Commit b418b2c4 authored by bmeurer's avatar bmeurer Committed by Commit bot

[turbofan] Optimize CheckedInt32Mod with unknown power of 2 right hand side.

We have a similar optimization for unchecked integer modulus, which
already boosted some asm.js use cases. Now this optimization is almost
as effcient as Crankshafts known power of 2 right hand side optimization
for modulus, but it can still deal with any rhs (except 0), and doesn't
require the interpreter to also collect known power of two rhs feedback.

R=jarin@chromium.org

Review-Url: https://codereview.chromium.org/2200453002
Cr-Commit-Position: refs/heads/master@{#38187}
parent b9e7b63d
......@@ -1285,17 +1285,31 @@ EffectControlLinearizer::LowerCheckedInt32Mod(Node* node, Node* frame_state,
Node* minusone = jsgraph()->Int32Constant(-1);
Node* minint = jsgraph()->Int32Constant(std::numeric_limits<int32_t>::min());
// General case for signed integer modulus, with optimization for (unknown)
// power of 2 right hand side.
//
// if 0 < rhs then
// msk = rhs - 1
// if rhs & msk == 0 then
// if lhs < 0 then
// -(-lhs & msk)
// else
// lhs & msk
// else
// lhs % rhs
// else
// if rhs < -1 then
// lhs % rhs
// else
// deopt if rhs == 0
// deopt if lhs == minint
// zero
//
Node* lhs = node->InputAt(0);
Node* rhs = node->InputAt(1);
// Ensure that {rhs} is not zero, otherwise we'd have to return NaN.
Node* check = graph()->NewNode(machine()->Word32Equal(), rhs, zero);
control = effect = graph()->NewNode(
common()->DeoptimizeIf(DeoptimizeReason::kDivisionByZero), check,
frame_state, effect, control);
// Check if {lhs} is positive or zero.
Node* check0 = graph()->NewNode(machine()->Int32LessThanOrEqual(), zero, lhs);
// Check if {rhs} is strictly positive.
Node* check0 = graph()->NewNode(machine()->Int32LessThan(), zero, rhs);
Node* branch0 =
graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, control);
......@@ -1303,46 +1317,90 @@ EffectControlLinearizer::LowerCheckedInt32Mod(Node* node, Node* frame_state,
Node* etrue0 = effect;
Node* vtrue0;
{
// Fast case, no additional checking required.
vtrue0 = graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_true0);
Node* msk = graph()->NewNode(machine()->Int32Add(), rhs, minusone);
// Check if {rhs} minus one is a valid mask.
Node* check1 = graph()->NewNode(
machine()->Word32Equal(),
graph()->NewNode(machine()->Word32And(), rhs, msk), zero);
Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_true0);
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* vtrue1;
{
// Check if {lhs} is negative.
Node* check2 = graph()->NewNode(machine()->Int32LessThan(), lhs, zero);
Node* branch2 = graph()->NewNode(common()->Branch(BranchHint::kFalse),
check2, if_true1);
// Compute the remainder as {-(-lhs & msk)}.
Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
Node* vtrue2 = graph()->NewNode(
machine()->Int32Sub(), zero,
graph()->NewNode(machine()->Word32And(),
graph()->NewNode(machine()->Int32Sub(), zero, lhs),
msk));
// Compute the remainder as {lhs & msk}.
Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
Node* vfalse2 = graph()->NewNode(machine()->Word32And(), lhs, msk);
if_true1 = graph()->NewNode(common()->Merge(2), if_true2, if_false2);
vtrue1 =
graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
vtrue2, vfalse2, if_true1);
}
// Compute the remainder using the generic {lhs % rhs}.
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* vfalse1 =
graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_false1);
if_true0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
vtrue0 = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
vtrue1, vfalse1, if_true0);
}
Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
Node* efalse0 = effect;
Node* vfalse0;
{
// Check if {lhs} is kMinInt and {rhs} is -1, in which case we'd have
// to return -0.
Node* check1 = graph()->NewNode(machine()->Word32Equal(), lhs, minint);
Node* branch1 = graph()->NewNode(common()->Branch(BranchHint::kFalse),
// Check if {rhs} is strictly less than -1.
Node* check1 = graph()->NewNode(machine()->Int32LessThan(), rhs, minusone);
Node* branch1 = graph()->NewNode(common()->Branch(BranchHint::kTrue),
check1, if_false0);
// Compute the remainder using the generic {lhs % rhs}.
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* etrue1 = efalse0;
{
// Check if {rhs} is -1.
Node* check = graph()->NewNode(machine()->Word32Equal(), rhs, minusone);
if_true1 = etrue1 =
graph()->NewNode(common()->DeoptimizeIf(DeoptimizeReason::kMinusZero),
check, frame_state, etrue1, if_true1);
}
Node* vtrue1 = graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_true1);
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* efalse1 = efalse0;
Node* vfalse1;
{
// Ensure that {rhs} is not zero.
Node* check2 = graph()->NewNode(machine()->Word32Equal(), rhs, zero);
if_false1 = efalse1 = graph()->NewNode(
common()->DeoptimizeIf(DeoptimizeReason::kDivisionByZero), check2,
frame_state, efalse1, if_false1);
// Now we know that {rhs} is -1, so make sure {lhs} is not kMinInt, as
// we would otherwise have to return -0.
Node* check3 = graph()->NewNode(machine()->Word32Equal(), lhs, minint);
if_false1 = efalse1 =
graph()->NewNode(common()->DeoptimizeIf(DeoptimizeReason::kMinusZero),
check3, frame_state, efalse1, if_false1);
// The remainder is zero.
vfalse1 = zero;
}
if_false0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
efalse0 =
graph()->NewNode(common()->EffectPhi(2), etrue1, efalse1, if_false0);
// Perform the actual integer modulos.
vfalse0 = graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_false0);
// Check if the result is zero, because in that case we'd have to return
// -0 here since we always take the signe of the {lhs} which is negative.
Node* check = graph()->NewNode(machine()->Word32Equal(), vfalse0, zero);
if_false0 = efalse0 =
graph()->NewNode(common()->DeoptimizeIf(DeoptimizeReason::kMinusZero),
check, frame_state, efalse0, if_false0);
vfalse0 = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
vtrue1, vfalse1, if_false0);
}
control = graph()->NewNode(common()->Merge(2), if_true0, if_false0);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment