,
Object::GetElement(isolate, receiver, j), false);
visitor->visit(j, element_value);
}
}
}
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> dict(receiver->element_dictionary());
List<uint32_t> indices(dict->Capacity() / 2);
// Collect all indices in the object and the prototypes less
// than length. This might introduce duplicates in the indices list.
CollectElementIndices(receiver, length, &indices);
indices.Sort(&compareUInt32);
int j = 0;
int n = indices.length();
while (j < n) {
HandleScope loop_scope(isolate);
uint32_t index = indices[j];
Handle<Object> element;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element, Object::GetElement(isolate, receiver, index),
false);
visitor->visit(index, element);
// Skip to next different index (i.e., omit duplicates).
do {
j++;
} while (j < n && indices[j] == index);
}
break;
}
case EXTERNAL_UINT8_CLAMPED_ELEMENTS: {
Handle<ExternalUint8ClampedArray> pixels(
ExternalUint8ClampedArray::cast(receiver->elements()));
for (uint32_t j = 0; j < length; j++) {
Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
visitor->visit(j, e);
}
break;
}
case EXTERNAL_INT8_ELEMENTS: {
IterateExternalArrayElements<ExternalInt8Array, int8_t>(
isolate, receiver, true, true, visitor);
break;
}
case EXTERNAL_UINT8_ELEMENTS: {
IterateExternalArrayElements<ExternalUint8Array, uint8_t>(
isolate, receiver, true, true, visitor);
break;
}
case EXTERNAL_INT16_ELEMENTS: {
IterateExternalArrayElements<ExternalInt16Array, int16_t>(
isolate, receiver, true, true, visitor);
break;
}
case EXTERNAL_UINT16_ELEMENTS: {
IterateExternalArrayElements<ExternalUint16Array, uint16_t>(
isolate, receiver, true, true, visitor);
break;
}
case EXTERNAL_INT32_ELEMENTS: {
IterateExternalArrayElements<ExternalInt32Array, int32_t>(
isolate, receiver, true, false, visitor);
break;
}
case EXTERNAL_UINT32_ELEMENTS: {
IterateExternalArrayElements<ExternalUint32Array, uint32_t>(
isolate, receiver, true, false, visitor);
break;
}
case EXTERNAL_FLOAT32_ELEMENTS: {
IterateExternalArrayElements<ExternalFloat32Array, float>(
isolate, receiver, false, false, visitor);
break;
}
case EXTERNAL_FLOAT64_ELEMENTS: {
IterateExternalArrayElements<ExternalFloat64Array, double>(
isolate, receiver, false, false, visitor);
break;
}
default:
UNREACHABLE();
break;
}
visitor->increase_index_offset(length);
return true;
}
/**
* Array::concat implementation.
* See ECMAScript 262, 15.4.4.4.
* TODO(581): Fix non-compliance for very large concatenations and update to
* following the ECMAScript 5 specification.
*/
RUNTIME_FUNCTION(Runtime_ArrayConcat) {
HandleScope handle_scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0);
int argument_count = static_cast<int>(arguments->length()->Number());
RUNTIME_ASSERT(arguments->HasFastObjectElements());
Handle<FixedArray> elements(FixedArray::cast(arguments->elements()));
// Pass 1: estimate the length and number of elements of the result.
// The actual length can be larger if any of the arguments have getters
// that mutate other arguments (but will otherwise be precise).
// The number of elements is precise if there are no inherited elements.
ElementsKind kind = FAST_SMI_ELEMENTS;
uint32_t estimate_result_length = 0;
uint32_t estimate_nof_elements = 0;
for (int i = 0; i < argument_count; i++) {
HandleScope loop_scope(isolate);
Handle<Object> obj(elements->get(i), isolate);
uint32_t length_estimate;
uint32_t element_estimate;
if (obj->IsJSArray()) {
Handle<JSArray> array(Handle<JSArray>::cast(obj));
length_estimate = static_cast<uint32_t>(array->length()->Number());
if (length_estimate != 0) {
ElementsKind array_kind =
GetPackedElementsKind(array->map()->elements_kind());
if (IsMoreGeneralElementsKindTransition(kind, array_kind)) {
kind = array_kind;
}
}
element_estimate = EstimateElementCount(array);
} else {
if (obj->IsHeapObject()) {
if (obj->IsNumber()) {
if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) {
kind = FAST_DOUBLE_ELEMENTS;
}
} else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) {
kind = FAST_ELEMENTS;
}
}
length_estimate = 1;
element_estimate = 1;
}
// Avoid overflows by capping at kMaxElementCount.
if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) {
estimate_result_length = JSObject::kMaxElementCount;
} else {
estimate_result_length += length_estimate;
}
if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) {
estimate_nof_elements = JSObject::kMaxElementCount;
} else {
estimate_nof_elements += element_estimate;
}
}
// If estimated number of elements is more than half of length, a
// fixed array (fast case) is more time and space-efficient than a
// dictionary.
bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
Handle<FixedArrayBase> storage =
isolate->factory()->NewFixedDoubleArray(estimate_result_length);
int j = 0;
bool failure = false;
if (estimate_result_length > 0) {
Handle<FixedDoubleArray> double_storage =
Handle<FixedDoubleArray>::cast(storage);
for (int i = 0; i < argument_count; i++) {
Handle<Object> obj(elements->get(i), isolate);
if (obj->IsSmi()) {
double_storage->set(j, Smi::cast(*obj)->value());
j++;
} else if (obj->IsNumber()) {
double_storage->set(j, obj->Number());
j++;
} else {
JSArray* array = JSArray::cast(*obj);
uint32_t length = static_cast<uint32_t>(array->length()->Number());
switch (array->map()->elements_kind()) {
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
// Empty array is FixedArray but not FixedDoubleArray.
if (length == 0) break;
FixedDoubleArray* elements =
FixedDoubleArray::cast(array->elements());
for (uint32_t i = 0; i < length; i++) {
if (elements->is_the_hole(i)) {
// TODO(jkummerow/verwaest): We could be a bit more clever
// here: Check if there are no elements/getters on the
// prototype chain, and if so, allow creation of a holey
// result array.
// Same thing below (holey smi case).
failure = true;
break;
}
double double_value = elements->get_scalar(i);
double_storage->set(j, double_value);
j++;
}
break;
}
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_SMI_ELEMENTS: {
FixedArray* elements(FixedArray::cast(array->elements()));
for (uint32_t i = 0; i < length; i++) {
Object* element = elements->get(i);
if (element->IsTheHole()) {
failure = true;
break;
}
int32_t int_value = Smi::cast(element)->value();
double_storage->set(j, int_value);
j++;
}
break;
}
case FAST_HOLEY_ELEMENTS:
case FAST_ELEMENTS:
DCHECK_EQ(0, length);
break;
default:
UNREACHABLE();
}
}
if (failure) break;
}
}
if (!failure) {
Handle<JSArray> array = isolate->factory()->NewJSArray(0);
Smi* length = Smi::FromInt(j);
Handle<Map> map;
map = JSObject::GetElementsTransitionMap(array, kind);
array->set_map(*map);
array->set_length(length);
array->set_elements(*storage);
return *array;
}
// In case of failure, fall through.
}
Handle<FixedArray> storage;
if (fast_case) {
// The backing storage array must have non-existing elements to preserve
// holes across concat operations.
storage =
isolate->factory()->NewFixedArrayWithHoles(estimate_result_length);
} else {
// TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
uint32_t at_least_space_for =
estimate_nof_elements + (estimate_nof_elements >> 2);
storage = Handle<FixedArray>::cast(
SeededNumberDictionary::New(isolate, at_least_space_for));
}
ArrayConcatVisitor visitor(isolate, storage, fast_case);
for (int i = 0; i < argument_count; i++) {
Handle<Object> obj(elements->get(i), isolate);
if (obj->IsJSArray()) {
Handle<JSArray> array = Handle<JSArray>::cast(obj);
if (!IterateElements(isolate, array, &visitor)) {
return isolate->heap()->exception();
}
} else {
visitor.visit(0, obj);
visitor.increase_index_offset(1);
}
}
if (visitor.exceeds_array_limit()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewRangeError("invalid_array_length", HandleVector<Object>(NULL, 0)));
}
return *visitor.ToArray();
}
// Moves all own elements of an object, that are below a limit, to positions
// starting at zero. All undefined values are placed after non-undefined values,
// and are followed by non-existing element. Does not change the length
// property.
// Returns the number of non-undefined elements collected.
// Returns -1 if hole removal is not supported by this method.
RUNTIME_FUNCTION(Runtime_RemoveArrayHoles) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
return *JSObject::PrepareElementsForSort(object, limit);
}
// Move contents of argument 0 (an array) to argument 1 (an array)
RUNTIME_FUNCTION(Runtime_MoveArrayContents) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0);
CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1);
JSObject::ValidateElements(from);
JSObject::ValidateElements(to);
Handle<FixedArrayBase> new_elements(from->elements());
ElementsKind from_kind = from->GetElementsKind();
Handle<Map> new_map = JSObject::GetElementsTransitionMap(to, from_kind);
JSObject::SetMapAndElements(to, new_map, new_elements);
to->set_length(from->length());
JSObject::ResetElements(from);
from->set_length(Smi::FromInt(0));
JSObject::ValidateElements(to);
return *to;
}
// How many elements does this object/array have?
RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
Handle<FixedArrayBase> elements(array->elements(), isolate);
SealHandleScope shs(isolate);
if (elements->IsDictionary()) {
int result =
Handle<SeededNumberDictionary>::cast(elements)->NumberOfElements();
return Smi::FromInt(result);
} else {
DCHECK(array->length()->IsSmi());
// For packed elements, we know the exact number of elements
int length = elements->length();
ElementsKind kind = array->GetElementsKind();
if (IsFastPackedElementsKind(kind)) {
return Smi::FromInt(length);
}
// For holey elements, take samples from the buffer checking for holes
// to generate the estimate.
const int kNumberOfHoleCheckSamples = 97;
int increment = (length < kNumberOfHoleCheckSamples)
? 1
: static_cast<int>(length / kNumberOfHoleCheckSamples);
ElementsAccessor* accessor = array->GetElementsAccessor();
int holes = 0;
for (int i = 0; i < length; i += increment) {
if (!accessor->HasElement(array, array, i, elements)) {
++holes;
}
}
int estimate = static_cast<int>((kNumberOfHoleCheckSamples - holes) /
kNumberOfHoleCheckSamples * length);
return Smi::FromInt(estimate);
}
}
// Returns an array that tells you where in the [0, length) interval an array
// might have elements. Can either return an array of keys (positive integers
// or undefined) or a number representing the positive length of an interval
// starting at index 0.
// Intervals can span over some keys that are not in the object.
RUNTIME_FUNCTION(Runtime_GetArrayKeys) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
if (array->elements()->IsDictionary()) {
Handle<FixedArray> keys = isolate->factory()->empty_fixed_array();
for (PrototypeIterator iter(isolate, array,
PrototypeIterator::START_AT_RECEIVER);
!iter.IsAtEnd(); iter.Advance()) {
if (PrototypeIterator::GetCurrent(iter)->IsJSProxy() ||
JSObject::cast(*PrototypeIterator::GetCurrent(iter))
->HasIndexedInterceptor()) {
// Bail out if we find a proxy or interceptor, likely not worth
// collecting keys in that case.
return *isolate->factory()->NewNumberFromUint(length);
}
Handle<JSObject> current =
Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
Handle<FixedArray> current_keys =
isolate->factory()->NewFixedArray(current->NumberOfOwnElements(NONE));
current->GetOwnElementKeys(*current_keys, NONE);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys, FixedArray::UnionOfKeys(keys, current_keys));
}
// Erase any keys >= length.
// TODO(adamk): Remove this step when the contract of %GetArrayKeys
// is changed to let this happen on the JS side.
for (int i = 0; i < keys->length(); i++) {
if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i);
}
return *isolate->factory()->NewJSArrayWithElements(keys);
} else {
RUNTIME_ASSERT(array->HasFastSmiOrObjectElements() ||
array->HasFastDoubleElements());
uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
return *isolate->factory()->NewNumberFromUint(Min(actual_length, length));
}
}
static Object* ArrayConstructorCommon(Isolate* isolate,
Handle<JSFunction> constructor,
Handle<AllocationSite> site,
Arguments* caller_args) {
Factory* factory = isolate->factory();
bool holey = false;
bool can_use_type_feedback = true;
if (caller_args->length() == 1) {
Handle<Object> argument_one = caller_args->at<Object>(0);
if (argument_one->IsSmi()) {
int value = Handle<Smi>::cast(argument_one)->value();
if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) {
// the array is a dictionary in this case.
can_use_type_feedback = false;
} else if (value != 0) {
holey = true;
}
} else {
// Non-smi length argument produces a dictionary
can_use_type_feedback = false;
}
}
Handle<JSArray> array;
if (!site.is_null() && can_use_type_feedback) {
ElementsKind to_kind = site->GetElementsKind();
if (holey && !IsFastHoleyElementsKind(to_kind)) {
to_kind = GetHoleyElementsKind(to_kind);
// Update the allocation site info to reflect the advice alteration.
site->SetElementsKind(to_kind);
}
// We should allocate with an initial map that reflects the allocation site
// advice. Therefore we use AllocateJSObjectFromMap instead of passing
// the constructor.
Handle<Map> initial_map(constructor->initial_map(), isolate);
if (to_kind != initial_map->elements_kind()) {
initial_map = Map::AsElementsKind(initial_map, to_kind);
}
// If we don't care to track arrays of to_kind ElementsKind, then
// don't emit a memento for them.
Handle<AllocationSite> allocation_site;
if (AllocationSite::GetMode(to_kind) == TRACK_ALLOCATION_SITE) {
allocation_site = site;
}
array = Handle<JSArray>::cast(factory->NewJSObjectFromMap(
initial_map, NOT_TENURED, true, allocation_site));
} else {
array = Handle<JSArray>::cast(factory->NewJSObject(constructor));
// We might need to transition to holey
ElementsKind kind = constructor->initial_map()->elements_kind();
if (holey && !IsFastHoleyElementsKind(kind)) {
kind = GetHoleyElementsKind(kind);
JSObject::TransitionElementsKind(array, kind);
}
}
factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS);
ElementsKind old_kind = array->GetElementsKind();
RETURN_FAILURE_ON_EXCEPTION(
isolate, ArrayConstructInitializeElements(array, caller_args));
if (!site.is_null() &&
(old_kind != array->GetElementsKind() || !can_use_type_feedback)) {
// The arguments passed in caused a transition. This kind of complexity
// can't be dealt with in the inlined hydrogen array constructor case.
// We must mark the allocationsite as un-inlinable.
site->SetDoNotInlineCall();
}
return *array;
}
RUNTIME_FUNCTION(Runtime_ArrayConstructor) {
HandleScope scope(isolate);
// If we get 2 arguments then they are the stub parameters (constructor, type
// info). If we get 4, then the first one is a pointer to the arguments
// passed by the caller, and the last one is the length of the arguments
// passed to the caller (redundant, but useful to check on the deoptimizer
// with an assert).
Arguments empty_args(0, NULL);
bool no_caller_args = args.length() == 2;
DCHECK(no_caller_args || args.length() == 4);
int parameters_start = no_caller_args ? 0 : 1;
Arguments* caller_args =
no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1);
#ifdef DEBUG
if (!no_caller_args) {
CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 2);
DCHECK(arg_count == caller_args->length());
}
#endif
Handle<AllocationSite> site;
if (!type_info.is_null() &&
*type_info != isolate->heap()->undefined_value()) {
site = Handle<AllocationSite>::cast(type_info);
DCHECK(!site->SitePointsToLiteral());
}
return ArrayConstructorCommon(isolate, constructor, site, caller_args);
}
RUNTIME_FUNCTION(Runtime_InternalArrayConstructor) {
HandleScope scope(isolate);
Arguments empty_args(0, NULL);
bool no_caller_args = args.length() == 1;
DCHECK(no_caller_args || args.length() == 3);
int parameters_start = no_caller_args ? 0 : 1;
Arguments* caller_args =
no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
#ifdef DEBUG
if (!no_caller_args) {
CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 1);
DCHECK(arg_count == caller_args->length());
}
#endif
return ArrayConstructorCommon(isolate, constructor,
Handle<AllocationSite>::null(), caller_args);
}
RUNTIME_FUNCTION(Runtime_NormalizeElements) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
RUNTIME_ASSERT(!array->HasExternalArrayElements() &&
!array->HasFixedTypedArrayElements());
JSObject::NormalizeElements(array);
return *array;
}
// TODO(dcarney): remove this function when TurboFan supports it.
// Takes the object to be iterated over and the result of GetPropertyNamesFast
// Returns pair (cache_array, cache_type).
RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInInit) {
SealHandleScope scope(isolate);
DCHECK(args.length() == 2);
// This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
// Not worth creating a macro atm as this function should be removed.
if (!args[0]->IsJSReceiver() || !args[1]->IsObject()) {
Object* error = isolate->ThrowIllegalOperation();
return MakePair(error, isolate->heap()->undefined_value());
}
Handle<JSReceiver> object = args.at<JSReceiver>(0);
Handle<Object> cache_type = args.at<Object>(1);
if (cache_type->IsMap()) {
// Enum cache case.
if (Map::EnumLengthBits::decode(Map::cast(*cache_type)->bit_field3()) ==
0) {
// 0 length enum.
// Can't handle this case in the graph builder,
// so transform it into the empty fixed array case.
return MakePair(isolate->heap()->empty_fixed_array(), Smi::FromInt(1));
}
return MakePair(object->map()->instance_descriptors()->GetEnumCache(),
*cache_type);
} else {
// FixedArray case.
Smi* new_cache_type = Smi::FromInt(object->IsJSProxy() ? 0 : 1);
return MakePair(*Handle<FixedArray>::cast(cache_type), new_cache_type);
}
}
// TODO(dcarney): remove this function when TurboFan supports it.
RUNTIME_FUNCTION(Runtime_ForInCacheArrayLength) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(Object, cache_type, 0);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, array, 1);
int length = 0;
if (cache_type->IsMap()) {
length = Map::cast(*cache_type)->EnumLength();
} else {
DCHECK(cache_type->IsSmi());
length = array->length();
}
return Smi::FromInt(length);
}
// TODO(dcarney): remove this function when TurboFan supports it.
// Takes (the object to be iterated over,
// cache_array from ForInInit,
// cache_type from ForInInit,
// the current index)
// Returns pair (array[index], needs_filtering).
RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInNext) {
SealHandleScope scope(isolate);
DCHECK(args.length() == 4);
int32_t index;
// This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
// Not worth creating a macro atm as this function should be removed.
if (!args[0]->IsJSReceiver() || !args[1]->IsFixedArray() ||
!args[2]->IsObject() || !args[3]->ToInt32(&index)) {
Object* error = isolate->ThrowIllegalOperation();
return MakePair(error, isolate->heap()->undefined_value());
}
Handle<JSReceiver> object = args.at<JSReceiver>(0);
Handle<FixedArray> array = args.at<FixedArray>(1);
Handle<Object> cache_type = args.at<Object>(2);
// Figure out first if a slow check is needed for this object.
bool slow_check_needed = false;
if (cache_type->IsMap()) {
if (object->map() != Map::cast(*cache_type)) {
// Object transitioned. Need slow check.
slow_check_needed = true;
}
} else {
// No slow check needed for proxies.
slow_check_needed = Smi::cast(*cache_type)->value() == 1;
}
return MakePair(array->get(index),
isolate->heap()->ToBoolean(slow_check_needed));
}
RUNTIME_FUNCTION(RuntimeReference_IsArray) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
return isolate->heap()->ToBoolean(obj->IsJSArray());
}
RUNTIME_FUNCTION(RuntimeReference_HasCachedArrayIndex) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
return isolate->heap()->false_value();
}
RUNTIME_FUNCTION(RuntimeReference_GetCachedArrayIndex) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(RuntimeReference_FastOneByteArrayJoin) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
return isolate->heap()->undefined_value();
}
}
} // namespace v8::internal
......@@ -2732,5 +2732,11 @@ RUNTIME_FUNCTION(RuntimeReference_DebugIsActive) {
SealHandleScope shs(isolate);
return Smi::FromInt(isolate->debug()->is_active());
}
RUNTIME_FUNCTION(RuntimeReference_DebugBreakInOptimizedCode) {
UNIMPLEMENTED();
return NULL;
}
}
} // namespace v8::internal
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/arguments.h"
#include "src/bootstrapper.h"
#include "src/debug.h"
#include "src/runtime/runtime.h"
#include "src/runtime/runtime-utils.h"
namespace v8 {
namespace internal {
RUNTIME_FUNCTION(Runtime_CheckIsBootstrapping) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_Throw) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
return isolate->Throw(args[0]);
}
RUNTIME_FUNCTION(Runtime_ReThrow) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
return isolate->ReThrow(args[0]);
}
RUNTIME_FUNCTION(Runtime_PromoteScheduledException) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
return isolate->PromoteScheduledException();
}
RUNTIME_FUNCTION(Runtime_ThrowReferenceError) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
}
RUNTIME_FUNCTION(Runtime_PromiseRejectEvent) {
DCHECK(args.length() == 3);
HandleScope scope(isolate);
CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
CONVERT_BOOLEAN_ARG_CHECKED(debug_event, 2);
if (debug_event) isolate->debug()->OnPromiseReject(promise, value);
Handle<Symbol> key = isolate->factory()->promise_has_handler_symbol();
// Do not report if we actually have a handler.
if (JSObject::GetDataProperty(promise, key)->IsUndefined()) {
isolate->ReportPromiseReject(promise, value,
v8::kPromiseRejectWithNoHandler);
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_PromiseRevokeReject) {
DCHECK(args.length() == 1);
HandleScope scope(isolate);
CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
Handle<Symbol> key = isolate->factory()->promise_has_handler_symbol();
// At this point, no revocation has been issued before
RUNTIME_ASSERT(JSObject::GetDataProperty(promise, key)->IsUndefined());
isolate->ReportPromiseReject(promise, Handle<Object>(),
v8::kPromiseHandlerAddedAfterReject);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_PromiseHasHandlerSymbol) {
DCHECK(args.length() == 0);
return isolate->heap()->promise_has_handler_symbol();
}
RUNTIME_FUNCTION(Runtime_StackGuard) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
// First check if this is a real stack overflow.
StackLimitCheck check(isolate);
if (check.JsHasOverflowed()) {
return isolate->StackOverflow();
}
return isolate->stack_guard()->HandleInterrupts();
}
RUNTIME_FUNCTION(Runtime_Interrupt) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
return isolate->stack_guard()->HandleInterrupts();
}
RUNTIME_FUNCTION(Runtime_AllocateInNewSpace) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_SMI_ARG_CHECKED(size, 0);
RUNTIME_ASSERT(IsAligned(size, kPointerSize));
RUNTIME_ASSERT(size > 0);
RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
return *isolate->factory()->NewFillerObject(size, false, NEW_SPACE);
}
RUNTIME_FUNCTION(Runtime_AllocateInTargetSpace) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(size, 0);
CONVERT_SMI_ARG_CHECKED(flags, 1);
RUNTIME_ASSERT(IsAligned(size, kPointerSize));
RUNTIME_ASSERT(size > 0);
RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
bool double_align = AllocateDoubleAlignFlag::decode(flags);
AllocationSpace space = AllocateTargetSpace::decode(flags);
return *isolate->factory()->NewFillerObject(size, double_align, space);
}
// Collect the raw data for a stack trace. Returns an array of 4
// element segments each containing a receiver, function, code and
// native code offset.
RUNTIME_FUNCTION(Runtime_CollectStackTrace) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, caller, 1);
if (!isolate->bootstrapper()->IsActive()) {
// Optionally capture a more detailed stack trace for the message.
isolate->CaptureAndSetDetailedStackTrace(error_object);
// Capture a simple stack trace for the stack property.
isolate->CaptureAndSetSimpleStackTrace(error_object, caller);
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_GetFromCache) {
SealHandleScope shs(isolate);
// This is only called from codegen, so checks might be more lax.
CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0);
CONVERT_ARG_CHECKED(Object, key, 1);
{
DisallowHeapAllocation no_alloc;
int finger_index = cache->finger_index();
Object* o = cache->get(finger_index);
if (o == key) {
// The fastest case: hit the same place again.
return cache->get(finger_index + 1);
}
for (int i = finger_index - 2; i >= JSFunctionResultCache::kEntriesIndex;
i -= 2) {
o = cache->get(i);
if (o == key) {
cache->set_finger_index(i);
return cache->get(i + 1);
}
}
int size = cache->size();
DCHECK(size <= cache->length());
for (int i = size - 2; i > finger_index; i -= 2) {
o = cache->get(i);
if (o == key) {
cache->set_finger_index(i);
return cache->get(i + 1);
}
}
}
// There is no value in the cache. Invoke the function and cache result.
HandleScope scope(isolate);
Handle<JSFunctionResultCache> cache_handle(cache);
Handle<Object> key_handle(key, isolate);
Handle<Object> value;
{
Handle<JSFunction> factory(JSFunction::cast(
cache_handle->get(JSFunctionResultCache::kFactoryIndex)));
// TODO(antonm): consider passing a receiver when constructing a cache.
Handle<JSObject> receiver(isolate->global_proxy());
// This handle is nor shared, nor used later, so it's safe.
Handle<Object> argv[] = {key_handle};
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, value,
Execution::Call(isolate, factory, receiver, arraysize(argv), argv));
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
cache_handle->JSFunctionResultCacheVerify();
}
#endif
// Function invocation may have cleared the cache. Reread all the data.
int finger_index = cache_handle->finger_index();
int size = cache_handle->size();
// If we have spare room, put new data into it, otherwise evict post finger
// entry which is likely to be the least recently used.
int index = -1;
if (size < cache_handle->length()) {
cache_handle->set_size(size + JSFunctionResultCache::kEntrySize);
index = size;
} else {
index = finger_index + JSFunctionResultCache::kEntrySize;
if (index == cache_handle->length()) {
index = JSFunctionResultCache::kEntriesIndex;
}
}
DCHECK(index % 2 == 0);
DCHECK(index >= JSFunctionResultCache::kEntriesIndex);
DCHECK(index < cache_handle->length());
cache_handle->set(index, *key_handle);
cache_handle->set(index + 1, *value);
cache_handle->set_finger_index(index);
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
cache_handle->JSFunctionResultCacheVerify();
}
#endif
return *value;
}
RUNTIME_FUNCTION(Runtime_MessageGetStartPosition) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
return Smi::FromInt(message->start_position());
}
RUNTIME_FUNCTION(Runtime_MessageGetScript) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
return message->script();
}
RUNTIME_FUNCTION(Runtime_IS_VAR) {
UNREACHABLE(); // implemented as macro in the parser
return NULL;
}
RUNTIME_FUNCTION(RuntimeReference_GetFromCache) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(id, 0);
args[0] = isolate->native_context()->jsfunction_result_caches()->get(id);
return __RT_impl_Runtime_GetFromCache(args, isolate);
}
}
} // namespace v8::internal
......@@ -5,6 +5,7 @@
#include "src/v8.h"
#include "src/arguments.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/misc-intrinsics.h"
#include "src/runtime/runtime.h"
......@@ -557,6 +558,21 @@ RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
}
RUNTIME_FUNCTION(Runtime_GetRootNaN) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
return isolate->heap()->nan_value();
}
RUNTIME_FUNCTION(Runtime_MaxSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
return Smi::FromInt(Smi::kMaxValue);
}
RUNTIME_FUNCTION(RuntimeReference_NumberToString) {
SealHandleScope shs(isolate);
return __RT_impl_Runtime_NumberToStringRT(args, isolate);
......
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/arguments.h"
#include "src/bootstrapper.h"
#include "src/debug.h"
#include "src/runtime/runtime.h"
#include "src/runtime/runtime-utils.h"
namespace v8 {
namespace internal {
// Returns a single character string where first character equals
// string->Get(index).
static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
if (index < static_cast<uint32_t>(string->length())) {
Factory* factory = string->GetIsolate()->factory();
return factory->LookupSingleCharacterStringFromCode(
String::Flatten(string)->Get(index));
}
return Execution::CharAt(string, index);
}
MaybeHandle<Object> Runtime::GetElementOrCharAt(Isolate* isolate,
Handle<Object> object,
uint32_t index) {
// Handle [] indexing on Strings
if (object->IsString()) {
Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
if (!result->IsUndefined()) return result;
}
// Handle [] indexing on String objects
if (object->IsStringObjectWithCharacterAt(index)) {
Handle<JSValue> js_value = Handle<JSValue>::cast(object);
Handle<Object> result =
GetCharAt(Handle<String>(String::cast(js_value->value())), index);
if (!result->IsUndefined()) return result;
}
Handle<Object> result;
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
PrototypeIterator iter(isolate, object);
return Object::GetElement(isolate, PrototypeIterator::GetCurrent(iter),
index);
} else {
return Object::GetElement(isolate, object, index);
}
}
MaybeHandle<Name> Runtime::ToName(Isolate* isolate, Handle<Object> key) {
if (key->IsName()) {
return Handle<Name>::cast(key);
} else {
Handle<Object> converted;
ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
Execution::ToString(isolate, key), Name);
return Handle<Name>::cast(converted);
}
}
MaybeHandle<Object> Runtime::HasObjectProperty(Isolate* isolate,
Handle<JSReceiver> object,
Handle<Object> key) {
Maybe<bool> maybe;
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
maybe = JSReceiver::HasElement(object, index);
} else {
// Convert the key to a name - possibly by calling back into JavaScript.
Handle<Name> name;
ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
maybe = JSReceiver::HasProperty(object, name);
}
if (!maybe.has_value) return MaybeHandle<Object>();
return isolate->factory()->ToBoolean(maybe.value);
}
MaybeHandle<Object> Runtime::GetObjectProperty(Isolate* isolate,
Handle<Object> object,
Handle<Object> key) {
if (object->IsUndefined() || object->IsNull()) {
Handle<Object> args[2] = {key, object};
THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_load",
HandleVector(args, 2)),
Object);
}
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
return GetElementOrCharAt(isolate, object, index);
}
// Convert the key to a name - possibly by calling back into JavaScript.
Handle<Name> name;
ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
// Check if the name is trivially convertible to an index and get
// the element if so.
if (name->AsArrayIndex(&index)) {
return GetElementOrCharAt(isolate, object, index);
} else {
return Object::GetProperty(object, name);
}
}
MaybeHandle<Object> Runtime::SetObjectProperty(Isolate* isolate,
Handle<Object> object,
Handle<Object> key,
Handle<Object> value,
StrictMode strict_mode) {
if (object->IsUndefined() || object->IsNull()) {
Handle<Object> args[2] = {key, object};
THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_store",
HandleVector(args, 2)),
Object);
}
if (object->IsJSProxy()) {
Handle<Object> name_object;
if (key->IsSymbol()) {
name_object = key;
} else {
ASSIGN_RETURN_ON_EXCEPTION(isolate, name_object,
Execution::ToString(isolate, key), Object);
}
Handle<Name> name = Handle<Name>::cast(name_object);
return Object::SetProperty(Handle<JSProxy>::cast(object), name, value,
strict_mode);
}
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
// TODO(verwaest): Support non-JSObject receivers.
if (!object->IsJSObject()) return value;
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
// In Firefox/SpiderMonkey, Safari and Opera you can access the characters
// of a string using [] notation. We need to support this too in
// JavaScript.
// In the case of a String object we just need to redirect the assignment to
// the underlying string if the index is in range. Since the underlying
// string does nothing with the assignment then we can ignore such
// assignments.
if (js_object->IsStringObjectWithCharacterAt(index)) {
return value;
}
JSObject::ValidateElements(js_object);
if (js_object->HasExternalArrayElements() ||
js_object->HasFixedTypedArrayElements()) {
if (!value->IsNumber() && !value->IsUndefined()) {
ASSIGN_RETURN_ON_EXCEPTION(isolate, value,
Execution::ToNumber(isolate, value), Object);
}
}
MaybeHandle<Object> result = JSObject::SetElement(
js_object, index, value, NONE, strict_mode, true, SET_PROPERTY);
JSObject::ValidateElements(js_object);
return result.is_null() ? result : value;
}
if (key->IsName()) {
Handle<Name> name = Handle<Name>::cast(key);
if (name->AsArrayIndex(&index)) {
// TODO(verwaest): Support non-JSObject receivers.
if (!object->IsJSObject()) return value;
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
if (js_object->HasExternalArrayElements()) {
if (!value->IsNumber() && !value->IsUndefined()) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate, value, Execution::ToNumber(isolate, value), Object);
}
}
return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
true, SET_PROPERTY);
} else {
if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
return Object::SetProperty(object, name, value, strict_mode);
}
}
// Call-back into JavaScript to convert the key to a string.
Handle<Object> converted;
ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
Execution::ToString(isolate, key), Object);
Handle<String> name = Handle<String>::cast(converted);
if (name->AsArrayIndex(&index)) {
// TODO(verwaest): Support non-JSObject receivers.
if (!object->IsJSObject()) return value;
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
true, SET_PROPERTY);
}
return Object::SetProperty(object, name, value, strict_mode);
}
MaybeHandle<Object> Runtime::DefineObjectProperty(Handle<JSObject> js_object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attr) {
Isolate* isolate = js_object->GetIsolate();
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
// In Firefox/SpiderMonkey, Safari and Opera you can access the characters
// of a string using [] notation. We need to support this too in
// JavaScript.
// In the case of a String object we just need to redirect the assignment to
// the underlying string if the index is in range. Since the underlying
// string does nothing with the assignment then we can ignore such
// assignments.
if (js_object->IsStringObjectWithCharacterAt(index)) {
return value;
}
return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false,
DEFINE_PROPERTY);
}
if (key->IsName()) {
Handle<Name> name = Handle<Name>::cast(key);
if (name->AsArrayIndex(&index)) {
return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false,
DEFINE_PROPERTY);
} else {
if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
attr);
}
}
// Call-back into JavaScript to convert the key to a string.
Handle<Object> converted;
ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
Execution::ToString(isolate, key), Object);
Handle<String> name = Handle<String>::cast(converted);
if (name->AsArrayIndex(&index)) {
return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false,
DEFINE_PROPERTY);
} else {
return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
attr);
}
}
MaybeHandle<Object> Runtime::DeleteObjectProperty(Isolate* isolate,
Handle<JSReceiver> receiver,
Handle<Object> key,
JSReceiver::DeleteMode mode) {
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
// In Firefox/SpiderMonkey, Safari and Opera you can access the
// characters of a string using [] notation. In the case of a
// String object we just need to redirect the deletion to the
// underlying string if the index is in range. Since the
// underlying string does nothing with the deletion, we can ignore
// such deletions.
if (receiver->IsStringObjectWithCharacterAt(index)) {
return isolate->factory()->true_value();
}
return JSReceiver::DeleteElement(receiver, index, mode);
}
Handle<Name> name;
if (key->IsName()) {
name = Handle<Name>::cast(key);
} else {
// Call-back into JavaScript to convert the key to a string.
Handle<Object> converted;
ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
Execution::ToString(isolate, key), Object);
name = Handle<String>::cast(converted);
}
if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
return JSReceiver::DeleteProperty(receiver, name, mode);
}
RUNTIME_FUNCTION(Runtime_GetPrototype) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
// We don't expect access checks to be needed on JSProxy objects.
DCHECK(!obj->IsAccessCheckNeeded() || obj->IsJSObject());
PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
do {
if (PrototypeIterator::GetCurrent(iter)->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(
Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
isolate->factory()->proto_string(), v8::ACCESS_GET)) {
isolate->ReportFailedAccessCheck(
Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
v8::ACCESS_GET);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return isolate->heap()->undefined_value();
}
iter.AdvanceIgnoringProxies();
if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
return *PrototypeIterator::GetCurrent(iter);
}
} while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN));
return *PrototypeIterator::GetCurrent(iter);
}
RUNTIME_FUNCTION(Runtime_InternalSetPrototype) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
DCHECK(!obj->IsAccessCheckNeeded());
DCHECK(!obj->map()->is_observed());
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, JSObject::SetPrototype(obj, prototype, false));
return *result;
}
RUNTIME_FUNCTION(Runtime_SetPrototype) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
if (obj->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(obj, isolate->factory()->proto_string(),
v8::ACCESS_SET)) {
isolate->ReportFailedAccessCheck(obj, v8::ACCESS_SET);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return isolate->heap()->undefined_value();
}
if (obj->map()->is_observed()) {
Handle<Object> old_value =
Object::GetPrototypeSkipHiddenPrototypes(isolate, obj);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, JSObject::SetPrototype(obj, prototype, true));
Handle<Object> new_value =
Object::GetPrototypeSkipHiddenPrototypes(isolate, obj);
if (!new_value->SameValue(*old_value)) {
JSObject::EnqueueChangeRecord(
obj, "setPrototype", isolate->factory()->proto_string(), old_value);
}
return *result;
}
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, JSObject::SetPrototype(obj, prototype, true));
return *result;
}
RUNTIME_FUNCTION(Runtime_IsInPrototypeChain) {
HandleScope shs(isolate);
DCHECK(args.length() == 2);
// See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
CONVERT_ARG_HANDLE_CHECKED(Object, O, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, V, 1);
PrototypeIterator iter(isolate, V, PrototypeIterator::START_AT_RECEIVER);
while (true) {
iter.AdvanceIgnoringProxies();
if (iter.IsAtEnd()) return isolate->heap()->false_value();
if (iter.IsAtEnd(O)) return isolate->heap()->true_value();
}
}
// Enumerator used as indices into the array returned from GetOwnProperty
enum PropertyDescriptorIndices {
IS_ACCESSOR_INDEX,
VALUE_INDEX,
GETTER_INDEX,
SETTER_INDEX,
WRITABLE_INDEX,
ENUMERABLE_INDEX,
CONFIGURABLE_INDEX,
DESCRIPTOR_SIZE
};
MUST_USE_RESULT static MaybeHandle<Object> GetOwnProperty(Isolate* isolate,
Handle<JSObject> obj,
Handle<Name> name) {
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
PropertyAttributes attrs;
uint32_t index = 0;
Handle<Object> value;
MaybeHandle<AccessorPair> maybe_accessors;
// TODO(verwaest): Unify once indexed properties can be handled by the
// LookupIterator.
if (name->AsArrayIndex(&index)) {
// Get attributes.
Maybe<PropertyAttributes> maybe =
JSReceiver::GetOwnElementAttribute(obj, index);
if (!maybe.has_value) return MaybeHandle<Object>();
attrs = maybe.value;
if (attrs == ABSENT) return factory->undefined_value();
// Get AccessorPair if present.
maybe_accessors = JSObject::GetOwnElementAccessorPair(obj, index);
// Get value if not an AccessorPair.
if (maybe_accessors.is_null()) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate, value, Runtime::GetElementOrCharAt(isolate, obj, index),
Object);
}
} else {
// Get attributes.
LookupIterator it(obj, name, LookupIterator::HIDDEN);
Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(&it);
if (!maybe.has_value) return MaybeHandle<Object>();
attrs = maybe.value;
if (attrs == ABSENT) return factory->undefined_value();
// Get AccessorPair if present.
if (it.state() == LookupIterator::ACCESSOR &&
it.GetAccessors()->IsAccessorPair()) {
maybe_accessors = Handle<AccessorPair>::cast(it.GetAccessors());
}
// Get value if not an AccessorPair.
if (maybe_accessors.is_null()) {
ASSIGN_RETURN_ON_EXCEPTION(isolate, value, Object::GetProperty(&it),
Object);
}
}
DCHECK(!isolate->has_pending_exception());
Handle<FixedArray> elms = factory->NewFixedArray(DESCRIPTOR_SIZE);
elms->set(ENUMERABLE_INDEX, heap->ToBoolean((attrs & DONT_ENUM) == 0));
elms->set(CONFIGURABLE_INDEX, heap->ToBoolean((attrs & DONT_DELETE) == 0));
elms->set(IS_ACCESSOR_INDEX, heap->ToBoolean(!maybe_accessors.is_null()));
Handle<AccessorPair> accessors;
if (maybe_accessors.ToHandle(&accessors)) {
Handle<Object> getter(accessors->GetComponent(ACCESSOR_GETTER), isolate);
Handle<Object> setter(accessors->GetComponent(ACCESSOR_SETTER), isolate);
elms->set(GETTER_INDEX, *getter);
elms->set(SETTER_INDEX, *setter);
} else {
elms->set(WRITABLE_INDEX, heap->ToBoolean((attrs & READ_ONLY) == 0));
elms->set(VALUE_INDEX, *value);
}
return factory->NewJSArrayWithElements(elms);
}
// Returns an array with the property description:
// if args[1] is not a property on args[0]
// returns undefined
// if args[1] is a data property on args[0]
// [false, value, Writeable, Enumerable, Configurable]
// if args[1] is an accessor on args[0]
// [true, GetFunction, SetFunction, Enumerable, Configurable]
RUNTIME_FUNCTION(Runtime_GetOwnProperty) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
GetOwnProperty(isolate, obj, name));
return *result;
}
RUNTIME_FUNCTION(Runtime_PreventExtensions) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
JSObject::PreventExtensions(obj));
return *result;
}
RUNTIME_FUNCTION(Runtime_IsExtensible) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
if (obj->IsJSGlobalProxy()) {
PrototypeIterator iter(isolate, obj);
if (iter.IsAtEnd()) return isolate->heap()->false_value();
DCHECK(iter.GetCurrent()->IsJSGlobalObject());
obj = JSObject::cast(iter.GetCurrent());
}
return isolate->heap()->ToBoolean(obj->map()->is_extensible());
}
RUNTIME_FUNCTION(Runtime_DisableAccessChecks) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(HeapObject, object, 0);
Handle<Map> old_map(object->map());
bool needs_access_checks = old_map->is_access_check_needed();
if (needs_access_checks) {
// Copy map so it won't interfere constructor's initial map.
Handle<Map> new_map = Map::Copy(old_map);
new_map->set_is_access_check_needed(false);
JSObject::MigrateToMap(Handle<JSObject>::cast(object), new_map);
}
return isolate->heap()->ToBoolean(needs_access_checks);
}
RUNTIME_FUNCTION(Runtime_EnableAccessChecks) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
Handle<Map> old_map(object->map());
RUNTIME_ASSERT(!old_map->is_access_check_needed());
// Copy map so it won't interfere constructor's initial map.
Handle<Map> new_map = Map::Copy(old_map);
new_map->set_is_access_check_needed(true);
JSObject::MigrateToMap(object, new_map);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_OptimizeObjectForAddingMultipleProperties) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_SMI_ARG_CHECKED(properties, 1);
// Conservative upper limit to prevent fuzz tests from going OOM.
RUNTIME_ASSERT(properties <= 100000);
if (object->HasFastProperties() && !object->IsJSGlobalProxy()) {
JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
}
return *object;
}
RUNTIME_FUNCTION(Runtime_ObjectFreeze) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
// %ObjectFreeze is a fast path and these cases are handled elsewhere.
RUNTIME_ASSERT(!object->HasSloppyArgumentsElements() &&
!object->map()->is_observed() && !object->IsJSProxy());
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, JSObject::Freeze(object));
return *result;
}
RUNTIME_FUNCTION(Runtime_GetProperty) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, Runtime::GetObjectProperty(isolate, object, key));
return *result;
}
MUST_USE_RESULT static MaybeHandle<Object> TransitionElements(
Handle<Object> object, ElementsKind to_kind, Isolate* isolate) {
HandleScope scope(isolate);
if (!object->IsJSObject()) {
isolate->ThrowIllegalOperation();
return MaybeHandle<Object>();
}
ElementsKind from_kind =
Handle<JSObject>::cast(object)->map()->elements_kind();
if (Map::IsValidElementsTransition(from_kind, to_kind)) {
JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), to_kind);
return object;
}
isolate->ThrowIllegalOperation();
return MaybeHandle<Object>();
}
// KeyedGetProperty is called from KeyedLoadIC::GenerateGeneric.
RUNTIME_FUNCTION(Runtime_KeyedGetProperty) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(Object, receiver_obj, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key_obj, 1);
// Fast cases for getting named properties of the receiver JSObject
// itself.
//
// The global proxy objects has to be excluded since LookupOwn on
// the global proxy object can return a valid result even though the
// global proxy object never has properties. This is the case
// because the global proxy object forwards everything to its hidden
// prototype including own lookups.
//
// Additionally, we need to make sure that we do not cache results
// for objects that require access checks.
if (receiver_obj->IsJSObject()) {
if (!receiver_obj->IsJSGlobalProxy() &&
!receiver_obj->IsAccessCheckNeeded() && key_obj->IsName()) {
DisallowHeapAllocation no_allocation;
Handle<JSObject> receiver = Handle<JSObject>::cast(receiver_obj);
Handle<Name> key = Handle<Name>::cast(key_obj);
if (receiver->HasFastProperties()) {
// Attempt to use lookup cache.
Handle<Map> receiver_map(receiver->map(), isolate);
KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache();
int index = keyed_lookup_cache->Lookup(receiver_map, key);
if (index != -1) {
// Doubles are not cached, so raw read the value.
return receiver->RawFastPropertyAt(
FieldIndex::ForKeyedLookupCacheIndex(*receiver_map, index));
}
// Lookup cache miss. Perform lookup and update the cache if
// appropriate.
LookupIterator it(receiver, key, LookupIterator::OWN);
if (it.state() == LookupIterator::DATA &&
it.property_details().type() == FIELD) {
FieldIndex field_index = it.GetFieldIndex();
// Do not track double fields in the keyed lookup cache. Reading
// double values requires boxing.
if (!it.representation().IsDouble()) {
keyed_lookup_cache->Update(receiver_map, key,
field_index.GetKeyedLookupCacheIndex());
}
AllowHeapAllocation allow_allocation;
return *JSObject::FastPropertyAt(receiver, it.representation(),
field_index);
}
} else {
// Attempt dictionary lookup.
NameDictionary* dictionary = receiver->property_dictionary();
int entry = dictionary->FindEntry(key);
if ((entry != NameDictionary::kNotFound) &&
(dictionary->DetailsAt(entry).type() == NORMAL)) {
Object* value = dictionary->ValueAt(entry);
if (!receiver->IsGlobalObject()) return value;
value = PropertyCell::cast(value)->value();
if (!value->IsTheHole()) return value;
// If value is the hole (meaning, absent) do the general lookup.
}
}
} else if (key_obj->IsSmi()) {
// JSObject without a name key. If the key is a Smi, check for a
// definite out-of-bounds access to elements, which is a strong indicator
// that subsequent accesses will also call the runtime. Proactively
// transition elements to FAST_*_ELEMENTS to avoid excessive boxing of
// doubles for those future calls in the case that the elements would
// become FAST_DOUBLE_ELEMENTS.
Handle<JSObject> js_object = Handle<JSObject>::cast(receiver_obj);
ElementsKind elements_kind = js_object->GetElementsKind();
if (IsFastDoubleElementsKind(elements_kind)) {
Handle<Smi> key = Handle<Smi>::cast(key_obj);
if (key->value() >= js_object->elements()->length()) {
if (IsFastHoleyElementsKind(elements_kind)) {
elements_kind = FAST_HOLEY_ELEMENTS;
} else {
elements_kind = FAST_ELEMENTS;
}
RETURN_FAILURE_ON_EXCEPTION(
isolate, TransitionElements(js_object, elements_kind, isolate));
}
} else {
DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) ||
!IsFastElementsKind(elements_kind));
}
}
} else if (receiver_obj->IsString() && key_obj->IsSmi()) {
// Fast case for string indexing using [] with a smi index.
Handle<String> str = Handle<String>::cast(receiver_obj);
int index = args.smi_at(1);
if (index >= 0 && index < str->length()) {
return *GetCharAt(str, index);
}
}
// Fall back to GetObjectProperty.
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Runtime::GetObjectProperty(isolate, receiver_obj, key_obj));
return *result;
}
RUNTIME_FUNCTION(Runtime_AddNamedProperty) {
HandleScope scope(isolate);
RUNTIME_ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
RUNTIME_ASSERT(
(unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
// Compute attributes.
PropertyAttributes attributes =
static_cast<PropertyAttributes>(unchecked_attributes);
#ifdef DEBUG
uint32_t index = 0;
DCHECK(!key->ToArrayIndex(&index));
LookupIterator it(object, key, LookupIterator::OWN_SKIP_INTERCEPTOR);
Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
if (!maybe.has_value) return isolate->heap()->exception();
RUNTIME_ASSERT(!it.IsFound());
#endif
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
JSObject::SetOwnPropertyIgnoreAttributes(object, key, value, attributes));
return *result;
}
RUNTIME_FUNCTION(Runtime_SetProperty) {
HandleScope scope(isolate);
RUNTIME_ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_arg, 3);
StrictMode strict_mode = strict_mode_arg;
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
return *result;
}
// Adds an element to an array.
// This is used to create an indexed data property into an array.
RUNTIME_FUNCTION(Runtime_AddElement) {
HandleScope scope(isolate);
RUNTIME_ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
RUNTIME_ASSERT(
(unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
// Compute attributes.
PropertyAttributes attributes =
static_cast<PropertyAttributes>(unchecked_attributes);
uint32_t index = 0;
key->ToArrayIndex(&index);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, JSObject::SetElement(object, index, value, attributes,
SLOPPY, false, DEFINE_PROPERTY));
return *result;
}
RUNTIME_FUNCTION(Runtime_DeleteProperty) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2);
JSReceiver::DeleteMode delete_mode = strict_mode == STRICT
? JSReceiver::STRICT_DELETION
: JSReceiver::NORMAL_DELETION;
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, JSReceiver::DeleteProperty(object, key, delete_mode));
return *result;
}
static Object* HasOwnPropertyImplementation(Isolate* isolate,
Handle<JSObject> object,
Handle<Name> key) {
Maybe<bool> maybe = JSReceiver::HasOwnProperty(object, key);
if (!maybe.has_value) return isolate->heap()->exception();
if (maybe.value) return isolate->heap()->true_value();
// Handle hidden prototypes. If there's a hidden prototype above this thing
// then we have to check it for properties, because they are supposed to
// look like they are on this object.
PrototypeIterator iter(isolate, object);
if (!iter.IsAtEnd() &&
Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter))
->map()
->is_hidden_prototype()) {
// TODO(verwaest): The recursion is not necessary for keys that are array
// indices. Removing this.
return HasOwnPropertyImplementation(
isolate, Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
key);
}
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return isolate->heap()->false_value();
}
RUNTIME_FUNCTION(Runtime_HasOwnProperty) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0)
CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
uint32_t index;
const bool key_is_array_index = key->AsArrayIndex(&index);
// Only JS objects can have properties.
if (object->IsJSObject()) {
Handle<JSObject> js_obj = Handle<JSObject>::cast(object);
// Fast case: either the key is a real named property or it is not
// an array index and there are no interceptors or hidden
// prototypes.
Maybe<bool> maybe = JSObject::HasRealNamedProperty(js_obj, key);
if (!maybe.has_value) return isolate->heap()->exception();
DCHECK(!isolate->has_pending_exception());
if (maybe.value) {
return isolate->heap()->true_value();
}
Map* map = js_obj->map();
if (!key_is_array_index && !map->has_named_interceptor() &&
!HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) {
return isolate->heap()->false_value();
}
// Slow case.
return HasOwnPropertyImplementation(isolate, Handle<JSObject>(js_obj),
Handle<Name>(key));
} else if (object->IsString() && key_is_array_index) {
// Well, there is one exception: Handle [] on strings.
Handle<String> string = Handle<String>::cast(object);
if (index < static_cast<uint32_t>(string->length())) {
return isolate->heap()->true_value();
}
}
return isolate->heap()->false_value();
}
RUNTIME_FUNCTION(Runtime_HasProperty) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
Maybe<bool> maybe = JSReceiver::HasProperty(receiver, key);
if (!maybe.has_value) return isolate->heap()->exception();
return isolate->heap()->ToBoolean(maybe.value);
}
RUNTIME_FUNCTION(Runtime_HasElement) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
CONVERT_SMI_ARG_CHECKED(index, 1);
Maybe<bool> maybe = JSReceiver::HasElement(receiver, index);
if (!maybe.has_value) return isolate->heap()->exception();
return isolate->heap()->ToBoolean(maybe.value);
}
RUNTIME_FUNCTION(Runtime_IsPropertyEnumerable) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
Maybe<PropertyAttributes> maybe =
JSReceiver::GetOwnPropertyAttributes(object, key);
if (!maybe.has_value) return isolate->heap()->exception();
if (maybe.value == ABSENT) maybe.value = DONT_ENUM;
return isolate->heap()->ToBoolean((maybe.value & DONT_ENUM) == 0);
}
RUNTIME_FUNCTION(Runtime_GetPropertyNames) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
Handle<JSArray> result;
isolate->counters()->for_in()->Increment();
Handle<FixedArray> elements;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, elements,
JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
return *isolate->factory()->NewJSArrayWithElements(elements);
}
// Returns either a FixedArray as Runtime_GetPropertyNames,
// or, if the given object has an enum cache that contains
// all enumerable properties of the object and its prototypes
// have none, the map of the object. This is used to speed up
// the check for deletions during a for-in.
RUNTIME_FUNCTION(Runtime_GetPropertyNamesFast) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0);
if (raw_object->IsSimpleEnum()) return raw_object->map();
HandleScope scope(isolate);
Handle<JSReceiver> object(raw_object);
Handle<FixedArray> content;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, content,
JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
// Test again, since cache may have been built by preceding call.
if (object->IsSimpleEnum()) return object->map();
return *content;
}
// Find the length of the prototype chain that is to be handled as one. If a
// prototype object is hidden it is to be viewed as part of the the object it
// is prototype for.
static int OwnPrototypeChainLength(JSObject* obj) {
int count = 1;
for (PrototypeIterator iter(obj->GetIsolate(), obj);
!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) {
count++;
}
return count;
}
// Return the names of the own named properties.
// args[0]: object
// args[1]: PropertyAttributes as int
RUNTIME_FUNCTION(Runtime_GetOwnPropertyNames) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
if (!args[0]->IsJSObject()) {
return isolate->heap()->undefined_value();
}
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
CONVERT_SMI_ARG_CHECKED(filter_value, 1);
PropertyAttributes filter = static_cast<PropertyAttributes>(filter_value);
// Skip the global proxy as it has no properties and always delegates to the
// real global object.
if (obj->IsJSGlobalProxy()) {
// Only collect names if access is permitted.
if (obj->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(obj, isolate->factory()->undefined_value(),
v8::ACCESS_KEYS)) {
isolate->ReportFailedAccessCheck(obj, v8::ACCESS_KEYS);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return *isolate->factory()->NewJSArray(0);
}
PrototypeIterator iter(isolate, obj);
obj = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
}
// Find the number of objects making up this.
int length = OwnPrototypeChainLength(*obj);
// Find the number of own properties for each of the objects.
ScopedVector<int> own_property_count(length);
int total_property_count = 0;
{
PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
for (int i = 0; i < length; i++) {
DCHECK(!iter.IsAtEnd());
Handle<JSObject> jsproto =
Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
// Only collect names if access is permitted.
if (jsproto->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(jsproto,
isolate->factory()->undefined_value(),
v8::ACCESS_KEYS)) {
isolate->ReportFailedAccessCheck(jsproto, v8::ACCESS_KEYS);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return *isolate->factory()->NewJSArray(0);
}
int n;
n = jsproto->NumberOfOwnProperties(filter);
own_property_count[i] = n;
total_property_count += n;
iter.Advance();
}
}
// Allocate an array with storage for all the property names.
Handle<FixedArray> names =
isolate->factory()->NewFixedArray(total_property_count);
// Get the property names.
int next_copy_index = 0;
int hidden_strings = 0;
{
PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
for (int i = 0; i < length; i++) {
DCHECK(!iter.IsAtEnd());
Handle<JSObject> jsproto =
Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
jsproto->GetOwnPropertyNames(*names, next_copy_index, filter);
if (i > 0) {
// Names from hidden prototypes may already have been added
// for inherited function template instances. Count the duplicates
// and stub them out; the final copy pass at the end ignores holes.
for (int j = next_copy_index;
j < next_copy_index + own_property_count[i]; j++) {
Object* name_from_hidden_proto = names->get(j);
for (int k = 0; k < next_copy_index; k++) {
if (names->get(k) != isolate->heap()->hidden_string()) {
Object* name = names->get(k);
if (name_from_hidden_proto == name) {
names->set(j, isolate->heap()->hidden_string());
hidden_strings++;
break;
}
}
}
}
}
next_copy_index += own_property_count[i];
// Hidden properties only show up if the filter does not skip strings.
if ((filter & STRING) == 0 && JSObject::HasHiddenProperties(jsproto)) {
hidden_strings++;
}
iter.Advance();
}
}
// Filter out name of hidden properties object and
// hidden prototype duplicates.
if (hidden_strings > 0) {
Handle<FixedArray> old_names = names;
names = isolate->factory()->NewFixedArray(names->length() - hidden_strings);
int dest_pos = 0;
for (int i = 0; i < total_property_count; i++) {
Object* name = old_names->get(i);
if (name == isolate->heap()->hidden_string()) {
hidden_strings--;
continue;
}
names->set(dest_pos++, name);
}
DCHECK_EQ(0, hidden_strings);
}
return *isolate->factory()->NewJSArrayWithElements(names);
}
// Return the names of the own indexed properties.
// args[0]: object
RUNTIME_FUNCTION(Runtime_GetOwnElementNames) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
if (!args[0]->IsJSObject()) {
return isolate->heap()->undefined_value();
}
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
int n = obj->NumberOfOwnElements(static_cast<PropertyAttributes>(NONE));
Handle<FixedArray> names = isolate->factory()->NewFixedArray(n);
obj->GetOwnElementKeys(*names, static_cast<PropertyAttributes>(NONE));
return *isolate->factory()->NewJSArrayWithElements(names);
}
// Return information on whether an object has a named or indexed interceptor.
// args[0]: object
RUNTIME_FUNCTION(Runtime_GetInterceptorInfo) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
if (!args[0]->IsJSObject()) {
return Smi::FromInt(0);
}
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
int result = 0;
if (obj->HasNamedInterceptor()) result |= 2;
if (obj->HasIndexedInterceptor()) result |= 1;
return Smi::FromInt(result);
}
// Return property names from named interceptor.
// args[0]: object
RUNTIME_FUNCTION(Runtime_GetNamedInterceptorPropertyNames) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
if (obj->HasNamedInterceptor()) {
Handle<JSObject> result;
if (JSObject::GetKeysForNamedInterceptor(obj, obj).ToHandle(&result)) {
return *result;
}
}
return isolate->heap()->undefined_value();
}
// Return element names from indexed interceptor.
// args[0]: object
RUNTIME_FUNCTION(Runtime_GetIndexedInterceptorElementNames) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
if (obj->HasIndexedInterceptor()) {
Handle<JSObject> result;
if (JSObject::GetKeysForIndexedInterceptor(obj, obj).ToHandle(&result)) {
return *result;
}
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_OwnKeys) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, raw_object, 0);
Handle<JSObject> object(raw_object);
if (object->IsJSGlobalProxy()) {
// Do access checks before going to the global object.
if (object->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(object, isolate->factory()->undefined_value(),
v8::ACCESS_KEYS)) {
isolate->ReportFailedAccessCheck(object, v8::ACCESS_KEYS);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return *isolate->factory()->NewJSArray(0);
}
PrototypeIterator iter(isolate, object);
// If proxy is detached we simply return an empty array.
if (iter.IsAtEnd()) return *isolate->factory()->NewJSArray(0);
object = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
}
Handle<FixedArray> contents;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, contents, JSReceiver::GetKeys(object, JSReceiver::OWN_ONLY));
// Some fast paths through GetKeysInFixedArrayFor reuse a cached
// property array and since the result is mutable we have to create
// a fresh clone on each invocation.
int length = contents->length();
Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length);
for (int i = 0; i < length; i++) {
Object* entry = contents->get(i);
if (entry->IsString()) {
copy->set(i, entry);
} else {
DCHECK(entry->IsNumber());
HandleScope scope(isolate);
Handle<Object> entry_handle(entry, isolate);
Handle<Object> entry_str =
isolate->factory()->NumberToString(entry_handle);
copy->set(i, *entry_str);
}
}
return *isolate->factory()->NewJSArrayWithElements(copy);
}
RUNTIME_FUNCTION(Runtime_ToFastProperties) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
if (object->IsJSObject() && !object->IsGlobalObject()) {
JSObject::MigrateSlowToFast(Handle<JSObject>::cast(object), 0);
}
return *object;
}
RUNTIME_FUNCTION(Runtime_ToBool) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, object, 0);
return isolate->heap()->ToBoolean(object->BooleanValue());
}
// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
// Possible optimizations: put the type string into the oddballs.
RUNTIME_FUNCTION(Runtime_Typeof) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
if (obj->IsNumber()) return isolate->heap()->number_string();
HeapObject* heap_obj = HeapObject::cast(obj);
// typeof an undetectable object is 'undefined'
if (heap_obj->map()->is_undetectable()) {
return isolate->heap()->undefined_string();
}
InstanceType instance_type = heap_obj->map()->instance_type();
if (instance_type < FIRST_NONSTRING_TYPE) {
return isolate->heap()->string_string();
}
switch (instance_type) {
case ODDBALL_TYPE:
if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
return isolate->heap()->boolean_string();
}
if (heap_obj->IsNull()) {
return isolate->heap()->object_string();
}
DCHECK(heap_obj->IsUndefined());
return isolate->heap()->undefined_string();
case SYMBOL_TYPE:
return isolate->heap()->symbol_string();
case JS_FUNCTION_TYPE:
case JS_FUNCTION_PROXY_TYPE:
return isolate->heap()->function_string();
default:
// For any kind of object not handled above, the spec rule for
// host objects gives that it is okay to return "object"
return isolate->heap()->object_string();
}
}
RUNTIME_FUNCTION(Runtime_Booleanize) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_CHECKED(Object, value_raw, 0);
CONVERT_SMI_ARG_CHECKED(token_raw, 1);
intptr_t value = reinterpret_cast<intptr_t>(value_raw);
Token::Value token = static_cast<Token::Value>(token_raw);
switch (token) {
case Token::EQ:
case Token::EQ_STRICT:
return isolate->heap()->ToBoolean(value == 0);
case Token::NE:
case Token::NE_STRICT:
return isolate->heap()->ToBoolean(value != 0);
case Token::LT:
return isolate->heap()->ToBoolean(value < 0);
case Token::GT:
return isolate->heap()->ToBoolean(value > 0);
case Token::LTE:
return isolate->heap()->ToBoolean(value <= 0);
case Token::GTE:
return isolate->heap()->ToBoolean(value >= 0);
default:
// This should only happen during natives fuzzing.
return isolate->heap()->undefined_value();
}
}
RUNTIME_FUNCTION(Runtime_NewStringWrapper) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(String, value, 0);
return *Object::ToObject(isolate, value).ToHandleChecked();
}
RUNTIME_FUNCTION(Runtime_AllocateHeapNumber) {
HandleScope scope(isolate);
DCHECK(args.length() == 0);
return *isolate->factory()->NewHeapNumber(0);
}
static Object* Runtime_NewObjectHelper(Isolate* isolate,
Handle<Object> constructor,
Handle<AllocationSite> site) {
// If the constructor isn't a proper function we throw a type error.
if (!constructor->IsJSFunction()) {
Vector<Handle<Object> > arguments = HandleVector(&constructor, 1);
THROW_NEW_ERROR_RETURN_FAILURE(isolate,
NewTypeError("not_constructor", arguments));
}
Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
// If function should not have prototype, construction is not allowed. In this
// case generated code bailouts here, since function has no initial_map.
if (!function->should_have_prototype() && !function->shared()->bound()) {
Vector<Handle<Object> > arguments = HandleVector(&constructor, 1);
THROW_NEW_ERROR_RETURN_FAILURE(isolate,
NewTypeError("not_constructor", arguments));
}
Debug* debug = isolate->debug();
// Handle stepping into constructors if step into is active.
if (debug->StepInActive()) {
debug->HandleStepIn(function, Handle<Object>::null(), 0, true);
}
if (function->has_initial_map()) {
if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
// The 'Function' function ignores the receiver object when
// called using 'new' and creates a new JSFunction object that
// is returned. The receiver object is only used for error
// reporting if an error occurs when constructing the new
// JSFunction. Factory::NewJSObject() should not be used to
// allocate JSFunctions since it does not properly initialize
// the shared part of the function. Since the receiver is
// ignored anyway, we use the global object as the receiver
// instead of a new JSFunction object. This way, errors are
// reported the same way whether or not 'Function' is called
// using 'new'.
return isolate->global_proxy();
}
}
// The function should be compiled for the optimization hints to be
// available.
Compiler::EnsureCompiled(function, CLEAR_EXCEPTION);
Handle<JSObject> result;
if (site.is_null()) {
result = isolate->factory()->NewJSObject(function);
} else {
result = isolate->factory()->NewJSObjectWithMemento(function, site);
}
isolate->counters()->constructed_objects()->Increment();
isolate->counters()->constructed_objects_runtime()->Increment();
return *result;
}
RUNTIME_FUNCTION(Runtime_NewObject) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 0);
return Runtime_NewObjectHelper(isolate, constructor,
Handle<AllocationSite>::null());
}
RUNTIME_FUNCTION(Runtime_NewObjectWithAllocationSite) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, feedback, 0);
Handle<AllocationSite> site;
if (feedback->IsAllocationSite()) {
// The feedback can be an AllocationSite or undefined.
site = Handle<AllocationSite>::cast(feedback);
}
return Runtime_NewObjectHelper(isolate, constructor, site);
}
RUNTIME_FUNCTION(Runtime_FinalizeInstanceSize) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
function->CompleteInobjectSlackTracking();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_GlobalProxy) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, global, 0);
if (!global->IsJSGlobalObject()) return isolate->heap()->null_value();
return JSGlobalObject::cast(global)->global_proxy();
}
RUNTIME_FUNCTION(Runtime_IsAttachedGlobal) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, global, 0);
if (!global->IsJSGlobalObject()) return isolate->heap()->false_value();
return isolate->heap()->ToBoolean(
!JSGlobalObject::cast(global)->IsDetached());
}
RUNTIME_FUNCTION(Runtime_LookupAccessor) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
CONVERT_SMI_ARG_CHECKED(flag, 2);
AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER;
if (!receiver->IsJSObject()) return isolate->heap()->undefined_value();
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
JSObject::GetAccessor(Handle<JSObject>::cast(receiver), name, component));
return *result;
}
RUNTIME_FUNCTION(Runtime_LoadMutableDouble) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Smi, index, 1);
RUNTIME_ASSERT((index->value() & 1) == 1);
FieldIndex field_index =
FieldIndex::ForLoadByFieldIndex(object->map(), index->value());
if (field_index.is_inobject()) {
RUNTIME_ASSERT(field_index.property_index() <
object->map()->inobject_properties());
} else {
RUNTIME_ASSERT(field_index.outobject_array_index() <
object->properties()->length());
}
Handle<Object> raw_value(object->RawFastPropertyAt(field_index), isolate);
RUNTIME_ASSERT(raw_value->IsMutableHeapNumber());
return *Object::WrapForRead(isolate, raw_value, Representation::Double());
}
RUNTIME_FUNCTION(Runtime_TryMigrateInstance) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
if (!object->IsJSObject()) return Smi::FromInt(0);
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
if (!js_object->map()->is_deprecated()) return Smi::FromInt(0);
// This call must not cause lazy deopts, because it's called from deferred
// code where we can't handle lazy deopts for lack of a suitable bailout
// ID. So we just try migration and signal failure if necessary,
// which will also trigger a deopt.
if (!JSObject::TryMigrateInstance(js_object)) return Smi::FromInt(0);
return *object;
}
RUNTIME_FUNCTION(Runtime_IsJSGlobalProxy) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
return isolate->heap()->ToBoolean(obj->IsJSGlobalProxy());
}
static bool IsValidAccessor(Handle<Object> obj) {
return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull();
}
// Implements part of 8.12.9 DefineOwnProperty.
// There are 3 cases that lead here:
// Step 4b - define a new accessor property.
// Steps 9c & 12 - replace an existing data property with an accessor property.
// Step 12 - update an existing accessor property with an accessor or generic
// descriptor.
RUNTIME_FUNCTION(Runtime_DefineAccessorPropertyUnchecked) {
HandleScope scope(isolate);
DCHECK(args.length() == 5);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(!obj->IsNull());
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
RUNTIME_ASSERT(IsValidAccessor(getter));
CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
RUNTIME_ASSERT(IsValidAccessor(setter));
CONVERT_SMI_ARG_CHECKED(unchecked, 4);
RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
bool fast = obj->HasFastProperties();
RETURN_FAILURE_ON_EXCEPTION(
isolate, JSObject::DefineAccessor(obj, name, getter, setter, attr));
if (fast) JSObject::MigrateSlowToFast(obj, 0);
return isolate->heap()->undefined_value();
}
// Implements part of 8.12.9 DefineOwnProperty.
// There are 3 cases that lead here:
// Step 4a - define a new data property.
// Steps 9b & 12 - replace an existing accessor property with a data property.
// Step 12 - update an existing data property with a data or generic
// descriptor.
RUNTIME_FUNCTION(Runtime_DefineDataPropertyUnchecked) {
HandleScope scope(isolate);
DCHECK(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2);
CONVERT_SMI_ARG_CHECKED(unchecked, 3);
RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
LookupIterator it(js_object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
if (it.IsFound() && it.state() == LookupIterator::ACCESS_CHECK) {
if (!isolate->MayNamedAccess(js_object, name, v8::ACCESS_SET)) {
return isolate->heap()->undefined_value();
}
it.Next();
}
// Take special care when attributes are different and there is already
// a property.
if (it.state() == LookupIterator::ACCESSOR) {
// Use IgnoreAttributes version since a readonly property may be
// overridden and SetProperty does not allow this.
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
JSObject::SetOwnPropertyIgnoreAttributes(
js_object, name, obj_value, attr, JSObject::DONT_FORCE_FIELD));
return *result;
}
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Runtime::DefineObjectProperty(js_object, name, obj_value, attr));
return *result;
}
// Return property without being observable by accessors or interceptors.
RUNTIME_FUNCTION(Runtime_GetDataProperty) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
return *JSObject::GetDataProperty(object, key);
}
RUNTIME_FUNCTION(RuntimeReference_ValueOf) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
if (!obj->IsJSValue()) return obj;
return JSValue::cast(obj)->value();
}
RUNTIME_FUNCTION(RuntimeReference_SetValueOf) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_CHECKED(Object, obj, 0);
CONVERT_ARG_CHECKED(Object, value, 1);
if (!obj->IsJSValue()) return value;
JSValue::cast(obj)->set_value(value);
return value;
}
RUNTIME_FUNCTION(RuntimeReference_ObjectEquals) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_CHECKED(Object, obj1, 0);
CONVERT_ARG_CHECKED(Object, obj2, 1);
return isolate->heap()->ToBoolean(obj1 == obj2);
}
RUNTIME_FUNCTION(RuntimeReference_IsObject) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
if (!obj->IsHeapObject()) return isolate->heap()->false_value();
if (obj->IsNull()) return isolate->heap()->true_value();
if (obj->IsUndetectableObject()) return isolate->heap()->false_value();
Map* map = HeapObject::cast(obj)->map();
bool is_non_callable_spec_object =
map->instance_type() >= FIRST_NONCALLABLE_SPEC_OBJECT_TYPE &&
map->instance_type() <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE;
return isolate->heap()->ToBoolean(is_non_callable_spec_object);
}
RUNTIME_FUNCTION(RuntimeReference_IsUndetectableObject) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
return isolate->heap()->ToBoolean(obj->IsUndetectableObject());
}
RUNTIME_FUNCTION(RuntimeReference_IsSpecObject) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
return isolate->heap()->ToBoolean(obj->IsSpecObject());
}
RUNTIME_FUNCTION(RuntimeReference_ClassOf) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
if (!obj->IsJSReceiver()) return isolate->heap()->null_value();
return JSReceiver::cast(obj)->class_name();
}
}
} // namespace v8::internal
......@@ -1256,5 +1256,11 @@ RUNTIME_FUNCTION(RuntimeReference_StringAdd) {
SealHandleScope shs(isolate);
return __RT_impl_Runtime_StringAdd(args, isolate);
}
RUNTIME_FUNCTION(RuntimeReference_IsStringWrapperSafeForDefaultValueOf) {
UNIMPLEMENTED();
return NULL;
}
}
} // namespace v8::internal
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -736,6 +736,8 @@
'../../src/rewriter.h',
'../../src/runtime-profiler.cc',
'../../src/runtime-profiler.h',
'../../src/runtime/runtime-api.cc',
'../../src/runtime/runtime-array.cc',
'../../src/runtime/runtime-classes.cc',
'../../src/runtime/runtime-collections.cc',
'../../src/runtime/runtime-compiler.cc',
......@@ -744,11 +746,13 @@
'../../src/runtime/runtime-function.cc',
'../../src/runtime/runtime-generator.cc',
'../../src/runtime/runtime-i18n.cc',
'../../src/runtime/runtime-internal.cc',
'../../src/runtime/runtime-json.cc',
'../../src/runtime/runtime-literals.cc',
'../../src/runtime/runtime-liveedit.cc',
'../../src/runtime/runtime-maths.cc',
'../../src/runtime/runtime-numbers.cc',
'../../src/runtime/runtime-object.cc',
'../../src/runtime/runtime-observe.cc',
'../../src/runtime/runtime-proxy.cc',
'../../src/runtime/runtime-regexp.cc',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment