Commit 9bcdac5f authored by floitschV8@gmail.com's avatar floitschV8@gmail.com

Fix build-breakage.

Revert "Strtod fast-case that uses DiyFps and cached powers of ten."

This reverts commit 493da023514021a63e1d3ba3f70348a275ac4042.

TBR: whesse@chromium.org

Review URL: http://codereview.chromium.org/3870003

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5678 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 6232cd80
......@@ -42,11 +42,6 @@ struct CachedPower {
};
static const CachedPower kCachedPowers[] = {
{V8_2PART_UINT64_C(0xfa8fd5a0, 081c0288), -1220, -348},
{V8_2PART_UINT64_C(0xbaaee17f, a23ebf76), -1193, -340},
{V8_2PART_UINT64_C(0x8b16fb20, 3055ac76), -1166, -332},
{V8_2PART_UINT64_C(0xcf42894a, 5dce35ea), -1140, -324},
{V8_2PART_UINT64_C(0x9a6bb0aa, 55653b2d), -1113, -316},
{V8_2PART_UINT64_C(0xe61acf03, 3d1a45df), -1087, -308},
{V8_2PART_UINT64_C(0xab70fe17, c79ac6ca), -1060, -300},
{V8_2PART_UINT64_C(0xff77b1fc, bebcdc4f), -1034, -292},
......@@ -134,44 +129,24 @@ static const CachedPower kCachedPowers[] = {
static const int kCachedPowersLength = ARRAY_SIZE(kCachedPowers);
static const int kCachedPowersOffset = -kCachedPowers[0].decimal_exponent;
static const double kD_1_LOG2_10 = 0.30102999566398114; // 1 / lg(10)
const int PowersOfTenCache::kDecimalExponentDistance =
static const int kCachedPowersDecimalDistance =
kCachedPowers[1].decimal_exponent - kCachedPowers[0].decimal_exponent;
const int PowersOfTenCache::kMinDecimalExponent =
kCachedPowers[0].decimal_exponent;
const int PowersOfTenCache::kMaxDecimalExponent =
kCachedPowers[kCachedPowersLength - 1].decimal_exponent;
void PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
int min_exponent,
int max_exponent,
DiyFp* power,
int* decimal_exponent) {
int kQ = DiyFp::kSignificandSize;
double k = ceiling((min_exponent + kQ - 1) * kD_1_LOG2_10);
int foo = kCachedPowersOffset;
int index =
(foo + static_cast<int>(k) - 1) / kDecimalExponentDistance + 1;
ASSERT(0 <= index && index < kCachedPowersLength);
CachedPower cached_power = kCachedPowers[index];
ASSERT(min_exponent <= cached_power.binary_exponent);
ASSERT(cached_power.binary_exponent <= max_exponent);
*decimal_exponent = cached_power.decimal_exponent;
*power = DiyFp(cached_power.significand, cached_power.binary_exponent);
}
void PowersOfTenCache::GetCachedPowerForDecimalExponent(int requested_exponent,
DiyFp* power,
int* found_exponent) {
ASSERT(kMinDecimalExponent <= requested_exponent);
ASSERT(requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance);
int index =
(requested_exponent + kCachedPowersOffset) / kDecimalExponentDistance;
CachedPower cached_power = kCachedPowers[index];
*power = DiyFp(cached_power.significand, cached_power.binary_exponent);
*found_exponent = cached_power.decimal_exponent;
ASSERT(*found_exponent <= requested_exponent);
ASSERT(requested_exponent < *found_exponent + kDecimalExponentDistance);
void GetCachedPowerForBinaryExponentRange(int min_exponent,
int max_exponent,
DiyFp* power,
int* decimal_exponent) {
int kQ = DiyFp::kSignificandSize;
double k = ceiling((min_exponent + kQ - 1) * kD_1_LOG2_10);
int foo = kCachedPowersOffset;
int index =
(foo + static_cast<int>(k) - 1) / kCachedPowersDecimalDistance + 1;
ASSERT(0 <= index && index < kCachedPowersLength);
CachedPower cached_power = kCachedPowers[index];
ASSERT(min_exponent <= cached_power.binary_exponent);
ASSERT(cached_power.binary_exponent <= max_exponent);
*decimal_exponent = cached_power.decimal_exponent;
*power = DiyFp(cached_power.significand, cached_power.binary_exponent);
}
} } // namespace v8::internal
......@@ -33,32 +33,10 @@
namespace v8 {
namespace internal {
class PowersOfTenCache {
public:
// Not all powers of ten are cached. The decimal exponent of two neighboring
// cached numbers will differ by kDecimalExponentDistance.
static const int kDecimalExponentDistance;
static const int kMinDecimalExponent;
static const int kMaxDecimalExponent;
// Returns a cached power-of-ten with a binary exponent in the range
// [min_exponent; max_exponent] (boundaries included).
static void GetCachedPowerForBinaryExponentRange(int min_exponent,
int max_exponent,
DiyFp* power,
int* decimal_exponent);
// Returns a cached power of ten x ~= 10^k such that
// k <= decimal_exponent < k + kCachedPowersDecimalDistance.
// The given decimal_exponent must satisfy
// kMinDecimalExponent <= requested_exponent, and
// requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance.
static void GetCachedPowerForDecimalExponent(int requested_exponent,
DiyFp* power,
int* found_exponent);
};
void GetCachedPowerForBinaryExponentRange(int min_exponent,
int max_exponent,
DiyFp* power,
int* decimal_exponent);
} } // namespace v8::internal
......
......@@ -45,14 +45,10 @@ class Double {
static const uint64_t kSignificandMask =
V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
static const int kSignificandSize = 53;
Double() : d64_(0) {}
explicit Double(double d) : d64_(double_to_uint64(d)) {}
explicit Double(uint64_t d64) : d64_(d64) {}
Double(uint64_t significand, int exponent)
: d64_(SignificandExponentToUint64(significand, exponent)) {}
DiyFp AsDiyFp() const {
ASSERT(!IsSpecial());
......@@ -71,9 +67,9 @@ class Double {
f <<= 1;
e--;
}
// Do the final shifts in one go.
f <<= DiyFp::kSignificandSize - kSignificandSize;
e -= DiyFp::kSignificandSize - kSignificandSize;
// Do the final shifts in one go. Don't forget the hidden bit (the '-1').
f <<= DiyFp::kSignificandSize - kSignificandSize - 1;
e -= DiyFp::kSignificandSize - kSignificandSize - 1;
return DiyFp(f, e);
}
......@@ -86,8 +82,7 @@ class Double {
if (IsDenormal()) return kDenormalExponent;
uint64_t d64 = AsUint64();
int biased_e =
static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
int biased_e = static_cast<int>((d64 & kExponentMask) >> kSignificandSize);
return biased_e - kExponentBias;
}
......@@ -161,48 +156,12 @@ class Double {
double value() const { return uint64_to_double(d64_); }
// Returns the significand size for a given order of magnitude.
// If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
// This function returns the number of significant binary digits v will have
// once its encoded into a double. In almost all cases this is equal to
// kSignificandSize. The only exception are denormals. They start with leading
// zeroes and their effective significand-size is hence smaller.
static int SignificandSizeForOrderOfMagnitude(int order) {
if (order >= (kDenormalExponent + kSignificandSize)) {
return kSignificandSize;
}
if (order <= kDenormalExponent) return 0;
return order - kDenormalExponent;
}
private:
static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
static const int kSignificandSize = 52; // Excludes the hidden bit.
static const int kExponentBias = 0x3FF + kSignificandSize;
static const int kDenormalExponent = -kExponentBias + 1;
static const int kMaxExponent = 0x7FF - kExponentBias;
static const uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000);
const uint64_t d64_;
static uint64_t SignificandExponentToUint64(uint64_t significand,
int exponent) {
ASSERT(significand <= kSignificandMask + kHiddenBit);
ASSERT(((significand & kHiddenBit) != 0) || exponent <= kDenormalExponent);
// Clamp.
if (exponent < kDenormalExponent) {
return 0;
}
if (exponent >= kMaxExponent) {
return kInfinity;
}
uint64_t biased_exponent;
if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
biased_exponent = 0;
} else {
biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
}
return (significand & kSignificandMask) |
(biased_exponent << kPhysicalSignificandSize);
}
uint64_t d64_;
};
} } // namespace v8::internal
......
......@@ -613,10 +613,9 @@ static bool Grisu3(double v,
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
int ten_mk_maximal_binary_exponent =
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
ten_mk_minimal_binary_exponent,
ten_mk_maximal_binary_exponent,
&ten_mk, &mk);
GetCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent,
ten_mk_maximal_binary_exponent,
&ten_mk, &mk);
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
DiyFp::kSignificandSize) &&
(kMaximalTargetExponent >= w.e() + ten_mk.e() +
......@@ -672,10 +671,9 @@ static bool Grisu3Counted(double v,
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
int ten_mk_maximal_binary_exponent =
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
ten_mk_minimal_binary_exponent,
ten_mk_maximal_binary_exponent,
&ten_mk, &mk);
GetCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent,
ten_mk_maximal_binary_exponent,
&ten_mk, &mk);
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
DiyFp::kSignificandSize) &&
(kMaximalTargetExponent >= w.e() + ten_mk.e() +
......
......@@ -31,8 +31,7 @@
#include "v8.h"
#include "strtod.h"
#include "cached-powers.h"
#include "double.h"
// #include "cached-powers.h"
namespace v8 {
namespace internal {
......@@ -41,9 +40,9 @@ namespace internal {
// Any integer with at most 15 decimal digits will hence fit into a double
// (which has a 53bit significand) without loss of precision.
static const int kMaxExactDoubleIntegerDecimalDigits = 15;
// 2^64 = 18446744073709551616 > 10^19
// 2^64 = 18446744073709551616
// Any integer with at most 19 digits will hence fit into a 64bit datatype.
static const int kMaxUint64DecimalDigits = 19;
// Max double: 1.7976931348623157 x 10^308
// Min non-zero double: 4.9406564584124654 x 10^-324
// Any x >= 10^309 is interpreted as +infinity.
......@@ -53,10 +52,6 @@ static const int kMaxUint64DecimalDigits = 19;
static const int kMaxDecimalPower = 309;
static const int kMinDecimalPower = -324;
// 2^64 = 18446744073709551616
static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
static const double exact_powers_of_ten[] = {
1.0, // 10^0
10.0,
......@@ -142,50 +137,18 @@ static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
}
// Reads digits from the buffer and converts them to a uint64.
// Reads in as many digits as fit into a uint64.
// When the string starts with "1844674407370955161" no further digit is read.
// Since 2^64 = 18446744073709551616 it would still be possible read another
// digit if it was less or equal than 6, but this would complicate the code.
static uint64_t ReadUint64(Vector<const char> buffer,
int* number_of_read_digits) {
uint64_t ReadUint64(Vector<const char> buffer) {
ASSERT(buffer.length() <= kMaxUint64DecimalDigits);
uint64_t result = 0;
int i = 0;
while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
int digit = buffer[i++] - '0';
for (int i = 0; i < buffer.length(); ++i) {
int digit = buffer[i] - '0';
ASSERT(0 <= digit && digit <= 9);
result = 10 * result + digit;
}
*number_of_read_digits = i;
return result;
}
// Reads a DiyFp from the buffer.
// The returned DiyFp is not necessarily normalized.
// If remaining_decimals is zero then the returned DiyFp is accurate.
// Otherwise it has been rounded and has error of at most 1/2 ulp.
static void ReadDiyFp(Vector<const char> buffer,
DiyFp* result,
int* remaining_decimals) {
int read_digits;
uint64_t significand = ReadUint64(buffer, &read_digits);
if (buffer.length() == read_digits) {
*result = DiyFp(significand, 0);
*remaining_decimals = 0;
} else {
// Round the significand.
if (buffer[read_digits] >= '5') {
significand++;
}
// Compute the binary exponent.
int exponent = 0;
*result = DiyFp(significand, exponent);
*remaining_decimals = buffer.length() - read_digits;
}
}
static bool DoubleStrtod(Vector<const char> trimmed,
int exponent,
double* result) {
......@@ -199,7 +162,6 @@ static bool DoubleStrtod(Vector<const char> trimmed,
return false;
#endif
if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
int read_digits;
// The trimmed input fits into a double.
// If the 10^exponent (resp. 10^-exponent) fits into a double too then we
// can compute the result-double simply by multiplying (resp. dividing) the
......@@ -208,15 +170,13 @@ static bool DoubleStrtod(Vector<const char> trimmed,
// return the best possible approximation.
if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
// 10^-exponent fits into a double.
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
ASSERT(read_digits == trimmed.length());
*result = static_cast<double>(ReadUint64(trimmed));
*result /= exact_powers_of_ten[-exponent];
return true;
}
if (0 <= exponent && exponent < kExactPowersOfTenSize) {
// 10^exponent fits into a double.
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
ASSERT(read_digits == trimmed.length());
*result = static_cast<double>(ReadUint64(trimmed));
*result *= exact_powers_of_ten[exponent];
return true;
}
......@@ -227,8 +187,7 @@ static bool DoubleStrtod(Vector<const char> trimmed,
// The trimmed string was short and we can multiply it with
// 10^remaining_digits. As a result the remaining exponent now fits
// into a double too.
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
ASSERT(read_digits == trimmed.length());
*result = static_cast<double>(ReadUint64(trimmed));
*result *= exact_powers_of_ten[remaining_digits];
*result *= exact_powers_of_ten[exponent - remaining_digits];
return true;
......@@ -238,145 +197,6 @@ static bool DoubleStrtod(Vector<const char> trimmed,
}
// Returns 10^exponent as an exact DiyFp.
// The given exponent must be in the range [1; kDecimalExponentDistance[.
static DiyFp AdjustmentPowerOfTen(int exponent) {
ASSERT(0 < exponent);
ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
// Simply hardcode the remaining powers for the given decimal exponent
// distance.
ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
switch (exponent) {
case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
default:
UNREACHABLE();
return DiyFp(0, 0);
}
}
// If the function returns true then the result is the correct double.
// Otherwise it is either the correct double or the double that is just below
// the correct double.
static bool DiyFpStrtod(Vector<const char> buffer,
int exponent,
double* result) {
DiyFp input;
int remaining_decimals;
ReadDiyFp(buffer, &input, &remaining_decimals);
// Since we may have dropped some digits the input is not accurate.
// If remaining_decimals is different than 0 than the error is at most
// .5 ulp (unit in the last place).
// We don't want to deal with fractions and therefore keep a common
// denominator.
const int kDenominatorLog = 3;
const int kDenominator = 1 << kDenominatorLog;
// Move the remaining decimals into the exponent.
exponent += remaining_decimals;
int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
int old_e = input.e();
input.Normalize();
error <<= old_e - input.e();
ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
if (exponent < PowersOfTenCache::kMinDecimalExponent) {
*result = 0.0;
return true;
}
DiyFp cached_power;
int cached_decimal_exponent;
PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
&cached_power,
&cached_decimal_exponent);
if (cached_decimal_exponent != exponent) {
int adjustment_exponent = exponent - cached_decimal_exponent;
DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
input.Multiply(adjustment_power);
if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
// The product of input with the adjustment power fits into a 64 bit
// integer.
ASSERT(DiyFp::kSignificandSize == 64);
} else {
// The adjustment power is exact. There is hence only an error of 0.5.
error += kDenominator / 2;
}
}
input.Multiply(cached_power);
// The error introduced by a multiplication of a*b equals
// error_a + error_b + error_a*error_b/2^64 + 0.5
// Substituting a with 'input' and b with 'cached_power' we have
// error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
// error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
int error_b = kDenominator / 2;
int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
int fixed_error = kDenominator / 2;
error += error_b + error_ab + fixed_error;
old_e = input.e();
input.Normalize();
error <<= old_e - input.e();
// See if the double's significand changes if we add/subtract the error.
int order_of_magnitude = DiyFp::kSignificandSize + input.e();
int effective_significand_size =
Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
int precision_digits_count =
DiyFp::kSignificandSize - effective_significand_size;
if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
// This can only happen for very small denormals. In this case the
// half-way multiplied by the denominator exceeds the range of an uint64.
// Simply shift everything to the right.
int shift_amount = (precision_digits_count + kDenominatorLog) -
DiyFp::kSignificandSize + 1;
input.set_f(input.f() >> shift_amount);
input.set_e(input.e() + shift_amount);
// We add 1 for the lost precision of error, and kDenominator for
// the lost precision of input.f().
error = (error >> shift_amount) + 1 + kDenominator;
precision_digits_count -= shift_amount;
}
// We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
ASSERT(DiyFp::kSignificandSize == 64);
ASSERT(precision_digits_count < 64);
uint64_t one64 = 1;
uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
uint64_t precision_bits = input.f() & precision_bits_mask;
uint64_t half_way = one64 << (precision_digits_count - 1);
precision_bits *= kDenominator;
half_way *= kDenominator;
// If the last_bits are too close to the half-way case than we are too
// inaccurate and round down. In this case we return false so that we can
// fall back to a more precise algorithm.
uint64_t significand = input.f();
if (precision_bits >= half_way + error) {
significand = (significand >> precision_digits_count) + 1;
exponent = input.e() + precision_digits_count;
} else {
significand = (significand >> precision_digits_count);
exponent = input.e() + precision_digits_count;
}
Double d = Double(significand, exponent);
*result = d.value();
if (half_way - error < precision_bits && precision_bits < half_way + error) {
// Too imprecise. The caller will have to fall back to a slower version.
// However the returned number is guaranteed to be either the correct
// double, or the next-lower double.
return false;
} else {
return true;
}
}
double Strtod(Vector<const char> buffer, int exponent) {
Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
......@@ -384,10 +204,8 @@ double Strtod(Vector<const char> buffer, int exponent) {
if (trimmed.length() == 0) return 0.0;
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
double result;
if (DoubleStrtod(trimmed, exponent, &result) ||
DiyFpStrtod(trimmed, exponent, &result)) {
if (DoubleStrtod(trimmed, exponent, &result)) {
return result;
}
return old_strtod(trimmed, exponent);
......
......@@ -204,49 +204,4 @@ TEST(Strtod) {
// the floating-point stack is set to 80bits and the double-rounding
// introduces an error.
CHECK_EQ(89255e-22, StrtodChar("89255", -22));
CHECK_EQ(104110013277974872254e-225,
StrtodChar("104110013277974872254", -225));
CHECK_EQ(123456789e108, StrtodChar("123456789", 108));
CHECK_EQ(123456789e109, StrtodChar("123456789", 109));
CHECK_EQ(123456789e110, StrtodChar("123456789", 110));
CHECK_EQ(123456789e111, StrtodChar("123456789", 111));
CHECK_EQ(123456789e112, StrtodChar("123456789", 112));
CHECK_EQ(123456789e113, StrtodChar("123456789", 113));
CHECK_EQ(123456789e114, StrtodChar("123456789", 114));
CHECK_EQ(123456789e115, StrtodChar("123456789", 115));
CHECK_EQ(1234567890123456789012345e108,
StrtodChar("1234567890123456789012345", 108));
CHECK_EQ(1234567890123456789012345e109,
StrtodChar("1234567890123456789012345", 109));
CHECK_EQ(1234567890123456789012345e110,
StrtodChar("1234567890123456789012345", 110));
CHECK_EQ(1234567890123456789012345e111,
StrtodChar("1234567890123456789012345", 111));
CHECK_EQ(1234567890123456789012345e112,
StrtodChar("1234567890123456789012345", 112));
CHECK_EQ(1234567890123456789012345e113,
StrtodChar("1234567890123456789012345", 113));
CHECK_EQ(1234567890123456789012345e114,
StrtodChar("1234567890123456789012345", 114));
CHECK_EQ(1234567890123456789012345e115,
StrtodChar("1234567890123456789012345", 115));
CHECK_EQ(1234567890123456789052345e108,
StrtodChar("1234567890123456789052345", 108));
CHECK_EQ(1234567890123456789052345e109,
StrtodChar("1234567890123456789052345", 109));
CHECK_EQ(1234567890123456789052345e110,
StrtodChar("1234567890123456789052345", 110));
CHECK_EQ(1234567890123456789052345e111,
StrtodChar("1234567890123456789052345", 111));
CHECK_EQ(1234567890123456789052345e112,
StrtodChar("1234567890123456789052345", 112));
CHECK_EQ(1234567890123456789052345e113,
StrtodChar("1234567890123456789052345", 113));
CHECK_EQ(1234567890123456789052345e114,
StrtodChar("1234567890123456789052345", 114));
CHECK_EQ(1234567890123456789052345e115,
StrtodChar("1234567890123456789052345", 115));
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment