Commit b1e83c54 authored by yangguo@chromium.org's avatar yangguo@chromium.org

Porting r9456 to arm (Optimize KeyedStoreGeneric for Smi arrays).

Review URL: http://codereview.chromium.org/8065004

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9531 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 42b9eaa9
......@@ -1272,13 +1272,17 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
Label slow, fast, array, extra;
Label slow, array, extra, check_if_double_array;
Label fast_object_with_map_check, fast_object_without_map_check;
Label fast_double_with_map_check, fast_double_without_map_check;
// Register usage.
Register value = r0;
Register key = r1;
Register receiver = r2;
Register elements = r3; // Elements array of the receiver.
Register elements_map = r6;
Register receiver_map = r7;
// r4 and r5 are used as general scratch registers.
// Check that the key is a smi.
......@@ -1286,14 +1290,14 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, &slow);
// Get the map of the object.
__ ldr(r4, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ ldrb(ip, FieldMemOperand(r4, Map::kBitFieldOffset));
__ ldrb(ip, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
__ b(ne, &slow);
// Check if the object is a JS array or not.
__ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ ldrb(r4, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
__ cmp(r4, Operand(JS_ARRAY_TYPE));
__ b(eq, &array);
// Check that the object is some kind of JSObject.
......@@ -1302,15 +1306,10 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
// Object case: Check key against length in the elements array.
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check that the object is in fast mode and writable.
__ ldr(r4, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(r4, ip);
__ b(ne, &slow);
// Check array bounds. Both the key and the length of FixedArray are smis.
__ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ cmp(key, Operand(ip));
__ b(lo, &fast);
__ b(lo, &fast_object_with_map_check);
// Slow case, handle jump to runtime.
__ bind(&slow);
......@@ -1331,21 +1330,31 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
__ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ cmp(key, Operand(ip));
__ b(hs, &slow);
__ ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ cmp(elements_map,
Operand(masm->isolate()->factory()->fixed_array_map()));
__ b(ne, &check_if_double_array);
// Calculate key + 1 as smi.
STATIC_ASSERT(kSmiTag == 0);
__ add(r4, key, Operand(Smi::FromInt(1)));
__ str(r4, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ b(&fast);
__ b(&fast_object_without_map_check);
__ bind(&check_if_double_array);
__ cmp(elements_map,
Operand(masm->isolate()->factory()->fixed_double_array_map()));
__ b(ne, &slow);
// Add 1 to key, and go to common element store code for doubles.
STATIC_ASSERT(kSmiTag == 0);
__ add(r4, key, Operand(Smi::FromInt(1)));
__ str(r4, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ jmp(&fast_double_without_map_check);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ldr(r4, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(r4, ip);
__ b(ne, &slow);
// Check the key against the length in the array.
__ ldr(ip, FieldMemOperand(receiver, JSArray::kLengthOffset));
......@@ -1353,10 +1362,15 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
__ b(hs, &extra);
// Fall through to fast case.
__ bind(&fast);
__ bind(&fast_object_with_map_check);
Register scratch_value = r4;
Register address = r5;
__ ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ cmp(elements_map,
Operand(masm->isolate()->factory()->fixed_array_map()));
__ b(ne, &fast_double_with_map_check);
__ bind(&fast_object_without_map_check);
// Smi stores don't require further checks.
Label non_smi_value;
__ JumpIfNotSmi(value, &non_smi_value);
// It's irrelevant whether array is smi-only or not when writing a smi.
......@@ -1368,8 +1382,7 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
__ bind(&non_smi_value);
if (FLAG_smi_only_arrays) {
// Escape to slow case when writing non-smi into smi-only array.
__ ldr(scratch_value, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ CheckFastObjectElements(scratch_value, scratch_value, &slow);
__ CheckFastObjectElements(receiver_map, scratch_value, &slow);
}
// Fast elements array, store the value to the elements backing store.
__ add(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
......@@ -1385,6 +1398,24 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Ret();
__ bind(&fast_double_with_map_check);
// Check for fast double array case. If this fails, call through to the
// runtime.
__ cmp(elements_map,
Operand(masm->isolate()->factory()->fixed_double_array_map()));
__ b(ne, &slow);
__ bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(value,
key,
receiver,
elements,
r4,
r5,
r6,
r7,
&slow);
__ Ret();
}
......
......@@ -1890,6 +1890,96 @@ void MacroAssembler::CheckFastSmiOnlyElements(Register map,
}
void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
Register key_reg,
Register receiver_reg,
Register elements_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* fail) {
Label smi_value, maybe_nan, have_double_value, is_nan, done;
Register mantissa_reg = scratch2;
Register exponent_reg = scratch3;
// Handle smi values specially.
JumpIfSmi(value_reg, &smi_value);
// Ensure that the object is a heap number
CheckMap(value_reg,
scratch1,
isolate()->factory()->heap_number_map(),
fail,
DONT_DO_SMI_CHECK);
// Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
// in the exponent.
mov(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32));
ldr(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
cmp(exponent_reg, scratch1);
b(ge, &maybe_nan);
ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
bind(&have_double_value);
add(scratch1, elements_reg,
Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
str(mantissa_reg, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize));
uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
str(exponent_reg, FieldMemOperand(scratch1, offset));
jmp(&done);
bind(&maybe_nan);
// Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
// it's an Infinity, and the non-NaN code path applies.
b(gt, &is_nan);
ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
cmp(mantissa_reg, Operand(0));
b(eq, &have_double_value);
bind(&is_nan);
// Load canonical NaN for storing into the double array.
uint64_t nan_int64 = BitCast<uint64_t>(
FixedDoubleArray::canonical_not_the_hole_nan_as_double());
mov(mantissa_reg, Operand(static_cast<uint32_t>(nan_int64)));
mov(exponent_reg, Operand(static_cast<uint32_t>(nan_int64 >> 32)));
jmp(&have_double_value);
bind(&smi_value);
add(scratch1, elements_reg,
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
add(scratch1, scratch1,
Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
// scratch1 is now effective address of the double element
FloatingPointHelper::Destination destination;
if (CpuFeatures::IsSupported(VFP3)) {
destination = FloatingPointHelper::kVFPRegisters;
} else {
destination = FloatingPointHelper::kCoreRegisters;
}
Register untagged_value = receiver_reg;
SmiUntag(untagged_value, value_reg);
FloatingPointHelper::ConvertIntToDouble(this,
untagged_value,
destination,
d0,
mantissa_reg,
exponent_reg,
scratch4,
s2);
if (destination == FloatingPointHelper::kVFPRegisters) {
CpuFeatures::Scope scope(VFP3);
vstr(d0, scratch1, 0);
} else {
str(mantissa_reg, MemOperand(scratch1, 0));
str(exponent_reg, MemOperand(scratch1, Register::kSizeInBytes));
}
bind(&done);
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Handle<Map> map,
......
......@@ -712,6 +712,19 @@ class MacroAssembler: public Assembler {
Register scratch,
Label* fail);
// Check to see if maybe_number can be stored as a double in
// FastDoubleElements. If it can, store it at the index specified by key in
// the FastDoubleElements array elements, otherwise jump to fail.
void StoreNumberToDoubleElements(Register value_reg,
Register key_reg,
Register receiver_reg,
Register elements_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* fail);
// Check if the map of an object is equal to a specified map (either
// given directly or as an index into the root list) and branch to
// label if not. Skip the smi check if not required (object is known
......
......@@ -4400,15 +4400,15 @@ void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement(
// -- r4 : scratch
// -- r5 : scratch
// -----------------------------------
Label miss_force_generic, smi_value, is_nan, maybe_nan, have_double_value;
Label miss_force_generic;
Register value_reg = r0;
Register key_reg = r1;
Register receiver_reg = r2;
Register scratch = r3;
Register elements_reg = r4;
Register mantissa_reg = r5;
Register exponent_reg = r6;
Register elements_reg = r3;
Register scratch1 = r4;
Register scratch2 = r5;
Register scratch3 = r6;
Register scratch4 = r7;
// This stub is meant to be tail-jumped to, the receiver must already
......@@ -4420,90 +4420,25 @@ void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement(
// Check that the key is within bounds.
if (is_js_array) {
__ ldr(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
__ ldr(scratch1, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
} else {
__ ldr(scratch,
__ ldr(scratch1,
FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
}
// Compare smis, unsigned compare catches both negative and out-of-bound
// indexes.
__ cmp(key_reg, scratch);
__ cmp(key_reg, scratch1);
__ b(hs, &miss_force_generic);
// Handle smi values specially.
__ JumpIfSmi(value_reg, &smi_value);
// Ensure that the object is a heap number
__ CheckMap(value_reg,
scratch,
masm->isolate()->factory()->heap_number_map(),
&miss_force_generic,
DONT_DO_SMI_CHECK);
// Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
// in the exponent.
__ mov(scratch, Operand(kNaNOrInfinityLowerBoundUpper32));
__ ldr(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
__ cmp(exponent_reg, scratch);
__ b(ge, &maybe_nan);
__ ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
__ bind(&have_double_value);
__ add(scratch, elements_reg,
Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
__ str(mantissa_reg, FieldMemOperand(scratch, FixedDoubleArray::kHeaderSize));
uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
__ str(exponent_reg, FieldMemOperand(scratch, offset));
__ Ret();
__ bind(&maybe_nan);
// Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
// it's an Infinity, and the non-NaN code path applies.
__ b(gt, &is_nan);
__ ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
__ cmp(mantissa_reg, Operand(0));
__ b(eq, &have_double_value);
__ bind(&is_nan);
// Load canonical NaN for storing into the double array.
uint64_t nan_int64 = BitCast<uint64_t>(
FixedDoubleArray::canonical_not_the_hole_nan_as_double());
__ mov(mantissa_reg, Operand(static_cast<uint32_t>(nan_int64)));
__ mov(exponent_reg, Operand(static_cast<uint32_t>(nan_int64 >> 32)));
__ jmp(&have_double_value);
__ bind(&smi_value);
__ add(scratch, elements_reg,
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
__ add(scratch, scratch,
Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
// scratch is now effective address of the double element
FloatingPointHelper::Destination destination;
if (CpuFeatures::IsSupported(VFP3)) {
destination = FloatingPointHelper::kVFPRegisters;
} else {
destination = FloatingPointHelper::kCoreRegisters;
}
Register untagged_value = receiver_reg;
__ SmiUntag(untagged_value, value_reg);
FloatingPointHelper::ConvertIntToDouble(
masm,
untagged_value,
destination,
d0,
mantissa_reg,
exponent_reg,
scratch4,
s2);
if (destination == FloatingPointHelper::kVFPRegisters) {
CpuFeatures::Scope scope(VFP3);
__ vstr(d0, scratch, 0);
} else {
__ str(mantissa_reg, MemOperand(scratch, 0));
__ str(exponent_reg, MemOperand(scratch, Register::kSizeInBytes));
}
__ StoreNumberToDoubleElements(value_reg,
key_reg,
receiver_reg,
elements_reg,
scratch1,
scratch2,
scratch3,
scratch4,
&miss_force_generic);
__ Ret();
// Handle store cache miss, replacing the ic with the generic stub.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment