Commit b413f0eb authored by ssanfilippo's avatar ssanfilippo Committed by Commit bot

Reland Implement .eh_frame writer and disassembler.

Original commit message:

  Also, CodeGenerator::MakeCodeEpilogue now accepts an optional pointer
  to a EhFrameWriter and will attach unwinding information to the code
  object when passed one.

Reason for reverting:

  The STATIC_CONST_MEMBER_DEFINITION in eh-frame-writer-unittest.cc
  causes a compiler error on V8 Win64 - clang buildbot.

  Removing that bit.

BUG=v8:4899
LOG=N

Review-Url: https://codereview.chromium.org/2023503002
Cr-Commit-Position: refs/heads/master@{#37707}
parent 35e501bf
......@@ -1635,6 +1635,7 @@ v8_source_set("v8_base") {
"src/x64/cpu-x64.cc",
"src/x64/deoptimizer-x64.cc",
"src/x64/disasm-x64.cc",
"src/x64/eh-frame-x64.cc",
"src/x64/frames-x64.cc",
"src/x64/frames-x64.h",
"src/x64/interface-descriptors-x64.cc",
......@@ -1656,6 +1657,7 @@ v8_source_set("v8_base") {
"src/arm/cpu-arm.cc",
"src/arm/deoptimizer-arm.cc",
"src/arm/disasm-arm.cc",
"src/arm/eh-frame-arm.cc",
"src/arm/frames-arm.cc",
"src/arm/frames-arm.h",
"src/arm/interface-descriptors-arm.cc",
......@@ -1702,6 +1704,7 @@ v8_source_set("v8_base") {
"src/arm64/deoptimizer-arm64.cc",
"src/arm64/disasm-arm64.cc",
"src/arm64/disasm-arm64.h",
"src/arm64/eh-frame-arm64.cc",
"src/arm64/frames-arm64.cc",
"src/arm64/frames-arm64.h",
"src/arm64/instructions-arm64.cc",
......
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/eh-frame.h"
namespace v8 {
namespace internal {
static const int kR0DwarfCode = 0;
static const int kFpDwarfCode = 11;
static const int kSpDwarfCode = 13;
static const int kLrDwarfCode = 14;
STATIC_CONST_MEMBER_DEFINITION const int
EhFrameConstants::kCodeAlignmentFactor = 4;
STATIC_CONST_MEMBER_DEFINITION const int
EhFrameConstants::kDataAlignmentFactor = -4;
void EhFrameWriter::WriteReturnAddressRegisterCode() {
WriteULeb128(kLrDwarfCode);
}
void EhFrameWriter::WriteInitialStateInCie() {
SetBaseAddressRegisterAndOffset(fp, 0);
RecordRegisterNotModified(lr);
}
// static
int EhFrameWriter::RegisterToDwarfCode(Register name) {
switch (name.code()) {
case Register::kCode_fp:
return kFpDwarfCode;
case Register::kCode_sp:
return kSpDwarfCode;
case Register::kCode_lr:
return kLrDwarfCode;
case Register::kCode_r0:
return kR0DwarfCode;
default:
UNIMPLEMENTED();
return -1;
}
}
#ifdef ENABLE_DISASSEMBLER
// static
const char* EhFrameDisassembler::DwarfRegisterCodeToString(int code) {
switch (code) {
case kFpDwarfCode:
return "fp";
case kSpDwarfCode:
return "sp";
case kLrDwarfCode:
return "lr";
default:
UNIMPLEMENTED();
return nullptr;
}
}
#endif
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/eh-frame.h"
namespace v8 {
namespace internal {
static const int kX0DwarfCode = 0;
static const int kJsSpDwarfCode = 28;
static const int kFpDwarfCode = 29;
static const int kLrDwarfCode = 30;
static const int kCSpDwarfCode = 31;
STATIC_CONST_MEMBER_DEFINITION const int
EhFrameConstants::kCodeAlignmentFactor = 4;
STATIC_CONST_MEMBER_DEFINITION const int
EhFrameConstants::kDataAlignmentFactor = -8;
void EhFrameWriter::WriteReturnAddressRegisterCode() {
WriteULeb128(kLrDwarfCode);
}
void EhFrameWriter::WriteInitialStateInCie() {
SetBaseAddressRegisterAndOffset(x29, 0);
RecordRegisterNotModified(x30);
}
// static
int EhFrameWriter::RegisterToDwarfCode(Register name) {
switch (name.code()) {
case Register::kCode_x28:
return kJsSpDwarfCode;
case Register::kCode_x29:
return kFpDwarfCode;
case Register::kCode_x30:
return kLrDwarfCode;
case Register::kCode_x31:
return kCSpDwarfCode;
case Register::kCode_x0:
return kX0DwarfCode;
default:
UNIMPLEMENTED();
return -1;
}
}
#ifdef ENABLE_DISASSEMBLER
// static
const char* EhFrameDisassembler::DwarfRegisterCodeToString(int code) {
switch (code) {
case kFpDwarfCode:
return "fp";
case kLrDwarfCode:
return "lr";
case kJsSpDwarfCode:
return "jssp";
case kCSpDwarfCode:
return "csp"; // This could be zr as well
default:
UNIMPLEMENTED();
return nullptr;
}
}
#endif
} // namespace internal
} // namespace v8
......@@ -11,6 +11,7 @@
#include "src/bootstrapper.h"
#include "src/compiler.h"
#include "src/debug/debug.h"
#include "src/eh-frame.h"
#include "src/parsing/parser.h"
#include "src/runtime/runtime.h"
......@@ -117,8 +118,8 @@ void CodeGenerator::MakeCodePrologue(CompilationInfo* info, const char* kind) {
#endif // DEBUG
}
Handle<Code> CodeGenerator::MakeCodeEpilogue(MacroAssembler* masm,
EhFrameWriter* eh_frame_writer,
CompilationInfo* info) {
Isolate* isolate = info->isolate();
......@@ -129,6 +130,7 @@ Handle<Code> CodeGenerator::MakeCodeEpilogue(MacroAssembler* masm,
Code::ExtractKindFromFlags(flags) == Code::OPTIMIZED_FUNCTION ||
info->IsStub();
masm->GetCode(&desc);
if (eh_frame_writer) eh_frame_writer->GetEhFrame(&desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, flags, masm->CodeObject(),
false, is_crankshafted,
......
......@@ -69,7 +69,7 @@ namespace internal {
class CompilationInfo;
class EhFrameWriter;
class CodeGenerator {
public:
......@@ -78,6 +78,7 @@ class CodeGenerator {
// Allocate and install the code.
static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm,
EhFrameWriter* unwinding,
CompilationInfo* info);
// Print the code after compiling it.
......
......@@ -204,7 +204,7 @@ Handle<Code> CodeGenerator::GenerateCode() {
safepoints()->Emit(masm(), frame()->GetTotalFrameSlotCount());
Handle<Code> result =
v8::internal::CodeGenerator::MakeCodeEpilogue(masm(), info);
v8::internal::CodeGenerator::MakeCodeEpilogue(masm(), nullptr, info);
result->set_is_turbofanned(true);
result->set_stack_slots(frame()->GetTotalFrameSlotCount());
result->set_safepoint_table_offset(safepoints()->GetCodeOffset());
......
......@@ -457,7 +457,8 @@ Handle<Code> LChunk::Codegen() {
if (generator.GenerateCode()) {
generator.CheckEnvironmentUsage();
CodeGenerator::MakeCodePrologue(info(), "optimized");
Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&assembler, info());
Handle<Code> code =
CodeGenerator::MakeCodeEpilogue(&assembler, nullptr, info());
generator.FinishCode(code);
CommitDependencies(code);
generator.source_position_table_builder()->EndJitLogging(
......
......@@ -3,94 +3,632 @@
// found in the LICENSE file.
#include "src/eh-frame.h"
#include "src/objects-inl.h"
#include "src/objects.h"
#include <iomanip>
#include <ostream>
#if !defined(V8_TARGET_ARCH_X64) && !defined(V8_TARGET_ARCH_ARM) && \
!defined(V8_TARGET_ARCH_ARM64)
// Placeholders for unsupported architectures.
namespace v8 {
namespace internal {
static const int DW_EH_PE_pcrel = 0x10;
static const int DW_EH_PE_datarel = 0x30;
static const int DW_EH_PE_udata4 = 0x03;
static const int DW_EH_PE_sdata4 = 0x0b;
const int EhFrameHdr::kCIESize = 0;
static const int kVersionSize = 1;
static const int kEncodingSpecifiersSize = 3;
//
// In order to calculate offsets in the .eh_frame_hdr, we must know the layout
// of the DSO generated by perf inject, which is assumed to be the following:
//
// | ... | |
// +---------------+ <-- (F) --- | Larger offsets in file
// | | ^ |
// | Instructions | | .text v
// | | v
// +---------------+ <-- (E) ---
// |///////////////|
// |////Padding////|
// |///////////////|
// +---------------+ <-- (D) ---
// | | ^
// | CIE | |
// | | |
// +---------------+ <-- (C) | .eh_frame
// | | |
// | FDE | |
// | | v
// +---------------+ <-- (B) ---
// | version | ^
// +---------------+ |
// | encoding | |
// | specifiers | |
// +---------------+ <---(A) | .eh_frame_hdr
// | offset to | |
// | .eh_frame | |
// +---------------+ |
// | ... | ...
//
// (F) is aligned at a 16-byte boundary.
// (D) is aligned at a 8-byte boundary.
// (B) is aligned at a 4-byte boundary.
// (E), (C) and (A) have no alignment requirements.
//
// The distance between (A) and (B) is 4 bytes.
//
// The size of the .eh_frame is required to be a multiple of the pointer size,
// which means that (B) will be naturally aligned to a 4-byte boundary on all
// the architectures we support.
//
// Because (E) has no alignment requirements, there is padding between (E) and
// (D). (F) is aligned at a 16-byte boundary, thus to a 8-byte one as well.
//
EhFrameHdr::EhFrameHdr(Code* code) {
int code_size = code->is_crankshafted() ? code->safepoint_table_offset()
: code->instruction_size();
version_ = 1;
eh_frame_ptr_encoding_ = DW_EH_PE_sdata4 | DW_EH_PE_pcrel;
lut_size_encoding_ = DW_EH_PE_udata4;
lut_entries_encoding_ = DW_EH_PE_sdata4 | DW_EH_PE_datarel;
// .eh_frame pointer and LUT
if (code->has_unwinding_info()) {
DCHECK_GE(code->unwinding_info_size(), EhFrameHdr::kRecordSize);
int eh_frame_size = code->unwinding_info_size() - EhFrameHdr::kRecordSize;
offset_to_eh_frame_ =
-(eh_frame_size + kVersionSize + kEncodingSpecifiersSize); // A -> D
lut_entries_number_ = 1;
offset_to_procedure_ = -(RoundUp(code_size, 8) + eh_frame_size); // B -> F
offset_to_fde_ = -(eh_frame_size - kCIESize); // B -> C
STATIC_CONST_MEMBER_DEFINITION const int
EhFrameConstants::kCodeAlignmentFactor = 1;
STATIC_CONST_MEMBER_DEFINITION const int
EhFrameConstants::kDataAlignmentFactor = 1;
void EhFrameWriter::WriteReturnAddressRegisterCode() { UNIMPLEMENTED(); }
void EhFrameWriter::WriteInitialStateInCie() { UNIMPLEMENTED(); }
int EhFrameWriter::RegisterToDwarfCode(Register) {
UNIMPLEMENTED();
return -1;
}
#ifdef ENABLE_DISASSEMBLER
const char* EhFrameDisassembler::DwarfRegisterCodeToString(int) {
UNIMPLEMENTED();
return nullptr;
}
#endif
} // namespace internal
} // namespace v8
#endif
namespace v8 {
namespace internal {
STATIC_CONST_MEMBER_DEFINITION const int
EhFrameConstants::kEhFrameTerminatorSize;
STATIC_CONST_MEMBER_DEFINITION const int EhFrameConstants::kEhFrameHdrVersion;
STATIC_CONST_MEMBER_DEFINITION const int EhFrameConstants::kEhFrameHdrSize;
STATIC_CONST_MEMBER_DEFINITION const uint32_t EhFrameWriter::kInt32Placeholder;
// static
void EhFrameWriter::WriteEmptyEhFrame(std::ostream& stream) { // NOLINT
stream.put(EhFrameConstants::kEhFrameHdrVersion);
// .eh_frame pointer encoding specifier.
stream.put(EhFrameConstants::kSData4 | EhFrameConstants::kPcRel);
// Lookup table size encoding.
stream.put(EhFrameConstants::kUData4);
// Lookup table entries encoding.
stream.put(EhFrameConstants::kSData4 | EhFrameConstants::kDataRel);
// Dummy pointers and 0 entries in the lookup table.
char dummy_data[EhFrameConstants::kEhFrameHdrSize - 4] = {0};
stream.write(&dummy_data[0], sizeof(dummy_data));
}
EhFrameWriter::EhFrameWriter(Zone* zone)
: cie_size_(0),
last_pc_offset_(0),
writer_state_(InternalState::kUndefined),
base_register_(no_reg),
base_offset_(0),
eh_frame_buffer_(zone) {}
void EhFrameWriter::Initialize() {
DCHECK(writer_state_ == InternalState::kUndefined);
eh_frame_buffer_.reserve(128);
writer_state_ = InternalState::kInitialized;
WriteCie();
WriteFdeHeader();
}
void EhFrameWriter::WriteCie() {
static const int kCIEIdentifier = 0;
static const int kCIEVersion = 3;
static const int kAugmentationDataSize = 2;
static const byte kAugmentationString[] = {'z', 'L', 'R', 0};
// Placeholder for the size of the CIE.
int size_offset = eh_frame_offset();
WriteInt32(kInt32Placeholder);
// CIE identifier and version.
int record_start_offset = eh_frame_offset();
WriteInt32(kCIEIdentifier);
WriteByte(kCIEVersion);
// Augmentation data contents descriptor: LSDA and FDE encoding.
WriteBytes(&kAugmentationString[0], sizeof(kAugmentationString));
// Alignment factors.
WriteSLeb128(EhFrameConstants::kCodeAlignmentFactor);
WriteSLeb128(EhFrameConstants::kDataAlignmentFactor);
WriteReturnAddressRegisterCode();
// Augmentation data.
WriteULeb128(kAugmentationDataSize);
// No language-specific data area (LSDA).
WriteByte(EhFrameConstants::kOmit);
// FDE pointers encoding.
WriteByte(EhFrameConstants::kSData4 | EhFrameConstants::kPcRel);
// Write directives to build the initial state of the unwinding table.
DCHECK_EQ(eh_frame_offset() - size_offset,
EhFrameConstants::kInitialStateOffsetInCie);
WriteInitialStateInCie();
// Pad with nops to the next multiple of 8 bytes.
WritePaddingTo8ByteAlignment();
int record_end_offset = eh_frame_offset();
int encoded_cie_size = record_end_offset - record_start_offset;
cie_size_ = record_end_offset - size_offset;
// Patch the size of the CIE now that we know it.
PatchInt32(size_offset, encoded_cie_size);
}
void EhFrameWriter::WriteFdeHeader() {
DCHECK_NE(cie_size_, 0);
// Placeholder for size of the FDE. Will be filled in Finish().
DCHECK_EQ(eh_frame_offset(), fde_offset());
WriteInt32(kInt32Placeholder);
// Backwards offset to the CIE.
WriteInt32(cie_size_ + kInt32Size);
// Placeholder for pointer to procedure. Will be filled in Finish().
DCHECK_EQ(eh_frame_offset(), GetProcedureAddressOffset());
WriteInt32(kInt32Placeholder);
// Placeholder for size of the procedure. Will be filled in Finish().
DCHECK_EQ(eh_frame_offset(), GetProcedureSizeOffset());
WriteInt32(kInt32Placeholder);
// No augmentation data.
WriteByte(0);
}
void EhFrameWriter::WriteEhFrameHdr(int code_size) {
DCHECK(writer_state_ == InternalState::kInitialized);
//
// In order to calculate offsets in the .eh_frame_hdr, we must know the layout
// of the DSO generated by perf inject, which is assumed to be the following:
//
// | ... | |
// +---------------+ <-- (F) --- | Larger offsets in file
// | | ^ |
// | Instructions | | .text v
// | | v
// +---------------+ <-- (E) ---
// |///////////////|
// |////Padding////|
// |///////////////|
// +---------------+ <-- (D) ---
// | | ^
// | CIE | |
// | | |
// +---------------+ <-- (C) |
// | | | .eh_frame
// | FDE | |
// | | |
// +---------------+ |
// | terminator | v
// +---------------+ <-- (B) ---
// | version | ^
// +---------------+ |
// | encoding | |
// | specifiers | |
// +---------------+ <---(A) | .eh_frame_hdr
// | offset to | |
// | .eh_frame | |
// +---------------+ |
// | ... | ...
//
// (F) is aligned to a 16-byte boundary.
// (D) is aligned to a 8-byte boundary.
// (B) is aligned to a 4-byte boundary.
// (C) is aligned to an addressing unit size boundary.
// (E) and (A) have no alignment requirements.
//
// The distance between (A) and (B) is 4 bytes.
//
// The size of the FDE is required to be a multiple of the pointer size, which
// means that (B) will be naturally aligned to a 4-byte boundary on all the
// architectures we support.
//
// Because (E) has no alignment requirements, there is padding between (E) and
// (D). (F) is aligned at a 16-byte boundary, thus to a 8-byte one as well.
//
int eh_frame_size = eh_frame_offset();
WriteByte(EhFrameConstants::kEhFrameHdrVersion);
// .eh_frame pointer encoding specifier.
WriteByte(EhFrameConstants::kSData4 | EhFrameConstants::kPcRel);
// Lookup table size encoding specifier.
WriteByte(EhFrameConstants::kUData4);
// Lookup table entries encoding specifier.
WriteByte(EhFrameConstants::kSData4 | EhFrameConstants::kDataRel);
// Pointer to .eh_frame, relative to this offset (A -> D in the diagram).
WriteInt32(-(eh_frame_size + EhFrameConstants::kFdeVersionSize +
EhFrameConstants::kFdeEncodingSpecifiersSize));
// Number of entries in the LUT, one for the only routine.
WriteInt32(1);
// Pointer to the start of the routine, relative to the beginning of the
// .eh_frame_hdr (B -> F in the diagram).
WriteInt32(-(RoundUp(code_size, 8) + eh_frame_size));
// Pointer to the start of the associated FDE, relative to the start of the
// .eh_frame_hdr (B -> C in the diagram).
WriteInt32(-(eh_frame_size - cie_size_));
DCHECK_EQ(eh_frame_offset() - eh_frame_size,
EhFrameConstants::kEhFrameHdrSize);
}
void EhFrameWriter::WritePaddingTo8ByteAlignment() {
DCHECK(writer_state_ == InternalState::kInitialized);
int unpadded_size = eh_frame_offset();
int padded_size = RoundUp(unpadded_size, 8);
int padding_size = padded_size - unpadded_size;
byte nop = static_cast<byte>(EhFrameConstants::DwarfOpcodes::kNop);
static const byte kPadding[] = {nop, nop, nop, nop, nop, nop, nop, nop};
DCHECK_LE(padding_size, static_cast<int>(sizeof(kPadding)));
WriteBytes(&kPadding[0], padding_size);
}
void EhFrameWriter::AdvanceLocation(int pc_offset) {
DCHECK(writer_state_ == InternalState::kInitialized);
DCHECK_GE(pc_offset, last_pc_offset_);
uint32_t delta = pc_offset - last_pc_offset_;
DCHECK_EQ(delta % EhFrameConstants::kCodeAlignmentFactor, 0);
uint32_t factored_delta = delta / EhFrameConstants::kCodeAlignmentFactor;
if (factored_delta <= EhFrameConstants::kLocationMask) {
WriteByte((EhFrameConstants::kLocationTag
<< EhFrameConstants::kLocationMaskSize) |
(factored_delta & EhFrameConstants::kLocationMask));
} else if (factored_delta <= kMaxUInt8) {
WriteOpcode(EhFrameConstants::DwarfOpcodes::kAdvanceLoc1);
WriteByte(factored_delta);
} else if (factored_delta <= kMaxUInt16) {
WriteOpcode(EhFrameConstants::DwarfOpcodes::kAdvanceLoc2);
WriteInt16(factored_delta);
} else {
WriteOpcode(EhFrameConstants::DwarfOpcodes::kAdvanceLoc4);
WriteInt32(factored_delta);
}
last_pc_offset_ = pc_offset;
}
void EhFrameWriter::SetBaseAddressOffset(int base_offset) {
DCHECK(writer_state_ == InternalState::kInitialized);
DCHECK_GE(base_offset, 0);
WriteOpcode(EhFrameConstants::DwarfOpcodes::kDefCfaOffset);
WriteULeb128(base_offset);
base_offset_ = base_offset;
}
void EhFrameWriter::SetBaseAddressRegister(Register base_register) {
DCHECK(writer_state_ == InternalState::kInitialized);
int code = RegisterToDwarfCode(base_register);
WriteOpcode(EhFrameConstants::DwarfOpcodes::kDefCfaRegister);
WriteULeb128(code);
base_register_ = base_register;
}
void EhFrameWriter::SetBaseAddressRegisterAndOffset(Register base_register,
int base_offset) {
DCHECK(writer_state_ == InternalState::kInitialized);
DCHECK_GE(base_offset, 0);
int code = RegisterToDwarfCode(base_register);
WriteOpcode(EhFrameConstants::DwarfOpcodes::kDefCfa);
WriteULeb128(code);
WriteULeb128(base_offset);
base_offset_ = base_offset;
base_register_ = base_register;
}
void EhFrameWriter::RecordRegisterSavedToStack(int register_code, int offset) {
DCHECK(writer_state_ == InternalState::kInitialized);
DCHECK_EQ(offset % EhFrameConstants::kDataAlignmentFactor, 0);
int factored_offset = offset / EhFrameConstants::kDataAlignmentFactor;
if (factored_offset >= 0) {
DCHECK_LE(register_code, EhFrameConstants::kSavedRegisterMask);
WriteByte((EhFrameConstants::kSavedRegisterTag
<< EhFrameConstants::kSavedRegisterMaskSize) |
(register_code & EhFrameConstants::kSavedRegisterMask));
WriteULeb128(factored_offset);
} else {
// Create a dummy table
offset_to_eh_frame_ = 0;
lut_entries_number_ = 0;
offset_to_procedure_ = 0;
offset_to_fde_ = 0;
WriteOpcode(EhFrameConstants::DwarfOpcodes::kOffsetExtendedSf);
WriteULeb128(register_code);
WriteSLeb128(factored_offset);
}
}
void EhFrameWriter::RecordRegisterNotModified(Register name) {
DCHECK(writer_state_ == InternalState::kInitialized);
WriteOpcode(EhFrameConstants::DwarfOpcodes::kSameValue);
WriteULeb128(RegisterToDwarfCode(name));
}
void EhFrameWriter::RecordRegisterFollowsInitialRule(Register name) {
DCHECK(writer_state_ == InternalState::kInitialized);
int code = RegisterToDwarfCode(name);
DCHECK_LE(code, EhFrameConstants::kFollowInitialRuleMask);
WriteByte((EhFrameConstants::kFollowInitialRuleTag
<< EhFrameConstants::kFollowInitialRuleMaskSize) |
(code & EhFrameConstants::kFollowInitialRuleMask));
}
void EhFrameWriter::Finish(int code_size) {
DCHECK(writer_state_ == InternalState::kInitialized);
DCHECK_GE(eh_frame_offset(), cie_size_);
WritePaddingTo8ByteAlignment();
// Write the size of the FDE now that we know it.
// The encoded size does not include the size field itself.
int encoded_fde_size = eh_frame_offset() - fde_offset() - kInt32Size;
PatchInt32(fde_offset(), encoded_fde_size);
// Write size and offset to procedure.
PatchInt32(GetProcedureAddressOffset(),
-(RoundUp(code_size, 8) + GetProcedureAddressOffset()));
PatchInt32(GetProcedureSizeOffset(), code_size);
// Terminate the .eh_frame.
static const byte kTerminator[EhFrameConstants::kEhFrameTerminatorSize] = {0};
WriteBytes(&kTerminator[0], EhFrameConstants::kEhFrameTerminatorSize);
WriteEhFrameHdr(code_size);
writer_state_ = InternalState::kFinalized;
}
void EhFrameWriter::GetEhFrame(CodeDesc* desc) {
DCHECK(writer_state_ == InternalState::kFinalized);
desc->unwinding_info_size = static_cast<int>(eh_frame_buffer_.size());
desc->unwinding_info = eh_frame_buffer_.data();
}
void EhFrameWriter::WriteULeb128(uint32_t value) {
do {
byte chunk = value & 0x7f;
value >>= 7;
if (value != 0) chunk |= 0x80;
WriteByte(chunk);
} while (value != 0);
}
void EhFrameWriter::WriteSLeb128(int32_t value) {
static const int kSignBitMask = 0x40;
bool done;
do {
byte chunk = value & 0x7f;
value >>= 7;
done = ((value == 0) && ((chunk & kSignBitMask) == 0)) ||
((value == -1) && ((chunk & kSignBitMask) != 0));
if (!done) chunk |= 0x80;
WriteByte(chunk);
} while (!done);
}
uint32_t EhFrameIterator::GetNextULeb128() {
int size = 0;
uint32_t result = DecodeULeb128(next_, &size);
DCHECK_LE(next_ + size, end_);
next_ += size;
return result;
}
int32_t EhFrameIterator::GetNextSLeb128() {
int size = 0;
int32_t result = DecodeSLeb128(next_, &size);
DCHECK_LE(next_ + size, end_);
next_ += size;
return result;
}
// static
uint32_t EhFrameIterator::DecodeULeb128(const byte* encoded,
int* encoded_size) {
const byte* current = encoded;
uint32_t result = 0;
int shift = 0;
do {
DCHECK_LT(shift, 8 * static_cast<int>(sizeof(result)));
result |= (*current & 0x7f) << shift;
shift += 7;
} while (*current++ >= 128);
DCHECK_NOT_NULL(encoded_size);
*encoded_size = static_cast<int>(current - encoded);
return result;
}
// static
int32_t EhFrameIterator::DecodeSLeb128(const byte* encoded, int* encoded_size) {
static const byte kSignBitMask = 0x40;
const byte* current = encoded;
int32_t result = 0;
int shift = 0;
byte chunk;
do {
chunk = *current++;
DCHECK_LT(shift, 8 * static_cast<int>(sizeof(result)));
result |= (chunk & 0x7f) << shift;
shift += 7;
} while (chunk >= 128);
// Sign extend the result if the last chunk has the sign bit set.
if (chunk & kSignBitMask) result |= (~0ull) << shift;
DCHECK_NOT_NULL(encoded_size);
*encoded_size = static_cast<int>(current - encoded);
return result;
}
#ifdef ENABLE_DISASSEMBLER
namespace {
class StreamModifiersScope final {
public:
explicit StreamModifiersScope(std::ostream* stream)
: stream_(stream), flags_(stream->flags()) {}
~StreamModifiersScope() { stream_->flags(flags_); }
private:
std::ostream* stream_;
std::ios::fmtflags flags_;
};
} // namespace
// static
void EhFrameDisassembler::DumpDwarfDirectives(std::ostream& stream, // NOLINT
const byte* start,
const byte* end) {
StreamModifiersScope modifiers_scope(&stream);
EhFrameIterator eh_frame_iterator(start, end);
uint32_t offset_in_procedure = 0;
while (!eh_frame_iterator.Done()) {
stream << eh_frame_iterator.current_address() << " ";
byte bytecode = eh_frame_iterator.GetNextByte();
if (((bytecode >> EhFrameConstants::kLocationMaskSize) & 0xff) ==
EhFrameConstants::kLocationTag) {
int value = (bytecode & EhFrameConstants::kLocationMask) *
EhFrameConstants::kCodeAlignmentFactor;
offset_in_procedure += value;
stream << "| pc_offset=" << offset_in_procedure << " (delta=" << value
<< ")\n";
continue;
}
if (((bytecode >> EhFrameConstants::kSavedRegisterMaskSize) & 0xff) ==
EhFrameConstants::kSavedRegisterTag) {
uint32_t decoded_offset = eh_frame_iterator.GetNextULeb128();
stream << "| " << DwarfRegisterCodeToString(
bytecode & EhFrameConstants::kLocationMask)
<< " saved at base" << std::showpos
<< decoded_offset * EhFrameConstants::kDataAlignmentFactor
<< std::noshowpos << '\n';
continue;
}
if (((bytecode >> EhFrameConstants::kFollowInitialRuleMaskSize) & 0xff) ==
EhFrameConstants::kFollowInitialRuleTag) {
stream << "| " << DwarfRegisterCodeToString(
bytecode & EhFrameConstants::kLocationMask)
<< " follows rule in CIE\n";
continue;
}
switch (static_cast<EhFrameConstants::DwarfOpcodes>(bytecode)) {
case EhFrameConstants::DwarfOpcodes::kOffsetExtendedSf: {
stream << "| "
<< DwarfRegisterCodeToString(eh_frame_iterator.GetNextULeb128());
int32_t decoded_offset = eh_frame_iterator.GetNextSLeb128();
stream << " saved at base" << std::showpos
<< decoded_offset * EhFrameConstants::kDataAlignmentFactor
<< std::noshowpos << '\n';
break;
}
case EhFrameConstants::DwarfOpcodes::kAdvanceLoc1: {
int value = eh_frame_iterator.GetNextByte() *
EhFrameConstants::kCodeAlignmentFactor;
offset_in_procedure += value;
stream << "| pc_offset=" << offset_in_procedure << " (delta=" << value
<< ")\n";
break;
}
case EhFrameConstants::DwarfOpcodes::kAdvanceLoc2: {
int value = eh_frame_iterator.GetNextUInt16() *
EhFrameConstants::kCodeAlignmentFactor;
offset_in_procedure += value;
stream << "| pc_offset=" << offset_in_procedure << " (delta=" << value
<< ")\n";
break;
}
case EhFrameConstants::DwarfOpcodes::kAdvanceLoc4: {
int value = eh_frame_iterator.GetNextUInt32() *
EhFrameConstants::kCodeAlignmentFactor;
offset_in_procedure += value;
stream << "| pc_offset=" << offset_in_procedure << " (delta=" << value
<< ")\n";
break;
}
case EhFrameConstants::DwarfOpcodes::kDefCfa: {
uint32_t base_register = eh_frame_iterator.GetNextULeb128();
uint32_t base_offset = eh_frame_iterator.GetNextULeb128();
stream << "| base_register=" << DwarfRegisterCodeToString(base_register)
<< ", base_offset=" << base_offset << '\n';
break;
}
case EhFrameConstants::DwarfOpcodes::kDefCfaOffset: {
stream << "| base_offset=" << eh_frame_iterator.GetNextULeb128()
<< '\n';
break;
}
case EhFrameConstants::DwarfOpcodes::kDefCfaRegister: {
stream << "| base_register="
<< DwarfRegisterCodeToString(eh_frame_iterator.GetNextULeb128())
<< '\n';
break;
}
case EhFrameConstants::DwarfOpcodes::kSameValue: {
stream << "| "
<< DwarfRegisterCodeToString(eh_frame_iterator.GetNextULeb128())
<< " not modified from previous frame\n";
break;
}
case EhFrameConstants::DwarfOpcodes::kNop:
stream << "| nop\n";
break;
default:
UNREACHABLE();
return;
}
}
}
void EhFrameDisassembler::DisassembleToStream(std::ostream& stream) { // NOLINT
// The encoded CIE size does not include the size field itself.
const int cie_size = ReadUnalignedUInt32(start_) + kInt32Size;
const int fde_offset = cie_size;
const byte* cie_directives_start =
start_ + EhFrameConstants::kInitialStateOffsetInCie;
const byte* cie_directives_end = start_ + cie_size;
DCHECK_LE(cie_directives_start, cie_directives_end);
stream << reinterpret_cast<const void*>(start_) << " .eh_frame: CIE\n";
DumpDwarfDirectives(stream, cie_directives_start, cie_directives_end);
const byte* procedure_offset_address =
start_ + fde_offset + EhFrameConstants::kProcedureAddressOffsetInFde;
int32_t procedure_offset =
ReadUnalignedValue<int32_t>(procedure_offset_address);
const byte* procedure_size_address =
start_ + fde_offset + EhFrameConstants::kProcedureSizeOffsetInFde;
uint32_t procedure_size = ReadUnalignedUInt32(procedure_size_address);
const byte* fde_start = start_ + fde_offset;
stream << reinterpret_cast<const void*>(fde_start) << " .eh_frame: FDE\n"
<< reinterpret_cast<const void*>(procedure_offset_address)
<< " | procedure_offset=" << procedure_offset << '\n'
<< reinterpret_cast<const void*>(procedure_size_address)
<< " | procedure_size=" << procedure_size << '\n';
const int fde_directives_offset = fde_offset + 4 * kInt32Size + 1;
const byte* fde_directives_start = start_ + fde_directives_offset;
const byte* fde_directives_end = end_ - EhFrameConstants::kEhFrameHdrSize -
EhFrameConstants::kEhFrameTerminatorSize;
DCHECK_LE(fde_directives_start, fde_directives_end);
DumpDwarfDirectives(stream, fde_directives_start, fde_directives_end);
const byte* fde_terminator_start = fde_directives_end;
stream << reinterpret_cast<const void*>(fde_terminator_start)
<< " .eh_frame: terminator\n";
const byte* eh_frame_hdr_start =
fde_terminator_start + EhFrameConstants::kEhFrameTerminatorSize;
stream << reinterpret_cast<const void*>(eh_frame_hdr_start)
<< " .eh_frame_hdr\n";
}
#endif
} // namespace internal
} // namespace v8
......@@ -5,36 +5,292 @@
#ifndef V8_EH_FRAME_H_
#define V8_EH_FRAME_H_
#include <cstdint>
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {
class Code;
class EhFrameConstants final {
public:
enum class DwarfOpcodes : byte {
kNop = 0x00,
kAdvanceLoc1 = 0x02,
kAdvanceLoc2 = 0x03,
kAdvanceLoc4 = 0x04,
kSameValue = 0x08,
kDefCfa = 0x0c,
kDefCfaRegister = 0x0d,
kDefCfaOffset = 0x0e,
kOffsetExtendedSf = 0x11,
};
enum DwarfEncodingSpecifiers : byte {
kUData4 = 0x03,
kSData4 = 0x0b,
kPcRel = 0x10,
kDataRel = 0x30,
kOmit = 0xff,
};
static const int kLocationTag = 1;
static const int kLocationMask = 0x3f;
static const int kLocationMaskSize = 6;
static const int kSavedRegisterTag = 2;
static const int kSavedRegisterMask = 0x3f;
static const int kSavedRegisterMaskSize = 6;
static const int kFollowInitialRuleTag = 3;
static const int kFollowInitialRuleMask = 0x3f;
static const int kFollowInitialRuleMaskSize = 6;
static const int kProcedureAddressOffsetInFde = 2 * kInt32Size;
static const int kProcedureSizeOffsetInFde = 3 * kInt32Size;
static const int kInitialStateOffsetInCie = 19;
static const int kEhFrameTerminatorSize = 4;
// Defined in eh-writer-<arch>.cc
static const int kCodeAlignmentFactor;
static const int kDataAlignmentFactor;
static const int kFdeVersionSize = 1;
static const int kFdeEncodingSpecifiersSize = 3;
static const int kEhFrameHdrVersion = 1;
static const int kEhFrameHdrSize = 20;
};
class EhFrameWriter {
public:
explicit EhFrameWriter(Zone* zone);
// The empty frame is a hack to trigger fp-based unwinding in Linux perf
// compiled with libunwind support when processing DWARF-based call graphs.
//
// It is effectively a valid eh_frame_hdr with an empty look up table.
//
static void WriteEmptyEhFrame(std::ostream& stream); // NOLINT
// Write the CIE and FDE header. Call it before any other method.
void Initialize();
void AdvanceLocation(int pc_offset);
// The <base_address> is the one to which all <offset>s in SaveRegisterToStack
// directives are relative. It is given by <base_register> + <base_offset>.
//
// The <base_offset> must be positive or 0.
//
void SetBaseAddressRegister(Register base_register);
void SetBaseAddressOffset(int base_offset);
void IncreaseBaseAddressOffset(int base_delta) {
SetBaseAddressOffset(base_offset_ + base_delta);
}
void SetBaseAddressRegisterAndOffset(Register base_register, int base_offset);
// Register saved at location <base_address> + <offset>.
// The <offset> must be a multiple of EhFrameConstants::kDataAlignment.
void RecordRegisterSavedToStack(Register name, int offset) {
RecordRegisterSavedToStack(RegisterToDwarfCode(name), offset);
}
// The register has not been modified from the previous frame.
void RecordRegisterNotModified(Register name);
// The register follows the rule defined in the CIE.
void RecordRegisterFollowsInitialRule(Register name);
void Finish(int code_size);
// Remember to call Finish() before GetEhFrame().
//
// The EhFrameWriter instance owns the buffer pointed by
// CodeDesc::unwinding_info, and must outlive any use of the CodeDesc.
//
void GetEhFrame(CodeDesc* desc);
int last_pc_offset() const { return last_pc_offset_; }
Register base_register() const { return base_register_; }
int base_offset() const { return base_offset_; }
private:
enum class InternalState { kUndefined, kInitialized, kFinalized };
static const uint32_t kInt32Placeholder = 0xdeadc0de;
void WriteSLeb128(int32_t value);
void WriteULeb128(uint32_t value);
void WriteByte(byte value) { eh_frame_buffer_.push_back(value); }
void WriteOpcode(EhFrameConstants::DwarfOpcodes opcode) {
WriteByte(static_cast<byte>(opcode));
}
void WriteBytes(const byte* start, int size) {
eh_frame_buffer_.insert(eh_frame_buffer_.end(), start, start + size);
}
void WriteInt16(uint16_t value) {
WriteBytes(reinterpret_cast<const byte*>(&value), sizeof(value));
}
void WriteInt32(uint32_t value) {
WriteBytes(reinterpret_cast<const byte*>(&value), sizeof(value));
}
void PatchInt32(int base_offset, uint32_t value) {
DCHECK_EQ(ReadUnalignedUInt32(eh_frame_buffer_.data() + base_offset),
kInt32Placeholder);
DCHECK_LT(base_offset + kInt32Size, eh_frame_offset());
WriteUnalignedUInt32(eh_frame_buffer_.data() + base_offset, value);
}
// Write the common information entry, which includes encoding specifiers,
// alignment factors, the return address (pseudo) register code and the
// directives to construct the initial state of the unwinding table.
void WriteCie();
// Write the header of the function data entry, containing a pointer to the
// correspondent CIE and the position and size of the associated routine.
void WriteFdeHeader();
// Write the contents of the .eh_frame_hdr section, including encoding
// specifiers and the routine => FDE lookup table.
void WriteEhFrameHdr(int code_size);
// Write nops to the buffer until the size reaches a multiple of 8 bytes.
void WritePaddingTo8ByteAlignment();
// Internal version that directly accepts a DWARF register code, needed for
// handling pseudo-registers on some platforms.
void RecordRegisterSavedToStack(int register_code, int offset);
class EhFrameHdr final {
int GetProcedureAddressOffset() const {
return fde_offset() + EhFrameConstants::kProcedureAddressOffsetInFde;
}
int GetProcedureSizeOffset() const {
return fde_offset() + EhFrameConstants::kProcedureSizeOffsetInFde;
}
int eh_frame_offset() const {
return static_cast<int>(eh_frame_buffer_.size());
}
int fde_offset() const { return cie_size_; }
// Platform specific functions implemented in eh-frame-<arch>.cc
static int RegisterToDwarfCode(Register name);
// Write directives to build the initial state in the CIE.
void WriteInitialStateInCie();
// Write the return address (pseudo) register code.
void WriteReturnAddressRegisterCode();
int cie_size_;
int last_pc_offset_;
InternalState writer_state_;
Register base_register_;
int base_offset_;
ZoneVector<byte> eh_frame_buffer_;
DISALLOW_COPY_AND_ASSIGN(EhFrameWriter);
};
class EhFrameIterator {
public:
static const int kRecordSize = 20;
static const int kCIESize;
EhFrameIterator(const byte* start, const byte* end)
: start_(start), next_(start), end_(end) {
DCHECK_LE(start, end);
}
void SkipCie() {
DCHECK_EQ(next_, start_);
next_ += ReadUnalignedUInt32(next_) + kInt32Size;
}
void SkipToFdeDirectives() {
SkipCie();
// Skip the FDE header.
Skip(kDirectivesOffsetInFde);
}
void Skip(int how_many) {
DCHECK_GE(how_many, 0);
next_ += how_many;
DCHECK_LE(next_, end_);
}
uint32_t GetNextUInt32() { return GetNextValue<uint32_t>(); }
uint16_t GetNextUInt16() { return GetNextValue<uint16_t>(); }
byte GetNextByte() { return GetNextValue<byte>(); }
EhFrameConstants::DwarfOpcodes GetNextOpcode() {
return static_cast<EhFrameConstants::DwarfOpcodes>(GetNextByte());
}
uint32_t GetNextULeb128();
int32_t GetNextSLeb128();
bool Done() const {
DCHECK_LE(next_, end_);
return next_ == end_;
}
explicit EhFrameHdr(Code* code);
int GetCurrentOffset() const {
DCHECK_GE(next_, start_);
return static_cast<int>(next_ - start_);
}
int32_t offset_to_eh_frame() const { return offset_to_eh_frame_; }
uint32_t lut_entries_number() const { return lut_entries_number_; }
int32_t offset_to_procedure() const { return offset_to_procedure_; }
int32_t offset_to_fde() const { return offset_to_fde_; }
int GetBufferSize() { return static_cast<int>(end_ - start_); }
const void* current_address() const {
return reinterpret_cast<const void*>(next_);
}
private:
static const int kDirectivesOffsetInFde = 4 * kInt32Size + 1;
static uint32_t DecodeULeb128(const byte* encoded, int* encoded_size);
static int32_t DecodeSLeb128(const byte* encoded, int* encoded_size);
template <typename T>
T GetNextValue() {
T result;
DCHECK_LE(next_ + sizeof(result), end_);
result = ReadUnalignedValue<T>(next_);
next_ += sizeof(result);
return result;
}
const byte* start_;
const byte* next_;
const byte* end_;
};
#ifdef ENABLE_DISASSEMBLER
class EhFrameDisassembler final {
public:
EhFrameDisassembler(const byte* start, const byte* end)
: start_(start), end_(end) {
DCHECK_LT(start, end);
}
void DisassembleToStream(std::ostream& stream); // NOLINT
private:
uint8_t version_;
uint8_t eh_frame_ptr_encoding_;
uint8_t lut_size_encoding_;
uint8_t lut_entries_encoding_;
int32_t offset_to_eh_frame_;
uint32_t lut_entries_number_;
int32_t offset_to_procedure_;
int32_t offset_to_fde_;
static void DumpDwarfDirectives(std::ostream& stream, // NOLINT
const byte* start, const byte* end);
static const char* DwarfRegisterCodeToString(int code);
const byte* start_;
const byte* end_;
DISALLOW_COPY_AND_ASSIGN(EhFrameDisassembler);
};
#endif
} // namespace internal
} // namespace v8
......
......@@ -54,7 +54,7 @@ bool FullCodeGenerator::MakeCode(CompilationInfo* info) {
}
unsigned table_offset = cgen.EmitBackEdgeTable();
Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, info);
Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, nullptr, info);
cgen.PopulateDeoptimizationData(code);
cgen.PopulateTypeFeedbackInfo(code);
cgen.PopulateHandlerTable(code);
......
......@@ -61,6 +61,7 @@
#ifdef ENABLE_DISASSEMBLER
#include "src/disasm.h"
#include "src/disassembler.h"
#include "src/eh-frame.h"
#endif
namespace v8 {
......@@ -14372,6 +14373,14 @@ void Code::Disassemble(const char* name, std::ostream& os) { // NOLINT
it.rinfo()->Print(GetIsolate(), os);
}
os << "\n";
if (has_unwinding_info()) {
os << "UnwindingInfo (size = " << unwinding_info_size() << ")\n";
EhFrameDisassembler eh_frame_disassembler(unwinding_info_start(),
unwinding_info_end());
eh_frame_disassembler.DisassembleToStream(os);
os << "\n";
}
}
#endif // ENABLE_DISASSEMBLER
......
......@@ -324,18 +324,16 @@ void PerfJitLogger::LogWriteDebugInfo(Code* code, SharedFunctionInfo* shared) {
}
void PerfJitLogger::LogWriteUnwindingInfo(Code* code) {
EhFrameHdr eh_frame_hdr(code);
PerfJitCodeUnwindingInfo unwinding_info_header;
unwinding_info_header.event_ = PerfJitCodeLoad::kUnwindingInfo;
unwinding_info_header.time_stamp_ = GetTimestamp();
unwinding_info_header.eh_frame_hdr_size_ = EhFrameHdr::kRecordSize;
unwinding_info_header.eh_frame_hdr_size_ = EhFrameConstants::kEhFrameHdrSize;
if (code->has_unwinding_info()) {
unwinding_info_header.unwinding_size_ = code->unwinding_info_size();
unwinding_info_header.mapped_size_ = unwinding_info_header.unwinding_size_;
} else {
unwinding_info_header.unwinding_size_ = EhFrameHdr::kRecordSize;
unwinding_info_header.unwinding_size_ = EhFrameConstants::kEhFrameHdrSize;
unwinding_info_header.mapped_size_ = 0;
}
......@@ -348,16 +346,13 @@ void PerfJitLogger::LogWriteUnwindingInfo(Code* code) {
sizeof(unwinding_info_header));
if (code->has_unwinding_info()) {
// The last EhFrameHdr::kRecordSize bytes were a placeholder for the header.
// Discard them and write the actual eh_frame_hdr (below).
DCHECK_GE(code->unwinding_info_size(), EhFrameHdr::kRecordSize);
LogWriteBytes(reinterpret_cast<const char*>(code->unwinding_info_start()),
code->unwinding_info_size() - EhFrameHdr::kRecordSize);
code->unwinding_info_size());
} else {
OFStream perf_output_stream(perf_output_handle_);
EhFrameWriter::WriteEmptyEhFrame(perf_output_stream);
}
LogWriteBytes(reinterpret_cast<const char*>(&eh_frame_hdr),
EhFrameHdr::kRecordSize);
char padding_bytes[] = "\0\0\0\0\0\0\0\0";
DCHECK_LT(padding_size, sizeof(padding_bytes));
LogWriteBytes(padding_bytes, padding_size);
......
......@@ -1231,6 +1231,7 @@
'arm/macro-assembler-arm.h',
'arm/simulator-arm.cc',
'arm/simulator-arm.h',
'arm/eh-frame-arm.cc',
'compiler/arm/code-generator-arm.cc',
'compiler/arm/instruction-codes-arm.h',
'compiler/arm/instruction-scheduler-arm.cc',
......@@ -1285,6 +1286,7 @@
'arm64/simulator-arm64.h',
'arm64/utils-arm64.cc',
'arm64/utils-arm64.h',
'arm64/eh-frame-arm64.cc',
'compiler/arm64/code-generator-arm64.cc',
'compiler/arm64/instruction-codes-arm64.h',
'compiler/arm64/instruction-scheduler-arm64.cc',
......@@ -1514,6 +1516,7 @@
'compiler/x64/instruction-codes-x64.h',
'compiler/x64/instruction-scheduler-x64.cc',
'compiler/x64/instruction-selector-x64.cc',
'x64/eh-frame-x64.cc',
],
}],
['v8_target_arch=="ppc" or v8_target_arch=="ppc64"', {
......
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/eh-frame.h"
namespace v8 {
namespace internal {
static const int kRaxDwarfCode = 0;
static const int kRbpDwarfCode = 6;
static const int kRspDwarfCode = 7;
static const int kRipDwarfCode = 16;
STATIC_CONST_MEMBER_DEFINITION const int
EhFrameConstants::kCodeAlignmentFactor = 1;
STATIC_CONST_MEMBER_DEFINITION const int
EhFrameConstants::kDataAlignmentFactor = -8;
void EhFrameWriter::WriteReturnAddressRegisterCode() {
WriteULeb128(kRipDwarfCode);
}
void EhFrameWriter::WriteInitialStateInCie() {
SetBaseAddressRegisterAndOffset(rsp, kPointerSize);
// x64 rip (r16) has no Register instance associated.
RecordRegisterSavedToStack(kRipDwarfCode, -kPointerSize);
}
// static
int EhFrameWriter::RegisterToDwarfCode(Register name) {
switch (name.code()) {
case Register::kCode_rbp:
return kRbpDwarfCode;
case Register::kCode_rsp:
return kRspDwarfCode;
case Register::kCode_rax:
return kRaxDwarfCode;
default:
UNIMPLEMENTED();
return -1;
}
}
#ifdef ENABLE_DISASSEMBLER
// static
const char* EhFrameDisassembler::DwarfRegisterCodeToString(int code) {
switch (code) {
case kRbpDwarfCode:
return "rbp";
case kRspDwarfCode:
return "rsp";
case kRipDwarfCode:
return "rip";
default:
UNIMPLEMENTED();
return nullptr;
}
}
#endif
} // namespace internal
} // namespace v8
......@@ -138,7 +138,6 @@
'test-double.cc',
'test-dtoa.cc',
'test-elements-kind.cc',
'test-eh-frame-hdr.cc',
'test-fast-dtoa.cc',
'test-feedback-vector.cc',
'test-field-type-tracking.cc',
......
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/eh-frame.h"
#include "src/objects.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
TEST(EhFrameHdr) {
CcTest::InitializeVM();
HandleScope handle_scope(CcTest::i_isolate());
// The content is not relevant in this test
byte buffer[10] = {0};
byte unwinding_info[30 + EhFrameHdr::kRecordSize] = {0};
CodeDesc code_desc;
code_desc.buffer = &buffer[0];
code_desc.buffer_size = sizeof(buffer);
code_desc.constant_pool_size = 0;
code_desc.instr_size = sizeof(buffer);
code_desc.reloc_size = 0;
code_desc.origin = nullptr;
code_desc.unwinding_info = &unwinding_info[0];
code_desc.unwinding_info_size = sizeof(unwinding_info);
Handle<Code> code = CcTest::i_isolate()->factory()->NewCode(
code_desc, 0, Handle<Object>::null());
EhFrameHdr eh_frame_hdr(*code);
CHECK_EQ(eh_frame_hdr.lut_entries_number(), 1);
//
// Plugging some numbers in the DSO layout shown in eh-frame.cc:
//
// | ... |
// +---------------+ <-- (E) --------
// | | ^
// | Instructions | 10 bytes | .text
// | | v
// +---------------+ <---------------
// |///////////////|
// |////Padding////| 6 bytes
// |///////////////|
// +---------------+ <---(D)---------
// | | ^
// | CIE | N bytes* |
// | | |
// +---------------+ <-- (C) | .eh_frame
// | | |
// | FDE | 30 - N bytes |
// | | v
// +---------------+ <-- (B) --------
// | version | ^
// +---------------+ 4 bytes |
// | encoding | |
// | specifiers | |
// +---------------+ <---(A) | .eh_frame_hdr
// | offset to | |
// | .eh_frame | |
// +---------------+ |
// | ... | ...
//
// (*) the size of the CIE is platform dependent.
//
CHECK_EQ(eh_frame_hdr.offset_to_eh_frame(), -(4 + 30)); // A -> D
CHECK_EQ(eh_frame_hdr.offset_to_procedure(), -(30 + 6 + 10)); // B -> E
CHECK_EQ(eh_frame_hdr.offset_to_fde(),
-(30 - EhFrameHdr::kCIESize)); // B -> C
}
TEST(DummyEhFrameHdr) {
CcTest::InitializeVM();
HandleScope handle_scope(CcTest::i_isolate());
byte buffer[10] = {0}; // The content is not relevant in this test
CodeDesc code_desc;
code_desc.buffer = &buffer[0];
code_desc.buffer_size = sizeof(buffer);
code_desc.constant_pool_size = 0;
code_desc.instr_size = sizeof(buffer);
code_desc.reloc_size = 0;
code_desc.origin = nullptr;
code_desc.unwinding_info = nullptr;
code_desc.unwinding_info_size = 0;
Handle<Code> code = CcTest::i_isolate()->factory()->NewCode(
code_desc, 0, Handle<Object>::null());
EhFrameHdr eh_frame_hdr(*code);
// A dummy header has an empty LUT
CHECK_EQ(eh_frame_hdr.lut_entries_number(), 0);
// These values should be irrelevant, but check that they have been zeroed.
CHECK_EQ(eh_frame_hdr.offset_to_eh_frame(), 0);
CHECK_EQ(eh_frame_hdr.offset_to_procedure(), 0);
CHECK_EQ(eh_frame_hdr.offset_to_fde(), 0);
}
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/eh-frame.h"
#include "testing/gtest/include/gtest/gtest.h"
// Test enabled only on supported architectures.
#if defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_ARM) || \
defined(V8_TARGET_ARCH_ARM64)
using namespace v8::internal;
namespace {
class EhFrameIteratorTest : public testing::Test {};
} // namespace
TEST_F(EhFrameIteratorTest, Values) {
// Assuming little endian.
static const byte kEncoded[] = {0xde, 0xc0, 0xad, 0xde, 0xef, 0xbe, 0xff};
EhFrameIterator iterator(&kEncoded[0], &kEncoded[0] + sizeof(kEncoded));
EXPECT_EQ(0xdeadc0de, iterator.GetNextUInt32());
EXPECT_EQ(0xbeef, iterator.GetNextUInt16());
EXPECT_EQ(0xff, iterator.GetNextByte());
EXPECT_TRUE(iterator.Done());
}
TEST_F(EhFrameIteratorTest, Skip) {
static const byte kEncoded[] = {0xde, 0xad, 0xc0, 0xde};
EhFrameIterator iterator(&kEncoded[0], &kEncoded[0] + sizeof(kEncoded));
iterator.Skip(2);
EXPECT_EQ(2, iterator.GetCurrentOffset());
EXPECT_EQ(0xc0, iterator.GetNextByte());
iterator.Skip(1);
EXPECT_TRUE(iterator.Done());
}
TEST_F(EhFrameIteratorTest, ULEB128Decoding) {
static const byte kEncoded[] = {0xe5, 0x8e, 0x26};
EhFrameIterator iterator(&kEncoded[0], &kEncoded[0] + sizeof(kEncoded));
EXPECT_EQ(624485, iterator.GetNextULeb128());
EXPECT_TRUE(iterator.Done());
}
TEST_F(EhFrameIteratorTest, SLEB128DecodingPositive) {
static const byte kEncoded[] = {0xe5, 0x8e, 0x26};
EhFrameIterator iterator(&kEncoded[0], &kEncoded[0] + sizeof(kEncoded));
EXPECT_EQ(624485, iterator.GetNextSLeb128());
EXPECT_TRUE(iterator.Done());
}
TEST_F(EhFrameIteratorTest, SLEB128DecodingNegative) {
static const byte kEncoded[] = {0x9b, 0xf1, 0x59};
EhFrameIterator iterator(&kEncoded[0], &kEncoded[0] + sizeof(kEncoded));
EXPECT_EQ(-624485, iterator.GetNextSLeb128());
EXPECT_TRUE(iterator.Done());
}
#endif
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/eh-frame.h"
#include "test/unittests/test-utils.h"
// Test enabled only on supported architectures.
#if defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_ARM) || \
defined(V8_TARGET_ARCH_ARM64)
using namespace v8::internal;
namespace {
class EhFrameWriterTest : public TestWithZone {
protected:
// Being a 7bit positive integer, this also serves as its ULEB128 encoding.
static const int kTestRegisterCode = 0;
static EhFrameIterator MakeIterator(EhFrameWriter* writer) {
CodeDesc desc;
writer->GetEhFrame(&desc);
DCHECK_GT(desc.unwinding_info_size, 0);
return EhFrameIterator(desc.unwinding_info,
desc.unwinding_info + desc.unwinding_info_size);
}
};
const int EhFrameWriterTest::kTestRegisterCode;
} // namespace
TEST_F(EhFrameWriterTest, Alignment) {
EhFrameWriter writer(zone());
writer.Initialize();
writer.AdvanceLocation(42 * EhFrameConstants::kCodeAlignmentFactor);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
ASSERT_EQ(0, EhFrameConstants::kEhFrameHdrSize % 4);
ASSERT_EQ(0, EhFrameConstants::kEhFrameTerminatorSize % 4);
EXPECT_EQ(0, (iterator.GetBufferSize() - EhFrameConstants::kEhFrameHdrSize -
EhFrameConstants::kEhFrameTerminatorSize) %
8);
}
TEST_F(EhFrameWriterTest, FDEHeader) {
static const int kProcedureSize = 0x5678abcd;
EhFrameWriter writer(zone());
writer.Initialize();
writer.Finish(kProcedureSize);
EhFrameIterator iterator = MakeIterator(&writer);
int cie_size = iterator.GetNextUInt32();
iterator.Skip(cie_size);
int fde_size = iterator.GetNextUInt32();
EXPECT_EQ(iterator.GetBufferSize(),
fde_size + cie_size + EhFrameConstants::kEhFrameTerminatorSize +
EhFrameConstants::kEhFrameHdrSize + 2 * kInt32Size);
int backwards_offset_to_cie_offset = iterator.GetCurrentOffset();
int backwards_offset_to_cie = iterator.GetNextUInt32();
EXPECT_EQ(backwards_offset_to_cie_offset, backwards_offset_to_cie);
int procedure_address_offset = iterator.GetCurrentOffset();
int procedure_address = iterator.GetNextUInt32();
EXPECT_EQ(-(procedure_address_offset + RoundUp(kProcedureSize, 8)),
procedure_address);
int procedure_size = iterator.GetNextUInt32();
EXPECT_EQ(kProcedureSize, procedure_size);
}
TEST_F(EhFrameWriterTest, SetOffset) {
static const int kOffset = 0x0badc0de;
EhFrameWriter writer(zone());
writer.Initialize();
writer.SetBaseAddressOffset(kOffset);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kDefCfaOffset,
iterator.GetNextOpcode());
EXPECT_EQ(kOffset, iterator.GetNextULeb128());
}
TEST_F(EhFrameWriterTest, IncreaseOffset) {
static const int kFirstOffset = 121;
static const int kSecondOffset = 16;
EhFrameWriter writer(zone());
writer.Initialize();
writer.SetBaseAddressOffset(kFirstOffset);
writer.IncreaseBaseAddressOffset(kSecondOffset);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kDefCfaOffset,
iterator.GetNextOpcode());
EXPECT_EQ(kFirstOffset, iterator.GetNextULeb128());
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kDefCfaOffset,
iterator.GetNextOpcode());
EXPECT_EQ(kFirstOffset + kSecondOffset, iterator.GetNextULeb128());
}
TEST_F(EhFrameWriterTest, SetRegister) {
Register test_register = Register::from_code(kTestRegisterCode);
EhFrameWriter writer(zone());
writer.Initialize();
writer.SetBaseAddressRegister(test_register);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kDefCfaRegister,
iterator.GetNextOpcode());
EXPECT_EQ(kTestRegisterCode, iterator.GetNextULeb128());
}
TEST_F(EhFrameWriterTest, SetRegisterAndOffset) {
Register test_register = Register::from_code(kTestRegisterCode);
static const int kOffset = 0x0badc0de;
EhFrameWriter writer(zone());
writer.Initialize();
writer.SetBaseAddressRegisterAndOffset(test_register, kOffset);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kDefCfa, iterator.GetNextOpcode());
EXPECT_EQ(kTestRegisterCode, iterator.GetNextULeb128());
EXPECT_EQ(kOffset, iterator.GetNextULeb128());
}
TEST_F(EhFrameWriterTest, PcOffsetEncoding6bit) {
static const int kOffset = 42;
EhFrameWriter writer(zone());
writer.Initialize();
writer.AdvanceLocation(kOffset * EhFrameConstants::kCodeAlignmentFactor);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ((1 << 6) | kOffset, iterator.GetNextByte());
}
TEST_F(EhFrameWriterTest, PcOffsetEncoding6bitDelta) {
static const int kFirstOffset = 42;
static const int kSecondOffset = 62;
EhFrameWriter writer(zone());
writer.Initialize();
writer.AdvanceLocation(kFirstOffset * EhFrameConstants::kCodeAlignmentFactor);
writer.AdvanceLocation(kSecondOffset *
EhFrameConstants::kCodeAlignmentFactor);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ((1 << 6) | kFirstOffset, iterator.GetNextByte());
EXPECT_EQ((1 << 6) | (kSecondOffset - kFirstOffset), iterator.GetNextByte());
}
TEST_F(EhFrameWriterTest, PcOffsetEncoding8bit) {
static const int kOffset = 0x42;
EhFrameWriter writer(zone());
writer.Initialize();
writer.AdvanceLocation(kOffset * EhFrameConstants::kCodeAlignmentFactor);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kAdvanceLoc1,
iterator.GetNextOpcode());
EXPECT_EQ(kOffset, iterator.GetNextByte());
}
TEST_F(EhFrameWriterTest, PcOffsetEncoding8bitDelta) {
static const int kFirstOffset = 0x10;
static const int kSecondOffset = 0x70;
static const int kThirdOffset = 0xb5;
EhFrameWriter writer(zone());
writer.Initialize();
writer.AdvanceLocation(kFirstOffset * EhFrameConstants::kCodeAlignmentFactor);
writer.AdvanceLocation(kSecondOffset *
EhFrameConstants::kCodeAlignmentFactor);
writer.AdvanceLocation(kThirdOffset * EhFrameConstants::kCodeAlignmentFactor);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ((1 << 6) | kFirstOffset, iterator.GetNextByte());
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kAdvanceLoc1,
iterator.GetNextOpcode());
EXPECT_EQ(kSecondOffset - kFirstOffset, iterator.GetNextByte());
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kAdvanceLoc1,
iterator.GetNextOpcode());
EXPECT_EQ(kThirdOffset - kSecondOffset, iterator.GetNextByte());
}
TEST_F(EhFrameWriterTest, PcOffsetEncoding16bit) {
static const int kOffset = kMaxUInt8 + 42;
ASSERT_LT(kOffset, kMaxUInt16);
EhFrameWriter writer(zone());
writer.Initialize();
writer.AdvanceLocation(kOffset * EhFrameConstants::kCodeAlignmentFactor);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kAdvanceLoc2,
iterator.GetNextOpcode());
EXPECT_EQ(kOffset, iterator.GetNextUInt16());
}
TEST_F(EhFrameWriterTest, PcOffsetEncoding16bitDelta) {
static const int kFirstOffset = 0x41;
static const int kSecondOffset = kMaxUInt8 + 0x42;
EhFrameWriter writer(zone());
writer.Initialize();
writer.AdvanceLocation(kFirstOffset * EhFrameConstants::kCodeAlignmentFactor);
writer.AdvanceLocation(kSecondOffset *
EhFrameConstants::kCodeAlignmentFactor);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kAdvanceLoc1,
iterator.GetNextOpcode());
EXPECT_EQ(kFirstOffset, iterator.GetNextByte());
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kAdvanceLoc2,
iterator.GetNextOpcode());
EXPECT_EQ(kSecondOffset - kFirstOffset, iterator.GetNextUInt16());
}
TEST_F(EhFrameWriterTest, PcOffsetEncoding32bit) {
static const int kOffset = kMaxUInt16 + 42;
EhFrameWriter writer(zone());
writer.Initialize();
writer.AdvanceLocation(kOffset * EhFrameConstants::kCodeAlignmentFactor);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kAdvanceLoc4,
iterator.GetNextOpcode());
EXPECT_EQ(kOffset, iterator.GetNextUInt32());
}
TEST_F(EhFrameWriterTest, PcOffsetEncoding32bitDelta) {
static const int kFirstOffset = kMaxUInt16 + 0x42;
static const int kSecondOffset = kMaxUInt16 + 0x67;
EhFrameWriter writer(zone());
writer.Initialize();
writer.AdvanceLocation(kFirstOffset * EhFrameConstants::kCodeAlignmentFactor);
writer.AdvanceLocation(kSecondOffset *
EhFrameConstants::kCodeAlignmentFactor);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kAdvanceLoc4,
iterator.GetNextOpcode());
EXPECT_EQ(kFirstOffset, iterator.GetNextUInt32());
EXPECT_EQ((1 << 6) | (kSecondOffset - kFirstOffset), iterator.GetNextByte());
}
TEST_F(EhFrameWriterTest, SaveRegisterUnsignedOffset) {
Register test_register = Register::from_code(kTestRegisterCode);
static const int kOffset =
EhFrameConstants::kDataAlignmentFactor > 0 ? 12344 : -12344;
EhFrameWriter writer(zone());
writer.Initialize();
writer.RecordRegisterSavedToStack(test_register, kOffset);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ((2 << 6) | kTestRegisterCode, iterator.GetNextByte());
EXPECT_EQ(kOffset / EhFrameConstants::kDataAlignmentFactor,
iterator.GetNextULeb128());
}
TEST_F(EhFrameWriterTest, SaveRegisterSignedOffset) {
Register test_register = Register::from_code(kTestRegisterCode);
static const int kOffset =
EhFrameConstants::kDataAlignmentFactor < 0 ? 12344 : -12344;
ASSERT_EQ(kOffset % EhFrameConstants::kDataAlignmentFactor, 0);
EhFrameWriter writer(zone());
writer.Initialize();
writer.RecordRegisterSavedToStack(test_register, kOffset);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kOffsetExtendedSf,
iterator.GetNextOpcode());
EXPECT_EQ(kTestRegisterCode, iterator.GetNextULeb128());
EXPECT_EQ(kOffset / EhFrameConstants::kDataAlignmentFactor,
iterator.GetNextSLeb128());
}
TEST_F(EhFrameWriterTest, RegisterNotModified) {
Register test_register = Register::from_code(kTestRegisterCode);
EhFrameWriter writer(zone());
writer.Initialize();
writer.RecordRegisterNotModified(test_register);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ(EhFrameConstants::DwarfOpcodes::kSameValue,
iterator.GetNextOpcode());
EXPECT_EQ(kTestRegisterCode, iterator.GetNextULeb128());
}
TEST_F(EhFrameWriterTest, RegisterFollowsInitialRule) {
Register test_register = Register::from_code(kTestRegisterCode);
EhFrameWriter writer(zone());
writer.Initialize();
writer.RecordRegisterFollowsInitialRule(test_register);
writer.Finish(100);
EhFrameIterator iterator = MakeIterator(&writer);
iterator.SkipToFdeDirectives();
EXPECT_EQ((3 << 6) | kTestRegisterCode, iterator.GetNextByte());
}
TEST_F(EhFrameWriterTest, EhFrameHdrLayout) {
static const int kCodeSize = 10;
static const int kPaddingSize = 6;
EhFrameWriter writer(zone());
writer.Initialize();
writer.Finish(kCodeSize);
EhFrameIterator iterator = MakeIterator(&writer);
// Skip the .eh_frame.
int encoded_cie_size = iterator.GetNextUInt32();
iterator.Skip(encoded_cie_size);
int cie_size = encoded_cie_size + kInt32Size;
int encoded_fde_size = iterator.GetNextUInt32();
iterator.Skip(encoded_fde_size);
int fde_size = encoded_fde_size + kInt32Size;
iterator.Skip(EhFrameConstants::kEhFrameTerminatorSize);
int eh_frame_size =
cie_size + fde_size + EhFrameConstants::kEhFrameTerminatorSize;
//
// Plugging some numbers in the DSO layout shown in eh-frame.cc:
//
// | ... |
// +---------------+ <-- (E) ---------
// | | ^
// | Instructions | 10 bytes | .text
// | | v
// +---------------+ <----------------
// |///////////////|
// |////Padding////| 6 bytes
// |///////////////|
// +---------------+ <---(D)----------
// | | ^
// | CIE | cie_size bytes* |
// | | |
// +---------------+ <-- (C) |
// | | | .eh_frame
// | FDE | fde_size bytes |
// | | |
// +---------------+ |
// | terminator | 4 bytes v
// +---------------+ <-- (B) ---------
// | version | ^
// +---------------+ 4 bytes |
// | encoding | |
// | specifiers | |
// +---------------+ <---(A) | .eh_frame_hdr
// | offset to | |
// | .eh_frame | |
// +---------------+ |
// | ... | ...
//
// (*) the size of the CIE is platform dependent.
//
int eh_frame_hdr_version = iterator.GetNextByte();
EXPECT_EQ(EhFrameConstants::kEhFrameHdrVersion, eh_frame_hdr_version);
// .eh_frame pointer encoding specifier.
EXPECT_EQ(EhFrameConstants::kSData4 | EhFrameConstants::kPcRel,
iterator.GetNextByte());
// Lookup table size encoding specifier.
EXPECT_EQ(EhFrameConstants::kUData4, iterator.GetNextByte());
// Lookup table pointers encoding specifier.
EXPECT_EQ(EhFrameConstants::kSData4 | EhFrameConstants::kDataRel,
iterator.GetNextByte());
// A -> D
int offset_to_eh_frame = iterator.GetNextUInt32();
EXPECT_EQ(-(EhFrameConstants::kFdeVersionSize +
EhFrameConstants::kFdeEncodingSpecifiersSize + eh_frame_size),
offset_to_eh_frame);
int lut_entries = iterator.GetNextUInt32();
EXPECT_EQ(1, lut_entries);
// B -> E
int offset_to_procedure = iterator.GetNextUInt32();
EXPECT_EQ(-(eh_frame_size + kPaddingSize + kCodeSize), offset_to_procedure);
// B -> C
int offset_to_fde = iterator.GetNextUInt32();
EXPECT_EQ(-(fde_size + EhFrameConstants::kEhFrameTerminatorSize),
offset_to_fde);
}
#endif
......@@ -79,6 +79,8 @@
'compiler/value-numbering-reducer-unittest.cc',
'compiler/zone-pool-unittest.cc',
'counters-unittest.cc',
'eh-frame-iterator-unittest.cc',
'eh-frame-writer-unittest.cc',
'interpreter/bytecodes-unittest.cc',
'interpreter/bytecode-array-builder-unittest.cc',
'interpreter/bytecode-array-iterator-unittest.cc',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment