Commit a717fb7c authored by hablich's avatar hablich Committed by Commit bot

Revert of Pool implementation for zone segments (patchset #9 id:420001 of...

Revert of Pool implementation for zone segments (patchset #9 id:420001 of https://codereview.chromium.org/2335343007/ )

Reason for revert:
Blocks Roll https://codereview.chromium.org/2366733002/

Original issue's description:
> Pool implementation for zone segments
>
> BUG=v8:5409
>
> Committed: https://crrev.com/37c688a24578e787d3d8941093563ed049c3497e
> Cr-Commit-Position: refs/heads/master@{#39631}

TBR=jkummerow@chromium.org,jochen@chromium.org,verwaest@chromium.org,heimbuef@google.com
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=v8:5409

Review-Url: https://codereview.chromium.org/2365843002
Cr-Commit-Position: refs/heads/master@{#39652}
parent b88a848f
......@@ -1704,7 +1704,6 @@ v8_source_set("v8_base") {
"src/zone/zone-allocator.h",
"src/zone/zone-allocator.h",
"src/zone/zone-containers.h",
"src/zone/zone-segment.cc",
"src/zone/zone-segment.h",
"src/zone/zone.cc",
"src/zone/zone.h",
......
......@@ -8322,7 +8322,6 @@ void Isolate::IsolateInBackgroundNotification() {
void Isolate::MemoryPressureNotification(MemoryPressureLevel level) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->MemoryPressureNotification(level, Locker::IsLocked(this));
isolate->allocator()->MemoryPressureNotification(level);
}
void Isolate::SetRAILMode(RAILMode rail_mode) {
......
......@@ -1903,8 +1903,8 @@ class VerboseAccountingAllocator : public AccountingAllocator {
VerboseAccountingAllocator(Heap* heap, size_t sample_bytes)
: heap_(heap), last_memory_usage_(0), sample_bytes_(sample_bytes) {}
v8::internal::Segment* GetSegment(size_t size) override {
v8::internal::Segment* memory = AccountingAllocator::GetSegment(size);
v8::internal::Segment* AllocateSegment(size_t size) override {
v8::internal::Segment* memory = AccountingAllocator::AllocateSegment(size);
if (memory) {
size_t current = GetCurrentMemoryUsage();
if (last_memory_usage_.Value() + sample_bytes_ < current) {
......@@ -1915,8 +1915,8 @@ class VerboseAccountingAllocator : public AccountingAllocator {
return memory;
}
void ReturnSegment(v8::internal::Segment* memory) override {
AccountingAllocator::ReturnSegment(memory);
void FreeSegment(v8::internal::Segment* memory) override {
AccountingAllocator::FreeSegment(memory);
size_t current = GetCurrentMemoryUsage();
if (current + sample_bytes_ < last_memory_usage_.Value()) {
PrintJSON(current);
......@@ -2169,6 +2169,9 @@ void Isolate::SetIsolateThreadLocals(Isolate* isolate,
Isolate::~Isolate() {
TRACE_ISOLATE(destructor);
// Has to be called while counters_ are still alive
runtime_zone_->DeleteKeptSegment();
// The entry stack must be empty when we get here.
DCHECK(entry_stack_ == NULL || entry_stack_->previous_item == NULL);
......
......@@ -1274,8 +1274,6 @@
'zone/zone-segment.h',
'zone/zone.cc',
'zone/zone.h',
'zone/zone-segment.cc',
'zone/zone-segment.h',
'zone/zone-allocator.h',
'zone/zone-containers.h',
],
......
......@@ -13,38 +13,6 @@
namespace v8 {
namespace internal {
AccountingAllocator::AccountingAllocator() : unused_segments_mutex_() {
memory_pressure_level_.SetValue(MemoryPressureLevel::kNone);
std::fill(unused_segments_heads_,
unused_segments_heads_ +
(1 + kMaxSegmentSizePower - kMinSegmentSizePower),
nullptr);
std::fill(
unused_segments_sizes,
unused_segments_sizes + (1 + kMaxSegmentSizePower - kMinSegmentSizePower),
0);
}
AccountingAllocator::~AccountingAllocator() { ClearPool(); }
void AccountingAllocator::MemoryPressureNotification(
MemoryPressureLevel level) {
memory_pressure_level_.SetValue(level);
if (level != MemoryPressureLevel::kNone) {
ClearPool();
}
}
Segment* AccountingAllocator::GetSegment(size_t bytes) {
Segment* result = GetSegmentFromPool(bytes);
if (result == nullptr) {
result = AllocateSegment(bytes);
}
return result;
}
Segment* AccountingAllocator::AllocateSegment(size_t bytes) {
void* memory = malloc(bytes);
if (memory) {
......@@ -58,19 +26,9 @@ Segment* AccountingAllocator::AllocateSegment(size_t bytes) {
return reinterpret_cast<Segment*>(memory);
}
void AccountingAllocator::ReturnSegment(Segment* segment) {
segment->ZapContents();
if (memory_pressure_level_.Value() != MemoryPressureLevel::kNone) {
FreeSegment(segment);
} else if (!AddSegmentToPool(segment)) {
FreeSegment(segment);
}
}
void AccountingAllocator::FreeSegment(Segment* memory) {
base::NoBarrier_AtomicIncrement(
&current_memory_usage_, -static_cast<base::AtomicWord>(memory->size()));
memory->ZapHeader();
free(memory);
}
......@@ -82,82 +40,5 @@ size_t AccountingAllocator::GetMaxMemoryUsage() const {
return base::NoBarrier_Load(&max_memory_usage_);
}
Segment* AccountingAllocator::GetSegmentFromPool(size_t requested_size) {
if (requested_size > (1 << kMaxSegmentSizePower)) {
return nullptr;
}
uint8_t power = kMinSegmentSizePower;
while (requested_size > static_cast<size_t>(1 << power)) power++;
DCHECK_GE(power, kMinSegmentSizePower + 0);
power -= kMinSegmentSizePower;
Segment* segment;
{
base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
segment = unused_segments_heads_[power];
if (segment != nullptr) {
unused_segments_heads_[power] = segment->next();
segment->set_next(nullptr);
unused_segments_sizes[power]--;
unused_segments_size_ -= segment->size();
}
}
if (segment) {
DCHECK_GE(segment->size(), requested_size);
}
return segment;
}
bool AccountingAllocator::AddSegmentToPool(Segment* segment) {
size_t size = segment->size();
if (size >= (1 << (kMaxSegmentSizePower + 1))) return false;
if (size < (1 << kMinSegmentSizePower)) return false;
uint8_t power = kMaxSegmentSizePower;
while (size < static_cast<size_t>(1 << power)) power--;
DCHECK_GE(power, kMinSegmentSizePower + 0);
power -= kMinSegmentSizePower;
{
base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
if (unused_segments_sizes[power] >= kMaxSegmentsPerBucket) {
return false;
}
segment->set_next(unused_segments_heads_[power]);
unused_segments_heads_[power] = segment;
unused_segments_size_ += size;
unused_segments_sizes[power]++;
}
return true;
}
void AccountingAllocator::ClearPool() {
base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
for (uint8_t power = 0; power <= kMaxSegmentSizePower - kMinSegmentSizePower;
power++) {
Segment* current = unused_segments_heads_[power];
while (current) {
Segment* next = current->next();
FreeSegment(current);
current = next;
}
unused_segments_heads_[power] = nullptr;
}
}
} // namespace internal
} // namespace v8
......@@ -19,55 +19,19 @@ namespace internal {
class AccountingAllocator {
public:
AccountingAllocator();
virtual ~AccountingAllocator();
AccountingAllocator() = default;
virtual ~AccountingAllocator() = default;
// Gets an empty segment from the pool or creates a new one.
virtual Segment* GetSegment(size_t bytes);
// Return unneeded segments to either insert them into the pool or release
// them if the pool is already full or memory pressure is high.
virtual void ReturnSegment(Segment* memory);
virtual Segment* AllocateSegment(size_t bytes);
virtual void FreeSegment(Segment* memory);
size_t GetCurrentMemoryUsage() const;
size_t GetMaxMemoryUsage() const;
size_t GetCurrentPoolSize() const;
void MemoryPressureNotification(MemoryPressureLevel level);
private:
static const uint8_t kMinSegmentSizePower = 13;
static const uint8_t kMaxSegmentSizePower = 18;
static const uint8_t kMaxSegmentsPerBucket = 5;
STATIC_ASSERT(kMinSegmentSizePower <= kMaxSegmentSizePower);
// Allocates a new segment. Returns nullptr on failed allocation.
Segment* AllocateSegment(size_t bytes);
void FreeSegment(Segment* memory);
// Returns a segment from the pool of at least the requested size.
Segment* GetSegmentFromPool(size_t requested_size);
// Trys to add a segment to the pool. Returns false if the pool is full.
bool AddSegmentToPool(Segment* segment);
// Empties the pool and puts all its contents onto the garbage stack.
void ClearPool();
Segment*
unused_segments_heads_[1 + kMaxSegmentSizePower - kMinSegmentSizePower];
size_t unused_segments_sizes[1 + kMaxSegmentSizePower - kMinSegmentSizePower];
size_t unused_segments_size_ = 0;
base::Mutex unused_segments_mutex_;
base::AtomicWord current_memory_usage_ = 0;
base::AtomicWord max_memory_usage_ = 0;
base::AtomicValue<MemoryPressureLevel> memory_pressure_level_;
DISALLOW_COPY_AND_ASSIGN(AccountingAllocator);
};
......
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/zone/zone-segment.h"
namespace v8 {
namespace internal {
void Segment::ZapContents() {
#ifdef DEBUG
memset(start(), kZapDeadByte, capacity());
#endif
}
void Segment::ZapHeader() {
#ifdef DEBUG
memset(this, kZapDeadByte, sizeof(Segment));
#endif
}
} // namespace internal
} // namespace v8
......@@ -38,17 +38,7 @@ class Segment {
Address start() const { return address(sizeof(Segment)); }
Address end() const { return address(size_); }
// Zap the contents of the segment (but not the header).
void ZapContents();
// Zaps the header and makes the segment unusable this way.
void ZapHeader();
private:
#ifdef DEBUG
// Constant byte value used for zapping dead memory in debug mode.
static const unsigned char kZapDeadByte = 0xcd;
#endif
// Computes the address of the nth byte in this segment.
Address address(size_t n) const { return Address(this) + n; }
......
......@@ -51,6 +51,7 @@ Zone::Zone(AccountingAllocator* allocator)
Zone::~Zone() {
DeleteAll();
DeleteKeptSegment();
DCHECK(segment_bytes_allocated_ == 0);
}
......@@ -91,30 +92,85 @@ void* Zone::New(size_t size) {
}
void Zone::DeleteAll() {
// Traverse the chained list of segments and return them all to the allocator.
#ifdef DEBUG
// Constant byte value used for zapping dead memory in debug mode.
static const unsigned char kZapDeadByte = 0xcd;
#endif
// Find a segment with a suitable size to keep around.
Segment* keep = nullptr;
// Traverse the chained list of segments, zapping (in debug mode)
// and freeing every segment except the one we wish to keep.
for (Segment* current = segment_head_; current;) {
Segment* next = current->next();
if (!keep && current->size() <= kMaximumKeptSegmentSize) {
// Unlink the segment we wish to keep from the list.
keep = current;
keep->set_next(nullptr);
} else {
size_t size = current->size();
// Un-poison the segment content so we can re-use or zap it later.
ASAN_UNPOISON_MEMORY_REGION(current->start(), current->capacity());
#ifdef DEBUG
// Un-poison first so the zapping doesn't trigger ASan complaints.
ASAN_UNPOISON_MEMORY_REGION(current, size);
// Zap the entire current segment (including the header).
memset(current, kZapDeadByte, size);
#endif
segment_bytes_allocated_ -= size;
allocator_->ReturnSegment(current);
allocator_->FreeSegment(current);
}
current = next;
}
// If we have found a segment we want to keep, we must recompute the
// variables 'position' and 'limit' to prepare for future allocate
// attempts. Otherwise, we must clear the position and limit to
// force a new segment to be allocated on demand.
if (keep) {
Address start = keep->start();
position_ = RoundUp(start, kAlignment);
limit_ = keep->end();
// Un-poison so we can re-use the segment later.
ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
#ifdef DEBUG
// Zap the contents of the kept segment (but not the header).
memset(start, kZapDeadByte, keep->capacity());
#endif
} else {
position_ = limit_ = 0;
}
allocation_size_ = 0;
// Update the head segment to be the kept segment (if any).
segment_head_ = keep;
}
void Zone::DeleteKeptSegment() {
#ifdef DEBUG
// Constant byte value used for zapping dead memory in debug mode.
static const unsigned char kZapDeadByte = 0xcd;
#endif
DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr);
if (segment_head_ != nullptr) {
size_t size = segment_head_->size();
#ifdef DEBUG
// Un-poison first so the zapping doesn't trigger ASan complaints.
ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
// Zap the entire kept segment (including the header).
memset(segment_head_, kZapDeadByte, size);
#endif
segment_bytes_allocated_ -= size;
allocator_->FreeSegment(segment_head_);
segment_head_ = nullptr;
}
DCHECK(segment_bytes_allocated_ == 0);
}
// Creates a new segment, sets it size, and pushes it to the front
// of the segment chain. Returns the new segment.
Segment* Zone::NewSegment(size_t size) {
Segment* result = allocator_->GetSegment(size);
Segment* result = allocator_->AllocateSegment(size);
segment_bytes_allocated_ += size;
if (result != nullptr) {
result->Initialize(segment_head_, size, this);
......
......@@ -25,7 +25,7 @@ namespace internal {
//
// Note: There is no need to initialize the Zone; the first time an
// allocation is attempted, a segment of memory will be requested
// through the allocator.
// through a call to malloc().
//
// Note: The implementation is inherently not thread safe. Do not use
// from multi-threaded code.
......@@ -44,9 +44,14 @@ class Zone final {
return static_cast<T*>(New(length * sizeof(T)));
}
// Deletes all objects and free all memory allocated in the Zone.
// Deletes all objects and free all memory allocated in the Zone. Keeps one
// small (size <= kMaximumKeptSegmentSize) segment around if it finds one.
void DeleteAll();
// Deletes the last small segment kept around by DeleteAll(). You
// may no longer allocate in the Zone after a call to this method.
void DeleteKeptSegment();
// Returns true if more memory has been allocated in zones than
// the limit allows.
bool excess_allocation() const {
......@@ -74,6 +79,9 @@ class Zone final {
// Never allocate segments larger than this size in bytes.
static const size_t kMaximumSegmentSize = 1 * MB;
// Never keep segments larger than this size in bytes around.
static const size_t kMaximumKeptSegmentSize = 64 * KB;
// Report zone excess when allocation exceeds this limit.
static const size_t kExcessLimit = 256 * MB;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment