Commit 9e843087 authored by floitschV8@gmail.com's avatar floitschV8@gmail.com

Rename grisu to fast-dtoa. Get rid of template.

Review URL: http://codereview.chromium.org/1032007

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4181 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 825a5d74
......@@ -65,7 +65,7 @@ SOURCES = {
full-codegen.cc
func-name-inferrer.cc
global-handles.cc
grisu3.cc
fast-dtoa.cc
handles.cc
hashmap.cc
heap-profiler.cc
......
......@@ -31,7 +31,7 @@
#include "conversions-inl.h"
#include "factory.h"
#include "grisu3.h"
#include "fast-dtoa.h"
#include "scanner.h"
namespace v8 {
......@@ -384,14 +384,14 @@ const char* DoubleToCString(double v, Vector<char> buffer) {
int sign;
char* decimal_rep;
bool used_dtoa = false;
char grisu_buffer[kGrisu3MaximalLength + 1];
bool used_gay_dtoa = false;
char fast_dtoa_buffer[kFastDtoaMaximalLength + 1];
int length;
if (grisu3(v, grisu_buffer, &sign, &length, &decimal_point)) {
decimal_rep = grisu_buffer;
if (FastDtoa(v, fast_dtoa_buffer, &sign, &length, &decimal_point)) {
decimal_rep = fast_dtoa_buffer;
} else {
decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL);
used_dtoa = true;
used_gay_dtoa = true;
length = StrLength(decimal_rep);
}
......@@ -428,7 +428,7 @@ const char* DoubleToCString(double v, Vector<char> buffer) {
builder.AddFormatted("%d", exponent);
}
if (used_dtoa) freedtoa(decimal_rep);
if (used_gay_dtoa) freedtoa(decimal_rep);
}
}
return builder.Finalize();
......
......@@ -27,7 +27,7 @@
#include "v8.h"
#include "grisu3.h"
#include "fast-dtoa.h"
#include "cached_powers.h"
#include "diy_fp.h"
......@@ -36,142 +36,137 @@
namespace v8 {
namespace internal {
template <int alpha = -60, int gamma = -32>
class Grisu3 {
public:
// Provides a decimal representation of v.
// Returns true if it succeeds, otherwise the result can not be trusted.
// There will be *length digits inside the buffer (not null-terminated).
// If the function returns true then
// v == (double) (buffer * 10^decimal_exponent).
// The digits in the buffer are the shortest representation possible: no
// 0.099999999999 instead of 0.1.
// The last digit will be closest to the actual v. That is, even if several
// digits might correctly yield 'v' when read again, the closest will be
// computed.
static bool grisu3(double v,
char* buffer, int* length, int* decimal_exponent);
private:
// Rounds the buffer according to the rest.
// If there is too much imprecision to round then false is returned.
// Similarily false is returned when the buffer is not within Delta.
static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta,
uint64_t rest, uint64_t ten_kappa, uint64_t ulp);
// Dispatches to the a specialized digit-generation routine. The chosen
// routine depends on w.e (which in turn depends on alpha and gamma).
// Currently there is only one digit-generation routine, but it would be easy
// to add others.
static bool DigitGen(DiyFp low, DiyFp w, DiyFp high,
char* buffer, int* len, int* kappa);
// Generates w's digits. The result is the shortest in the interval low-high.
// All DiyFp are assumed to be imprecise and this function takes this
// imprecision into account. If the function cannot compute the best
// representation (due to the imprecision) then false is returned.
static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high,
char* buffer, int* length, int* kappa);
};
// The minimal and maximal target exponent define the range of w's binary
// exponent, where 'w' is the result of multiplying the input by a cached power
// of ten.
//
// A different range might be chosen on a different platform, to optimize digit
// generation, but a smaller range requires more powers of ten to be cached.
static const int minimal_target_exponent = -60;
static const int maximal_target_exponent = -32;
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::grisu3(double v,
char* buffer,
int* length,
int* decimal_exponent) {
DiyFp w = Double(v).AsNormalizedDiyFp();
// boundary_minus and boundary_plus are the boundaries between v and its
// neighbors. Any number strictly between boundary_minus and boundary_plus
// will round to v when read as double.
// Grisu3 will never output representations that lie exactly on a boundary.
DiyFp boundary_minus, boundary_plus;
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
ASSERT(boundary_plus.e() == w.e());
DiyFp ten_mk; // Cached power of ten: 10^-k
int mk; // -k
GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk);
ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize &&
gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize);
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
// off by a small amount.
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
DiyFp scaled_w = DiyFp::Times(w, ten_mk);
ASSERT(scaled_w.e() ==
boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
// In theory it would be possible to avoid some recomputations by computing
// the difference between w and boundary_minus/plus (a power of 2) and to
// compute scaled_boundary_minus/plus by subtracting/adding from
// scaled_w. However the code becomes much less readable and the speed
// enhancements are not terriffic.
DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
// Adjusts the last digit of the generated number, and screens out generated
// solutions that may be inaccurate. A solution may be inaccurate if it is
// outside the safe interval, or if we ctannot prove that it is closer to the
// input than a neighboring representation of the same length.
//
// Input: * buffer containing the digits of too_high / 10^kappa
// * the buffer's length
// * distance_too_high_w == (too_high - w).f() * unit
// * unsafe_interval == (too_high - too_low).f() * unit
// * rest = (too_high - buffer * 10^kappa).f() * unit
// * ten_kappa = 10^kappa * unit
// * unit = the common multiplier
// Output: returns true if the buffer is guaranteed to contain the closest
// representable number to the input.
// Modifies the generated digits in the buffer to approach (round towards) w.
bool RoundWeed(char* buffer,
int length,
uint64_t distance_too_high_w,
uint64_t unsafe_interval,
uint64_t rest,
uint64_t ten_kappa,
uint64_t unit) {
uint64_t small_distance = distance_too_high_w - unit;
uint64_t big_distance = distance_too_high_w + unit;
// Let w_low = too_high - big_distance, and
// w_high = too_high - small_distance.
// Note: w_low < w < w_high
//
// The real w (* unit) must lie somewhere inside the interval
// ]w_low; w_low[ (often written as "(w_low; w_low)")
// DigitGen will generate the digits of scaled_w. Therefore we have
// v == (double) (scaled_w * 10^-mk).
// Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
// integer than it will be updated. For instance if scaled_w == 1.23 then
// the buffer will be filled with "123" und the decimal_exponent will be
// decreased by 2.
int kappa;
bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
buffer, length, &kappa);
*decimal_exponent = -mk + kappa;
return result;
}
// Basically the buffer currently contains a number in the unsafe interval
// ]too_low; too_high[ with too_low < w < too_high
//
// too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// ^v 1 unit ^ ^ ^ ^
// boundary_high --------------------- . . . .
// ^v 1 unit . . . .
// - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
// . . ^ . .
// . big_distance . . .
// . . . . rest
// small_distance . . . .
// v . . . .
// w_high - - - - - - - - - - - - - - - - - - . . . .
// ^v 1 unit . . . .
// w ---------------------------------------- . . . .
// ^v 1 unit v . . .
// w_low - - - - - - - - - - - - - - - - - - - - - . . .
// . . v
// buffer --------------------------------------------------+-------+--------
// . .
// safe_interval .
// v .
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
// ^v 1 unit .
// boundary_low ------------------------- unsafe_interval
// ^v 1 unit v
// too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//
//
// Note that the value of buffer could lie anywhere inside the range too_low
// to too_high.
//
// boundary_low, boundary_high and w are approximations of the real boundaries
// and v (the input number). They are guaranteed to be precise up to one unit.
// In fact the error is guaranteed to be strictly less than one unit.
//
// Anything that lies outside the unsafe interval is guaranteed not to round
// to v when read again.
// Anything that lies inside the safe interval is guaranteed to round to v
// when read again.
// If the number inside the buffer lies inside the unsafe interval but not
// inside the safe interval then we simply do not know and bail out (returning
// false).
//
// Similarly we have to take into account the imprecision of 'w' when rounding
// the buffer. If we have two potential representations we need to make sure
// that the chosen one is closer to w_low and w_high since v can be anywhere
// between them.
//
// By generating the digits of too_high we got the largest (closest to
// too_high) buffer that is still in the unsafe interval. In the case where
// w_high < buffer < too_high we try to decrement the buffer.
// This way the buffer approaches (rounds towards) w.
// There are 3 conditions that stop the decrementation process:
// 1) the buffer is already below w_high
// 2) decrementing the buffer would make it leave the unsafe interval
// 3) decrementing the buffer would yield a number below w_high and farther
// away than the current number. In other words:
// (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
// Instead of using the buffer directly we use its distance to too_high.
// Conceptually rest ~= too_high - buffer
while (rest < small_distance && // Negated condition 1
unsafe_interval - rest >= ten_kappa && // Negated condition 2
(rest + ten_kappa < small_distance || // buffer{-1} > w_high
small_distance - rest >= rest + ten_kappa - small_distance)) {
buffer[length - 1]--;
rest += ten_kappa;
}
// Generates the digits of input number w.
// w is a floating-point number (DiyFp), consisting of a significand and an
// exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63
// and gamma <= 3.
// Returns false if it fails, in which case the generated digits in the buffer
// should not be used.
// Preconditions:
// * low, w and high are correct up to 1 ulp (unit in the last place). That
// is, their error must be less that a unit of their last digits.
// * low.e() == w.e() == high.e()
// * low < w < high, and taking into account their error: low~ <= high~
// * alpha <= w.e() <= gamma
// Postconditions: returns false if procedure fails.
// otherwise:
// * buffer is not null-terminated, but len contains the number of digits.
// * buffer contains the shortest possible decimal digit-sequence
// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
// correct values of low and high (without their error).
// * if more than one decimal representation gives the minimal number of
// decimal digits then the one closest to W (where W is the correct value
// of w) is chosen.
// Remark: this procedure takes into account the imprecision of its input
// numbers. If the precision is not enough to guarantee all the postconditions
// then false is returned. This usually happens rarely (~0.5%).
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::DigitGen(DiyFp low,
DiyFp w,
DiyFp high,
char* buffer,
int* len,
int* kappa) {
ASSERT(low.e() == w.e() && w.e() == high.e());
ASSERT(low.f() + 1 <= high.f() - 1);
ASSERT(alpha <= w.e() && w.e() <= gamma);
// The following tests use alpha and gamma to avoid unnecessary dynamic tests.
if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32
(alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region.
-60 <= w.e() && w.e() <= -32)) {
return DigitGen_m60_m32(low, w, high, buffer, len, kappa);
} else {
// A simple adaption of the special case -60/-32 would allow greater ranges
// of alpha/gamma and thus reduce the number of precomputed cached powers of
// ten.
UNIMPLEMENTED();
// We have approached w+ as much as possible. We now test if approaching w-
// would require changing the buffer. If yes, then we have two possible
// representations close to w, but we cannot decide which one is closer.
if (rest < big_distance &&
unsafe_interval - rest >= ten_kappa &&
(rest + ten_kappa < big_distance ||
big_distance - rest > rest + ten_kappa - big_distance)) {
return false;
}
// Weeding test.
// The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
// Since too_low = too_high - unsafe_interval this is equivalent to
// [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
// Conceptually we have: rest ~= too_high - buffer
return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
}
static const uint32_t kTen4 = 10000;
static const uint32_t kTen5 = 100000;
static const uint32_t kTen6 = 1000000;
......@@ -179,10 +174,11 @@ static const uint32_t kTen7 = 10000000;
static const uint32_t kTen8 = 100000000;
static const uint32_t kTen9 = 1000000000;
// Returns the biggest power of ten that is <= than the given number. We
// furthermore receive the maximum number of bits 'number' has.
// Returns the biggest power of ten that is less than or equal than the given
// number. We furthermore receive the maximum number of bits 'number' has.
// If number_bits == 0 then 0^-1 is returned
// The number of bits must be <= 32.
// Precondition: (1 << number_bits) <= number < (1 << (number_bits + 1)).
static void BiggestPowerTen(uint32_t number,
int number_bits,
uint32_t* power,
......@@ -283,8 +279,32 @@ static void BiggestPowerTen(uint32_t number,
}
// Same comments as for DigitGen but with additional precondition:
// -60 <= w.e() <= -32
// Generates the digits of input number w.
// w is a floating-point number (DiyFp), consisting of a significand and an
// exponent. Its exponent is bounded by minimal_target_exponent and
// maximal_target_exponent.
// Hence -60 <= w.e() <= -32.
//
// Returns false if it fails, in which case the generated digits in the buffer
// should not be used.
// Preconditions:
// * low, w and high are correct up to 1 ulp (unit in the last place). That
// is, their error must be less that a unit of their last digits.
// * low.e() == w.e() == high.e()
// * low < w < high, and taking into account their error: low~ <= high~
// * minimal_target_exponent <= w.e() <= maximal_target_exponent
// Postconditions: returns false if procedure fails.
// otherwise:
// * buffer is not null-terminated, but len contains the number of digits.
// * buffer contains the shortest possible decimal digit-sequence
// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
// correct values of low and high (without their error).
// * if more than one decimal representation gives the minimal number of
// decimal digits then the one closest to W (where W is the correct value
// of w) is chosen.
// Remark: this procedure takes into account the imprecision of its input
// numbers. If the precision is not enough to guarantee all the postconditions
// then false is returned. This usually happens rarely (~0.5%).
//
// Say, for the sake of example, that
// w.e() == -48, and w.f() == 0x1234567890abcdef
......@@ -301,13 +321,15 @@ static void BiggestPowerTen(uint32_t number,
// represent 'w' we can stop. Everything inside the interval low - high
// represents w. However we have to pay attention to low, high and w's
// imprecision.
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::DigitGen_m60_m32(DiyFp low,
DiyFp w,
DiyFp high,
char* buffer,
int* length,
int* kappa) {
bool DigitGen(DiyFp low,
DiyFp w,
DiyFp high,
char* buffer,
int* length,
int* kappa) {
ASSERT(low.e() == w.e() && w.e() == high.e());
ASSERT(low.f() + 1 <= high.f() - 1);
ASSERT(minimal_target_exponent <= w.e() && w.e() <= maximal_target_exponent);
// low, w and high are imprecise, but by less than one ulp (unit in the last
// place).
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
......@@ -404,77 +426,69 @@ bool Grisu3<alpha, gamma>::DigitGen_m60_m32(DiyFp low,
}
// Rounds the given generated digits in the buffer and weeds out generated
// digits that are not in the safe interval, or where we cannot find a rounded
// representation.
// Input: * buffer containing the digits of too_high / 10^kappa
// * the buffer's length
// * distance_too_high_w == (too_high - w).f() * unit
// * unsafe_interval == (too_high - too_low).f() * unit
// * rest = (too_high - buffer * 10^kappa).f() * unit
// * ten_kappa = 10^kappa * unit
// * unit = the common multiplier
// Output: returns true on success.
// Modifies the generated digits in the buffer to approach (round towards) w.
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::RoundWeed(char* buffer,
int length,
uint64_t distance_too_high_w,
uint64_t unsafe_interval,
uint64_t rest,
uint64_t ten_kappa,
uint64_t unit) {
uint64_t small_distance = distance_too_high_w - unit;
uint64_t big_distance = distance_too_high_w + unit;
// Let w- = too_high - big_distance, and
// w+ = too_high - small_distance.
// Note: w- < w < w+
//
// The real w (* unit) must lie somewhere inside the interval
// ]w-; w+[ (often written as "(w-; w+)")
// Basically the buffer currently contains a number in the unsafe interval
// ]too_low; too_high[ with too_low < w < too_high
//
// By generating the digits of too_high we got the biggest last digit.
// In the case that w+ < buffer < too_high we try to decrement the buffer.
// This way the buffer approaches (rounds towards) w.
// There are 3 conditions that stop the decrementation process:
// 1) the buffer is already below w+
// 2) decrementing the buffer would make it leave the unsafe interval
// 3) decrementing the buffer would yield a number below w+ and farther away
// than the current number. In other words:
// (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+
// Instead of using the buffer directly we use its distance to too_high.
// Conceptually rest ~= too_high - buffer
while (rest < small_distance && // Negated condition 1
unsafe_interval - rest >= ten_kappa && // Negated condition 2
(rest + ten_kappa < small_distance || // buffer{-1} > w+
small_distance - rest >= rest + ten_kappa - small_distance)) {
buffer[length - 1]--;
rest += ten_kappa;
}
// Provides a decimal representation of v.
// Returns true if it succeeds, otherwise the result cannot be trusted.
// There will be *length digits inside the buffer (not null-terminated).
// If the function returns true then
// v == (double) (buffer * 10^decimal_exponent).
// The digits in the buffer are the shortest representation possible: no
// 0.09999999999999999 instead of 0.1. The shorter representation will even be
// chosen even if the longer one would be closer to v.
// The last digit will be closest to the actual v. That is, even if several
// digits might correctly yield 'v' when read again, the closest will be
// computed.
bool grisu3(double v, char* buffer, int* length, int* decimal_exponent) {
DiyFp w = Double(v).AsNormalizedDiyFp();
// boundary_minus and boundary_plus are the boundaries between v and its
// closest floating-point neighbors. Any number strictly between
// boundary_minus and boundary_plus will round to v when convert to a double.
// Grisu3 will never output representations that lie exactly on a boundary.
DiyFp boundary_minus, boundary_plus;
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
ASSERT(boundary_plus.e() == w.e());
DiyFp ten_mk; // Cached power of ten: 10^-k
int mk; // -k
GetCachedPower(w.e() + DiyFp::kSignificandSize, minimal_target_exponent,
maximal_target_exponent, &mk, &ten_mk);
ASSERT(minimal_target_exponent <= w.e() + ten_mk.e() +
DiyFp::kSignificandSize &&
maximal_target_exponent >= w.e() + ten_mk.e() +
DiyFp::kSignificandSize);
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
// We have approached w+ as much as possible. We now test if approaching w-
// would require changing the buffer. If yes, then we have two possible
// representations close to w, but we cannot decide which one is closer.
if (rest < big_distance &&
unsafe_interval - rest >= ten_kappa &&
(rest + ten_kappa < big_distance ||
big_distance - rest > rest + ten_kappa - big_distance)) {
return false;
}
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
// off by a small amount.
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
DiyFp scaled_w = DiyFp::Times(w, ten_mk);
ASSERT(scaled_w.e() ==
boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
// In theory it would be possible to avoid some recomputations by computing
// the difference between w and boundary_minus/plus (a power of 2) and to
// compute scaled_boundary_minus/plus by subtracting/adding from
// scaled_w. However the code becomes much less readable and the speed
// enhancements are not terriffic.
DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
// Weeding test.
// The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
// Since too_low = too_high - unsafe_interval this is equivalent too
// [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
// Conceptually we have: rest ~= too_high - buffer
return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
// DigitGen will generate the digits of scaled_w. Therefore we have
// v == (double) (scaled_w * 10^-mk).
// Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
// integer than it will be updated. For instance if scaled_w == 1.23 then
// the buffer will be filled with "123" und the decimal_exponent will be
// decreased by 2.
int kappa;
bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
buffer, length, &kappa);
*decimal_exponent = -mk + kappa;
return result;
}
bool grisu3(double v, char* buffer, int* sign, int* length, int* point) {
bool FastDtoa(double v, char* buffer, int* sign, int* length, int* point) {
ASSERT(v != 0);
ASSERT(!Double(v).IsSpecial());
......@@ -485,7 +499,7 @@ bool grisu3(double v, char* buffer, int* sign, int* length, int* point) {
*sign = 0;
}
int decimal_exponent;
bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &decimal_exponent);
bool result = grisu3(v, buffer, length, &decimal_exponent);
*point = *length + decimal_exponent;
buffer[*length] = '\0';
return result;
......
......@@ -25,22 +25,22 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_GRISU3_H_
#define V8_GRISU3_H_
#ifndef V8_FAST_DTOA_H_
#define V8_FAST_DTOA_H_
namespace v8 {
namespace internal {
// Grisu3 will produce at most kGrisu3MaximalLength digits. This does not
// FastDtoa will produce at most kFastDtoaMaximalLength digits. This does not
// include the terminating '\0' character.
static const int kGrisu3MaximalLength = 17;
static const int kFastDtoaMaximalLength = 17;
// Provides a decimal representation of v.
// v must satisfy v != 0 and it must not be Infinity or NaN.
// v must not be (positive or negative) zero and it must not be Infinity or NaN.
// Returns true if it succeeds, otherwise the result can not be trusted.
// There will be *length digits inside the buffer followed by a null terminator.
// If the function returns true then
// v == (double) (buffer * 10^(decimal-point - length)).
// v == (double) (buffer * 10^(point - length)).
// The digits in the buffer are the shortest representation possible: no
// 0.099999999999 instead of 0.1.
// The last digit will be closest to the actual v. That is, even if several
......@@ -48,8 +48,8 @@ static const int kGrisu3MaximalLength = 17;
// one closest to v.
// The variable 'sign' will be '0' if the given number is positive, and '1'
// otherwise.
bool grisu3(double d, char* buffer, int* sign, int* length, int* decimal_point);
bool FastDtoa(double d, char* buffer, int* sign, int* length, int* point);
} } // namespace v8::internal
#endif // V8_GRISU3_H_
#endif // V8_FAST_DTOA_H_
......@@ -47,9 +47,9 @@ SOURCES = {
'test-decls.cc',
'test-diy_fp.cc',
'test-double.cc',
'test-fast-dtoa.cc',
'test-flags.cc',
'test-func-name-inference.cc',
'test-grisu3.cc',
'test-hashmap.cc',
'test-heap.cc',
'test-heap-profiler.cc',
......
......@@ -8,14 +8,14 @@
#include "cctest.h"
#include "diy_fp.h"
#include "double.h"
#include "fast-dtoa.h"
#include "gay_shortest.h"
#include "grisu3.h"
using namespace v8::internal;
static const int kBufferSize = 100;
TEST(GrisuVariousDoubles) {
TEST(FastDtoaVariousDoubles) {
char buffer[kBufferSize];
int sign;
int length;
......@@ -23,45 +23,45 @@ TEST(GrisuVariousDoubles) {
int status;
double min_double = 5e-324;
status = grisu3(min_double, buffer, &sign, &length, &point);
status = FastDtoa(min_double, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("5", buffer);
CHECK_EQ(-323, point);
double max_double = 1.7976931348623157e308;
status = grisu3(max_double, buffer, &sign, &length, &point);
status = FastDtoa(max_double, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("17976931348623157", buffer);
CHECK_EQ(309, point);
status = grisu3(4294967272.0, buffer, &sign, &length, &point);
status = FastDtoa(4294967272.0, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("4294967272", buffer);
CHECK_EQ(10, point);
status = grisu3(4.1855804968213567e298, buffer, &sign, &length, &point);
status = FastDtoa(4.1855804968213567e298, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("4185580496821357", buffer);
CHECK_EQ(299, point);
status = grisu3(5.5626846462680035e-309, buffer, &sign, &length, &point);
status = FastDtoa(5.5626846462680035e-309, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("5562684646268003", buffer);
CHECK_EQ(-308, point);
status = grisu3(2147483648.0, buffer, &sign, &length, &point);
status = FastDtoa(2147483648.0, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("2147483648", buffer);
CHECK_EQ(10, point);
status = grisu3(3.5844466002796428e+298, buffer, &sign, &length, &point);
if (status) { // Not all grisu3 variants manage to compute this number.
status = FastDtoa(3.5844466002796428e+298, buffer, &sign, &length, &point);
if (status) { // Not all FastDtoa variants manage to compute this number.
CHECK_EQ("35844466002796428", buffer);
CHECK_EQ(0, sign);
CHECK_EQ(299, point);
......@@ -69,7 +69,7 @@ TEST(GrisuVariousDoubles) {
uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000);
double v = Double(smallest_normal64).value();
status = grisu3(v, buffer, &sign, &length, &point);
status = FastDtoa(v, buffer, &sign, &length, &point);
if (status) {
CHECK_EQ(0, sign);
CHECK_EQ("22250738585072014", buffer);
......@@ -78,7 +78,7 @@ TEST(GrisuVariousDoubles) {
uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
v = Double(largest_denormal64).value();
status = grisu3(v, buffer, &sign, &length, &point);
status = FastDtoa(v, buffer, &sign, &length, &point);
if (status) {
CHECK_EQ(0, sign);
CHECK_EQ("2225073858507201", buffer);
......@@ -87,7 +87,7 @@ TEST(GrisuVariousDoubles) {
}
TEST(GrisuGayShortest) {
TEST(FastDtoaGayShortest) {
char buffer[kBufferSize];
bool status;
int sign;
......@@ -102,10 +102,10 @@ TEST(GrisuGayShortest) {
const GayShortest current_test = precomputed[i];
total++;
double v = current_test.v;
status = grisu3(v, buffer, &sign, &length, &point);
CHECK_GE(kGrisu3MaximalLength, length);
status = FastDtoa(v, buffer, &sign, &length, &point);
CHECK_GE(kFastDtoaMaximalLength, length);
if (!status) continue;
if (length == kGrisu3MaximalLength) needed_max_length = true;
if (length == kFastDtoaMaximalLength) needed_max_length = true;
succeeded++;
CHECK_EQ(0, sign); // All precomputed numbers are positive.
CHECK_EQ(current_test.decimal_point, point);
......
......@@ -274,6 +274,8 @@
'../../src/factory.cc',
'../../src/factory.h',
'../../src/fast-codegen.h',
'../../src/fast-dtoa.cc',
'../../src/fast-dtoa.h',
'../../src/flag-definitions.h',
'../../src/flags.cc',
'../../src/flags.h',
......@@ -289,8 +291,6 @@
'../../src/global-handles.cc',
'../../src/global-handles.h',
'../../src/globals.h',
'../../src/grisu3.h',
'../../src/grisu3.cc',
'../../src/handles-inl.h',
'../../src/handles.cc',
'../../src/handles.h',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment