Commit 9f4f582b authored by bmeurer's avatar bmeurer Committed by Commit bot

[builtins] Don't canonicalize results of Math double operations.

For Math builtins that likely yield double results, i.e. Math.sin,
Math.cos and friends, don't bother trying to canonicalize the result
to Smi. The rationale behind this is that other parts of V8 use the
HeapNumber representation as a hint to assume that certain values
should be represented as double (i.e. for the array elements kind
and for double field tracking). This way the chance that we make
the ideal decision early on is better.

For Math.abs we establish the contract that if the input value is a
Smi, then we try hard to return a Smi (doesn't work for minimal Smi
value), otherwise we preserve the HeapNumberness of the input.

Same for the generic Add, Subtract, Multiply, etc. code stubs.

R=yangguo@chromium.org

Review-Url: https://codereview.chromium.org/2451973003
Cr-Commit-Position: refs/heads/master@{#40573}
parent 1f6f345d
......@@ -15,99 +15,94 @@ namespace internal {
// ES6 section - 20.2.2.1 Math.abs ( x )
void Builtins::Generate_MathAbs(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Abs(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.2 Math.acos ( x )
void Builtins::Generate_MathAcos(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Acos(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.3 Math.acosh ( x )
void Builtins::Generate_MathAcosh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Acosh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.4 Math.asin ( x )
void Builtins::Generate_MathAsin(CodeStubAssembler* assembler) {
using compiler::Node;
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Asin(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.5 Math.asinh ( x )
void Builtins::Generate_MathAsinh(CodeStubAssembler* assembler) {
using compiler::Node;
// We might need to loop once for ToNumber conversion.
Variable var_x(assembler, MachineRepresentation::kTagged);
Label loop(assembler, &var_x);
var_x.Bind(assembler->Parameter(1));
assembler->Goto(&loop);
assembler->Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Asinh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// Check if {x} is a Smi or a HeapObject.
Label if_xissmi(assembler), if_xisnotsmi(assembler);
assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
// ES6 section 20.2.2.6 Math.atan ( x )
void Builtins::Generate_MathAtan(CodeStubAssembler* assembler) {
using compiler::Node;
assembler->Bind(&if_xissmi);
{
// Check if {x} is already positive.
Label if_xispositive(assembler), if_xisnotpositive(assembler);
assembler->BranchIfSmiLessThanOrEqual(
assembler->SmiConstant(Smi::FromInt(0)), x, &if_xispositive,
&if_xisnotpositive);
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atan(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
assembler->Bind(&if_xispositive);
{
// Just return the input {x}.
assembler->Return(x);
}
// ES6 section 20.2.2.7 Math.atanh ( x )
void Builtins::Generate_MathAtanh(CodeStubAssembler* assembler) {
using compiler::Node;
assembler->Bind(&if_xisnotpositive);
{
// Try to negate the {x} value.
Node* pair = assembler->IntPtrSubWithOverflow(
assembler->IntPtrConstant(0), assembler->BitcastTaggedToWord(x));
Node* overflow = assembler->Projection(1, pair);
Label if_overflow(assembler, Label::kDeferred),
if_notoverflow(assembler);
assembler->Branch(overflow, &if_overflow, &if_notoverflow);
assembler->Bind(&if_notoverflow);
{
// There is a Smi representation for negated {x}.
Node* result = assembler->Projection(0, pair);
result = assembler->BitcastWordToTagged(result);
assembler->Return(result);
}
assembler->Bind(&if_overflow);
{
Node* result = assembler->NumberConstant(0.0 - Smi::kMinValue);
assembler->Return(result);
}
}
}
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atanh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
assembler->Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
Label if_xisheapnumber(assembler),
if_xisnotheapnumber(assembler, Label::kDeferred);
assembler->Branch(
assembler->WordEqual(assembler->LoadMap(x),
assembler->HeapNumberMapConstant()),
&if_xisheapnumber, &if_xisnotheapnumber);
// ES6 section 20.2.2.8 Math.atan2 ( y, x )
void Builtins::Generate_MathAtan2(CodeStubAssembler* assembler) {
using compiler::Node;
assembler->Bind(&if_xisheapnumber);
{
Node* x_value = assembler->LoadHeapNumberValue(x);
Node* value = assembler->Float64Abs(x_value);
Node* result = assembler->AllocateHeapNumberWithValue(value);
assembler->Return(result);
}
Node* y = assembler->Parameter(1);
Node* x = assembler->Parameter(2);
Node* context = assembler->Parameter(5);
Node* y_value = assembler->TruncateTaggedToFloat64(context, y);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atan2(y_value, x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
assembler->Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_x.Bind(assembler->CallStub(callable, context, x));
assembler->Goto(&loop);
}
}
}
}
namespace {
......@@ -171,8 +166,65 @@ void Generate_MathRoundingOperation(
}
}
void Generate_MathUnaryOperation(
CodeStubAssembler* assembler,
compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) {
typedef compiler::Node Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = (assembler->*float64op)(x_value);
Node* result = assembler->AllocateHeapNumberWithValue(value);
assembler->Return(result);
}
} // namespace
// ES6 section 20.2.2.2 Math.acos ( x )
void Builtins::Generate_MathAcos(CodeStubAssembler* assembler) {
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acos);
}
// ES6 section 20.2.2.3 Math.acosh ( x )
void Builtins::Generate_MathAcosh(CodeStubAssembler* assembler) {
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acosh);
}
// ES6 section 20.2.2.4 Math.asin ( x )
void Builtins::Generate_MathAsin(CodeStubAssembler* assembler) {
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asin);
}
// ES6 section 20.2.2.5 Math.asinh ( x )
void Builtins::Generate_MathAsinh(CodeStubAssembler* assembler) {
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asinh);
}
// ES6 section 20.2.2.6 Math.atan ( x )
void Builtins::Generate_MathAtan(CodeStubAssembler* assembler) {
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atan);
}
// ES6 section 20.2.2.7 Math.atanh ( x )
void Builtins::Generate_MathAtanh(CodeStubAssembler* assembler) {
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atanh);
}
// ES6 section 20.2.2.8 Math.atan2 ( y, x )
void Builtins::Generate_MathAtan2(CodeStubAssembler* assembler) {
using compiler::Node;
Node* y = assembler->Parameter(1);
Node* x = assembler->Parameter(2);
Node* context = assembler->Parameter(5);
Node* y_value = assembler->TruncateTaggedToFloat64(context, y);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atan2(y_value, x_value);
Node* result = assembler->AllocateHeapNumberWithValue(value);
assembler->Return(result);
}
// ES6 section 20.2.2.10 Math.ceil ( x )
void Builtins::Generate_MathCeil(CodeStubAssembler* assembler) {
Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Ceil);
......@@ -180,14 +232,7 @@ void Builtins::Generate_MathCeil(CodeStubAssembler* assembler) {
// ES6 section 20.2.2.9 Math.cbrt ( x )
void Builtins::Generate_MathCbrt(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Cbrt(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cbrt);
}
// ES6 section 20.2.2.11 Math.clz32 ( x )
......@@ -260,38 +305,22 @@ void Builtins::Generate_MathClz32(CodeStubAssembler* assembler) {
// ES6 section 20.2.2.12 Math.cos ( x )
void Builtins::Generate_MathCos(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Cos(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cos);
}
// ES6 section 20.2.2.13 Math.cosh ( x )
void Builtins::Generate_MathCosh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Cosh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cosh);
}
// ES6 section 20.2.2.14 Math.exp ( x )
void Builtins::Generate_MathExp(CodeStubAssembler* assembler) {
using compiler::Node;
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Exp);
}
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Exp(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
// ES6 section 20.2.2.15 Math.expm1 ( x )
void Builtins::Generate_MathExpm1(CodeStubAssembler* assembler) {
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Expm1);
}
// ES6 section 20.2.2.16 Math.floor ( x )
......@@ -308,7 +337,7 @@ void Builtins::Generate_MathFround(CodeStubAssembler* assembler) {
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value32 = assembler->TruncateFloat64ToFloat32(x_value);
Node* value = assembler->ChangeFloat32ToFloat64(value32);
Node* result = assembler->ChangeFloat64ToTagged(value);
Node* result = assembler->AllocateHeapNumberWithValue(value);
assembler->Return(result);
}
......@@ -380,62 +409,22 @@ void Builtins::Generate_MathImul(CodeStubAssembler* assembler) {
// ES6 section 20.2.2.20 Math.log ( x )
void Builtins::Generate_MathLog(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log);
}
// ES6 section 20.2.2.21 Math.log1p ( x )
void Builtins::Generate_MathLog1p(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log1p(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log1p);
}
// ES6 section 20.2.2.22 Math.log10 ( x )
void Builtins::Generate_MathLog10(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log10(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log10);
}
// ES6 section 20.2.2.23 Math.log2 ( x )
void Builtins::Generate_MathLog2(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log2(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.15 Math.expm1 ( x )
void Builtins::Generate_MathExpm1(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Expm1(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log2);
}
// ES6 section 20.2.2.26 Math.pow ( x, y )
......@@ -489,7 +478,7 @@ void Builtins::Generate_MathRandom(CodeStubAssembler* assembler) {
Node* random = assembler->LoadFixedDoubleArrayElement(
array, new_smi_index, MachineType::Float64(), 0,
CodeStubAssembler::SMI_PARAMETERS);
assembler->Return(assembler->ChangeFloat64ToTagged(random));
assembler->Return(assembler->AllocateHeapNumberWithValue(random));
}
// ES6 section 20.2.2.28 Math.round ( x )
......@@ -526,62 +515,27 @@ void Builtins::Generate_MathSign(CodeStubAssembler* assembler) {
// ES6 section 20.2.2.30 Math.sin ( x )
void Builtins::Generate_MathSin(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Sin(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sin);
}
// ES6 section 20.2.2.31 Math.sinh ( x )
void Builtins::Generate_MathSinh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Sinh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sinh);
}
// ES6 section 20.2.2.32 Math.sqrt ( x )
void Builtins::Generate_MathSqrt(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Sqrt(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sqrt);
}
// ES6 section 20.2.2.33 Math.tan ( x )
void Builtins::Generate_MathTan(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Tan(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tan);
}
// ES6 section 20.2.2.34 Math.tanh ( x )
void Builtins::Generate_MathTanh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Tanh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tanh);
}
// ES6 section 20.2.2.35 Math.trunc ( x )
......
......@@ -935,7 +935,7 @@ void Builtins::Generate_Add(CodeStubAssembler* assembler) {
Node* lhs_value = var_fadd_lhs.value();
Node* rhs_value = var_fadd_rhs.value();
Node* value = assembler->Float64Add(lhs_value, rhs_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
Node* result = assembler->AllocateHeapNumberWithValue(value);
var_result.Bind(result);
assembler->Goto(&end);
}
......@@ -1114,7 +1114,7 @@ void Builtins::Generate_Subtract(CodeStubAssembler* assembler) {
Node* lhs_value = var_fsub_lhs.value();
Node* rhs_value = var_fsub_rhs.value();
Node* value = assembler->Float64Sub(lhs_value, rhs_value);
var_result.Bind(assembler->ChangeFloat64ToTagged(value));
var_result.Bind(assembler->AllocateHeapNumberWithValue(value));
assembler->Goto(&end);
}
assembler->Bind(&end);
......@@ -1266,7 +1266,7 @@ void Builtins::Generate_Multiply(CodeStubAssembler* assembler) {
{
Node* value =
assembler->Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
Node* result = assembler->ChangeFloat64ToTagged(value);
Node* result = assembler->AllocateHeapNumberWithValue(value);
var_result.Bind(result);
assembler->Goto(&return_result);
}
......@@ -1486,7 +1486,7 @@ void Builtins::Generate_Divide(CodeStubAssembler* assembler) {
{
Node* value = assembler->Float64Div(var_dividend_float64.value(),
var_divisor_float64.value());
var_result.Bind(assembler->ChangeFloat64ToTagged(value));
var_result.Bind(assembler->AllocateHeapNumberWithValue(value));
assembler->Goto(&end);
}
assembler->Bind(&end);
......@@ -1644,7 +1644,7 @@ void Builtins::Generate_Modulus(CodeStubAssembler* assembler) {
{
Node* value = assembler->Float64Mod(var_dividend_float64.value(),
var_divisor_float64.value());
var_result.Bind(assembler->ChangeFloat64ToTagged(value));
var_result.Bind(assembler->AllocateHeapNumberWithValue(value));
assembler->Goto(&return_result);
}
......
......@@ -523,7 +523,7 @@ Node* CodeStubAssembler::SmiMul(Node* a, Node* b) {
var_lhs_float64.Bind(SmiToFloat64(a));
var_rhs_float64.Bind(SmiToFloat64(b));
Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
Node* result = ChangeFloat64ToTagged(value);
Node* result = AllocateHeapNumberWithValue(value);
var_result.Bind(result);
Goto(&return_result);
}
......@@ -8398,7 +8398,7 @@ compiler::Node* CodeStubAssembler::NumberInc(compiler::Node* value) {
Node* finc_value = var_finc_value.value();
Node* one = Float64Constant(1.0);
Node* finc_result = Float64Add(finc_value, one);
var_result.Bind(ChangeFloat64ToTagged(finc_result));
var_result.Bind(AllocateHeapNumberWithValue(finc_result));
Goto(&end);
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment