Commit 9ab19708 authored by ager@chromium.org's avatar ager@chromium.org

Fix ARM compilation after external array changes.

TBR=kbr@chromium.org
Review URL: http://codereview.chromium.org/6261014

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@6376 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent d6f88b66
......@@ -1337,42 +1337,6 @@ void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
}
// Convert unsigned integer with specified number of leading zeroes in binary
// representation to IEEE 754 double.
// Integer to convert is passed in register hiword.
// Resulting double is returned in registers hiword:loword.
// This functions does not work correctly for 0.
static void GenerateUInt2Double(MacroAssembler* masm,
Register hiword,
Register loword,
Register scratch,
int leading_zeroes) {
const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
const int mantissa_shift_for_hi_word =
meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
const int mantissa_shift_for_lo_word =
kBitsPerInt - mantissa_shift_for_hi_word;
__ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
if (mantissa_shift_for_hi_word > 0) {
__ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
__ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
} else {
__ mov(loword, Operand(0, RelocInfo::NONE));
__ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
}
// If least significant bit of biased exponent was not 1 it was corrupted
// by most significant bit of mantissa so we should fix that.
if (!(biased_exponent & 1)) {
__ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
}
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
......@@ -1569,76 +1533,6 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) {
}
// Convert and store int passed in register ival to IEEE 754 single precision
// floating point value at memory location (dst + 4 * wordoffset)
// If VFP3 is available use it for conversion.
static void StoreIntAsFloat(MacroAssembler* masm,
Register dst,
Register wordoffset,
Register ival,
Register fval,
Register scratch1,
Register scratch2) {
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ vmov(s0, ival);
__ add(scratch1, dst, Operand(wordoffset, LSL, 2));
__ vcvt_f32_s32(s0, s0);
__ vstr(s0, scratch1, 0);
} else {
Label not_special, done;
// Move sign bit from source to destination. This works because the sign
// bit in the exponent word of the double has the same position and polarity
// as the 2's complement sign bit in a Smi.
ASSERT(kBinary32SignMask == 0x80000000u);
__ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
// Negate value if it is negative.
__ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
// We have -1, 0 or 1, which we treat specially. Register ival contains
// absolute value: it is either equal to 1 (special case of -1 and 1),
// greater than 1 (not a special case) or less than 1 (special case of 0).
__ cmp(ival, Operand(1));
__ b(gt, &not_special);
// For 1 or -1 we need to or in the 0 exponent (biased).
static const uint32_t exponent_word_for_1 =
kBinary32ExponentBias << kBinary32ExponentShift;
__ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
__ b(&done);
__ bind(&not_special);
// Count leading zeros.
// Gets the wrong answer for 0, but we already checked for that case above.
Register zeros = scratch2;
__ CountLeadingZeros(zeros, ival, scratch1);
// Compute exponent and or it into the exponent register.
__ rsb(scratch1,
zeros,
Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
__ orr(fval,
fval,
Operand(scratch1, LSL, kBinary32ExponentShift));
// Shift up the source chopping the top bit off.
__ add(zeros, zeros, Operand(1));
// This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
__ mov(ival, Operand(ival, LSL, zeros));
// And the top (top 20 bits).
__ orr(fval,
fval,
Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
__ bind(&done);
__ str(fval, MemOperand(dst, wordoffset, LSL, 2));
}
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : value
......
......@@ -902,6 +902,111 @@ MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCells(
}
// Convert and store int passed in register ival to IEEE 754 single precision
// floating point value at memory location (dst + 4 * wordoffset)
// If VFP3 is available use it for conversion.
static void StoreIntAsFloat(MacroAssembler* masm,
Register dst,
Register wordoffset,
Register ival,
Register fval,
Register scratch1,
Register scratch2) {
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ vmov(s0, ival);
__ add(scratch1, dst, Operand(wordoffset, LSL, 2));
__ vcvt_f32_s32(s0, s0);
__ vstr(s0, scratch1, 0);
} else {
Label not_special, done;
// Move sign bit from source to destination. This works because the sign
// bit in the exponent word of the double has the same position and polarity
// as the 2's complement sign bit in a Smi.
ASSERT(kBinary32SignMask == 0x80000000u);
__ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
// Negate value if it is negative.
__ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
// We have -1, 0 or 1, which we treat specially. Register ival contains
// absolute value: it is either equal to 1 (special case of -1 and 1),
// greater than 1 (not a special case) or less than 1 (special case of 0).
__ cmp(ival, Operand(1));
__ b(gt, &not_special);
// For 1 or -1 we need to or in the 0 exponent (biased).
static const uint32_t exponent_word_for_1 =
kBinary32ExponentBias << kBinary32ExponentShift;
__ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
__ b(&done);
__ bind(&not_special);
// Count leading zeros.
// Gets the wrong answer for 0, but we already checked for that case above.
Register zeros = scratch2;
__ CountLeadingZeros(zeros, ival, scratch1);
// Compute exponent and or it into the exponent register.
__ rsb(scratch1,
zeros,
Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
__ orr(fval,
fval,
Operand(scratch1, LSL, kBinary32ExponentShift));
// Shift up the source chopping the top bit off.
__ add(zeros, zeros, Operand(1));
// This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
__ mov(ival, Operand(ival, LSL, zeros));
// And the top (top 20 bits).
__ orr(fval,
fval,
Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
__ bind(&done);
__ str(fval, MemOperand(dst, wordoffset, LSL, 2));
}
}
// Convert unsigned integer with specified number of leading zeroes in binary
// representation to IEEE 754 double.
// Integer to convert is passed in register hiword.
// Resulting double is returned in registers hiword:loword.
// This functions does not work correctly for 0.
static void GenerateUInt2Double(MacroAssembler* masm,
Register hiword,
Register loword,
Register scratch,
int leading_zeroes) {
const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
const int mantissa_shift_for_hi_word =
meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
const int mantissa_shift_for_lo_word =
kBitsPerInt - mantissa_shift_for_hi_word;
__ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
if (mantissa_shift_for_hi_word > 0) {
__ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
__ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
} else {
__ mov(loword, Operand(0, RelocInfo::NONE));
__ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
}
// If least significant bit of biased exponent was not 1 it was corrupted
// by most significant bit of mantissa so we should fix that.
if (!(biased_exponent & 1)) {
__ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
}
}
#undef __
#define __ ACCESS_MASM(masm())
......@@ -3406,12 +3511,12 @@ MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
__ bind(&box_int_0);
// Integer does not have leading zeros.
GenerateUInt2Double(masm, hiword, loword, r4, 0);
GenerateUInt2Double(masm(), hiword, loword, r4, 0);
__ b(&done);
__ bind(&box_int_1);
// Integer has one leading zero.
GenerateUInt2Double(masm, hiword, loword, r4, 1);
GenerateUInt2Double(masm(), hiword, loword, r4, 1);
__ bind(&done);
......@@ -3595,7 +3700,7 @@ MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
break;
case kExternalFloatArray:
// Perform int-to-float conversion and store to memory.
StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9);
StoreIntAsFloat(masm(), r3, r4, r5, r6, r7, r9);
break;
default:
UNREACHABLE();
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment