Commit 8f890063 authored by whesse@chromium.org's avatar whesse@chromium.org

Align builtins-{arch}.cc on ia32 and x64 platforms by moving functions and editing.

Review URL: http://codereview.chromium.org/5781004

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5984 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent f1b702b8
...@@ -29,7 +29,6 @@ ...@@ -29,7 +29,6 @@
#if defined(V8_TARGET_ARCH_IA32) #if defined(V8_TARGET_ARCH_IA32)
#include "code-stubs.h"
#include "codegen-inl.h" #include "codegen-inl.h"
#include "deoptimizer.h" #include "deoptimizer.h"
#include "full-codegen.h" #include "full-codegen.h"
......
...@@ -30,11 +30,13 @@ ...@@ -30,11 +30,13 @@
#if defined(V8_TARGET_ARCH_X64) #if defined(V8_TARGET_ARCH_X64)
#include "codegen-inl.h" #include "codegen-inl.h"
#include "macro-assembler.h" #include "deoptimizer.h"
#include "full-codegen.h"
namespace v8 { namespace v8 {
namespace internal { namespace internal {
#define __ ACCESS_MASM(masm) #define __ ACCESS_MASM(masm)
...@@ -71,1315 +73,1309 @@ void Builtins::Generate_Adaptor(MacroAssembler* masm, ...@@ -71,1315 +73,1309 @@ void Builtins::Generate_Adaptor(MacroAssembler* masm,
} }
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
__ push(rbp); // ----------- S t a t e -------------
__ movq(rbp, rsp); // -- rax: number of arguments
// -- rdi: constructor function
// -----------------------------------
// Store the arguments adaptor context sentinel. Label non_function_call;
__ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); // Check that function is not a smi.
__ JumpIfSmi(rdi, &non_function_call);
// Check that function is a JSFunction.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &non_function_call);
// Push the function on the stack. // Jump to the function-specific construct stub.
__ push(rdi); __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset));
__ lea(rbx, FieldOperand(rbx, Code::kHeaderSize));
__ jmp(rbx);
// Preserve the number of arguments on the stack. Must preserve both // rdi: called object
// rax and rbx because these registers are used when copying the // rax: number of arguments
// arguments and the receiver. __ bind(&non_function_call);
__ Integer32ToSmi(rcx, rax); // Set expected number of arguments to zero (not changing rax).
__ push(rcx); __ movq(rbx, Immediate(0));
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET);
} }
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { static void Generate_JSConstructStubHelper(MacroAssembler* masm,
// Retrieve the number of arguments from the stack. Number is a Smi. bool is_api_function,
__ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); bool count_constructions) {
// Should never count constructions for api objects.
// Leave the frame. ASSERT(!is_api_function || !count_constructions);
__ movq(rsp, rbp);
__ pop(rbp);
// Remove caller arguments from the stack. // Enter a construct frame.
__ pop(rcx); __ EnterConstructFrame();
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ push(rcx);
}
// Store a smi-tagged arguments count on the stack.
__ Integer32ToSmi(rax, rax);
__ push(rax);
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // Push the function to invoke on the stack.
// ----------- S t a t e ------------- __ push(rdi);
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdx : code entry to call
// -----------------------------------
Label invoke, dont_adapt_arguments; // Try to allocate the object without transitioning into C code. If any of the
__ IncrementCounter(&Counters::arguments_adaptors, 1); // preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
Label undo_allocation;
Label enough, too_few; #ifdef ENABLE_DEBUGGER_SUPPORT
__ cmpq(rax, rbx); ExternalReference debug_step_in_fp =
__ j(less, &too_few); ExternalReference::debug_step_in_fp_address();
__ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ movq(kScratchRegister, debug_step_in_fp);
__ j(equal, &dont_adapt_arguments); __ cmpq(Operand(kScratchRegister, 0), Immediate(0));
__ j(not_equal, &rt_call);
#endif
{ // Enough parameters: Actual >= expected. // Verified that the constructor is a JSFunction.
__ bind(&enough); // Load the initial map and verify that it is in fact a map.
EnterArgumentsAdaptorFrame(masm); // rdi: constructor
__ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
ASSERT(kSmiTag == 0);
__ JumpIfSmi(rax, &rt_call);
// rdi: constructor
// rax: initial map (if proven valid below)
__ CmpObjectType(rax, MAP_TYPE, rbx);
__ j(not_equal, &rt_call);
// Copy receiver and all expected arguments. // Check that the constructor is not constructing a JSFunction (see comments
const int offset = StandardFrameConstants::kCallerSPOffset; // in Runtime_NewObject in runtime.cc). In which case the initial map's
__ lea(rax, Operand(rbp, rax, times_pointer_size, offset)); // instance type would be JS_FUNCTION_TYPE.
__ movq(rcx, Immediate(-1)); // account for receiver // rdi: constructor
// rax: initial map
__ CmpInstanceType(rax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
Label copy; if (count_constructions) {
__ bind(&copy); Label allocate;
__ incq(rcx); // Decrease generous allocation count.
__ push(Operand(rax, 0)); __ movq(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ subq(rax, Immediate(kPointerSize)); __ decb(FieldOperand(rcx, SharedFunctionInfo::kConstructionCountOffset));
__ cmpq(rcx, rbx); __ j(not_zero, &allocate);
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected. __ push(rax);
__ bind(&too_few); __ push(rdi);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments. __ push(rdi); // constructor
const int offset = StandardFrameConstants::kCallerSPOffset; // The call will replace the stub, so the countdown is only done once.
__ lea(rdi, Operand(rbp, rax, times_pointer_size, offset)); __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ movq(rcx, Immediate(-1)); // account for receiver
Label copy; __ pop(rdi);
__ bind(&copy); __ pop(rax);
__ incq(rcx);
__ push(Operand(rdi, 0));
__ subq(rdi, Immediate(kPointerSize));
__ cmpq(rcx, rax);
__ j(less, &copy);
// Fill remaining expected arguments with undefined values. __ bind(&allocate);
Label fill; }
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ bind(&fill);
__ incq(rcx);
__ push(kScratchRegister);
__ cmpq(rcx, rbx);
__ j(less, &fill);
// Restore function pointer. // Now allocate the JSObject on the heap.
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset));
} __ shl(rdi, Immediate(kPointerSizeLog2));
// rdi: size of new object
__ AllocateInNewSpace(rdi,
rbx,
rdi,
no_reg,
&rt_call,
NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields.
// rax: initial map
// rbx: JSObject (not HeapObject tagged - the actual address).
// rdi: start of next object
__ movq(Operand(rbx, JSObject::kMapOffset), rax);
__ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
__ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx);
__ movq(Operand(rbx, JSObject::kElementsOffset), rcx);
// Set extra fields in the newly allocated object.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
{ Label loop, entry;
// To allow for truncation.
if (count_constructions) {
__ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
} else {
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
}
__ lea(rcx, Operand(rbx, JSObject::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(rcx, 0), rdx);
__ addq(rcx, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(rcx, rdi);
__ j(less, &loop);
}
// Call the entry point. // Add the object tag to make the JSObject real, so that we can continue and
__ bind(&invoke); // jump into the continuation code at any time from now on. Any failures
__ call(rdx); // need to undo the allocation, so that the heap is in a consistent state
// and verifiable.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
__ or_(rbx, Immediate(kHeapObjectTag));
// Leave frame and return. // Check if a non-empty properties array is needed.
LeaveArgumentsAdaptorFrame(masm); // Allocate and initialize a FixedArray if it is.
__ ret(0); // rax: initial map
// rbx: JSObject
// rdi: start of next object
// Calculate total properties described map.
__ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
__ movzxbq(rcx, FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
__ addq(rdx, rcx);
// Calculate unused properties past the end of the in-object properties.
__ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset));
__ subq(rdx, rcx);
// Done if no extra properties are to be allocated.
__ j(zero, &allocated);
__ Assert(positive, "Property allocation count failed.");
// ------------------------------------------- // Scale the number of elements by pointer size and add the header for
// Dont adapt arguments. // FixedArrays to the start of the next object calculation from above.
// ------------------------------------------- // rbx: JSObject
__ bind(&dont_adapt_arguments); // rdi: start of next object (will be start of FixedArray)
__ jmp(rdx); // rdx: number of elements in properties array
} __ AllocateInNewSpace(FixedArray::kHeaderSize,
times_pointer_size,
rdx,
rdi,
rax,
no_reg,
&undo_allocation,
RESULT_CONTAINS_TOP);
// Initialize the FixedArray.
// rbx: JSObject
// rdi: FixedArray
// rdx: number of elements
// rax: start of next object
__ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
__ movq(Operand(rdi, HeapObject::kMapOffset), rcx); // setup the map
__ Integer32ToSmi(rdx, rdx);
__ movq(Operand(rdi, FixedArray::kLengthOffset), rdx); // and length
void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // Initialize the fields to undefined.
// Stack Layout: // rbx: JSObject
// rsp[0]: Return address // rdi: FixedArray
// rsp[1]: Argument n // rax: start of next object
// rsp[2]: Argument n-1 // rdx: number of elements
// ... { Label loop, entry;
// rsp[n]: Argument 1 __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
// rsp[n+1]: Receiver (function to call) __ lea(rcx, Operand(rdi, FixedArray::kHeaderSize));
// __ jmp(&entry);
// rax contains the number of arguments, n, not counting the receiver. __ bind(&loop);
// __ movq(Operand(rcx, 0), rdx);
// 1. Make sure we have at least one argument. __ addq(rcx, Immediate(kPointerSize));
{ Label done; __ bind(&entry);
__ testq(rax, rax); __ cmpq(rcx, rax);
__ j(not_zero, &done); __ j(below, &loop);
__ pop(rbx); }
__ Push(Factory::undefined_value());
__ push(rbx);
__ incq(rax);
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check // Store the initialized FixedArray into the properties field of
// if it is a function. // the JSObject
Label non_function; // rbx: JSObject
// The function to call is at position n+1 on the stack. // rdi: FixedArray
__ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); __ or_(rdi, Immediate(kHeapObjectTag)); // add the heap tag
__ JumpIfSmi(rdi, &non_function); __ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &non_function);
// 3a. Patch the first argument if necessary when calling a function.
Label shift_arguments;
{ Label convert_to_object, use_global_receiver, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
__ movq(rbx, Operand(rsp, rax, times_pointer_size, 0)); // Continue with JSObject being successfully allocated
__ JumpIfSmi(rbx, &convert_to_object); // rbx: JSObject
__ jmp(&allocated);
__ CompareRoot(rbx, Heap::kNullValueRootIndex); // Undo the setting of the new top so that the heap is verifiable. For
__ j(equal, &use_global_receiver); // example, the map's unused properties potentially do not match the
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); // allocated objects unused properties.
__ j(equal, &use_global_receiver); // rbx: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(rbx);
}
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx); // Allocate the new receiver object using the runtime call.
__ j(below, &convert_to_object); // rdi: function (constructor)
__ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE); __ bind(&rt_call);
__ j(below_equal, &shift_arguments); // Must restore rdi (constructor) before calling runtime.
__ movq(rdi, Operand(rsp, 0));
__ push(rdi);
__ CallRuntime(Runtime::kNewObject, 1);
__ movq(rbx, rax); // store result in rbx
__ bind(&convert_to_object); // New object allocated.
__ EnterInternalFrame(); // In order to preserve argument count. // rbx: newly allocated object
__ Integer32ToSmi(rax, rax); __ bind(&allocated);
__ push(rax); // Retrieve the function from the stack.
__ pop(rdi);
__ push(rbx); // Retrieve smi-tagged arguments count from the stack.
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ movq(rax, Operand(rsp, 0));
__ movq(rbx, rax); __ SmiToInteger32(rax, rax);
__ pop(rax); // Push the allocated receiver to the stack. We need two copies
__ SmiToInteger32(rax, rax); // because we may have to return the original one and the calling
__ LeaveInternalFrame(); // conventions dictate that the called function pops the receiver.
// Restore the function to rdi. __ push(rbx);
__ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); __ push(rbx);
__ jmp(&patch_receiver);
// Use the global receiver object from the called function as the // Setup pointer to last argument.
// receiver. __ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
__ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ movq(rbx, FieldOperand(rsi, kGlobalIndex));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset));
__ movq(rbx, FieldOperand(rbx, kGlobalIndex));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver); // Copy arguments and receiver to the expression stack.
__ movq(Operand(rsp, rax, times_pointer_size, 0), rbx); Label loop, entry;
__ movq(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decq(rcx);
__ j(greater_equal, &loop);
__ jmp(&shift_arguments); // Call the function.
if (is_api_function) {
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
Handle<Code> code = Handle<Code>(
Builtins::builtin(Builtins::HandleApiCallConstruct));
ParameterCount expected(0);
__ InvokeCode(code, expected, expected,
RelocInfo::CODE_TARGET, CALL_FUNCTION);
} else {
ParameterCount actual(rax);
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
} }
// Restore context from the frame.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// 3b. Patch the first argument when calling a non-function. The // If the result is an object (in the ECMA sense), we should get rid
// CALL_NON_FUNCTION builtin expects the non-function callee as // of the receiver and use the result; see ECMA-262 section 13.2.2-7
// receiver, so overwrite the first argument which will ultimately // on page 74.
// become the receiver. Label use_receiver, exit;
__ bind(&non_function); // If the result is a smi, it is *not* an object in the ECMA sense.
__ movq(Operand(rsp, rax, times_pointer_size, 0), rdi); __ JumpIfSmi(rax, &use_receiver);
__ xor_(rdi, rdi);
// 4. Shift arguments and return address one slot down on the stack // If the type of the result (stored in its map) is less than
// (overwriting the original receiver). Adjust argument count to make // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
// the original first argument the new receiver. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ bind(&shift_arguments); __ j(above_equal, &exit);
{ Label loop;
__ movq(rcx, rax);
__ bind(&loop);
__ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0));
__ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx);
__ decq(rcx);
__ j(not_sign, &loop); // While non-negative (to copy return address).
__ pop(rbx); // Discard copy of return address.
__ decq(rax); // One fewer argument (first argument is new receiver).
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin. // Throw away the result of the constructor invocation and use the
{ Label function; // on-stack receiver as the result.
__ testq(rdi, rdi); __ bind(&use_receiver);
__ j(not_zero, &function); __ movq(rax, Operand(rsp, 0));
__ xor_(rbx, rbx);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
__ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of // Restore the arguments count and leave the construct frame.
// expected arguments matches what we're providing. If so, jump __ bind(&exit);
// (tail-call) to the code in register edx without checking arguments. __ movq(rbx, Operand(rsp, kPointerSize)); // get arguments count
__ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ LeaveConstructFrame();
__ movsxlq(rbx,
FieldOperand(rdx,
SharedFunctionInfo::kFormalParameterCountOffset));
__ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ cmpq(rax, rbx);
__ j(not_equal,
Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET);
ParameterCount expected(0); // Remove caller arguments from the stack and return.
__ InvokeCode(rdx, expected, expected, JUMP_FUNCTION); __ pop(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ push(rcx);
__ IncrementCounter(&Counters::constructed_objects, 1);
__ ret(0);
} }
void Builtins::Generate_FunctionApply(MacroAssembler* masm) { void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
// Stack at entry: Generate_JSConstructStubHelper(masm, false, true);
// rsp: return address }
// rsp+8: arguments
// rsp+16: receiver ("this")
// rsp+24: function
__ EnterInternalFrame();
// Stack frame:
// rbp: Old base pointer
// rbp[1]: return address
// rbp[2]: function arguments
// rbp[3]: receiver
// rbp[4]: function
static const int kArgumentsOffset = 2 * kPointerSize;
static const int kReceiverOffset = 3 * kPointerSize;
static const int kFunctionOffset = 4 * kPointerSize;
__ push(Operand(rbp, kFunctionOffset));
__ push(Operand(rbp, kArgumentsOffset));
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
// Check the stack for overflow. We are not trying need to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movq(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subq(rcx, kScratchRegister);
// Make rdx the space we need for the array when it is unrolled onto the
// stack.
__ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2);
// Check if the arguments will overflow the stack.
__ cmpq(rcx, rdx);
__ j(greater, &okay); // Signed comparison.
// Out of stack space. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
__ push(Operand(rbp, kFunctionOffset)); Generate_JSConstructStubHelper(masm, false, false);
__ push(rax); }
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
__ bind(&okay);
// End of stack check.
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ push(rax); // limit
__ push(Immediate(0)); // index
// Change context eagerly to get the right global object if void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
// necessary. Generate_JSConstructStubHelper(masm, true, false);
__ movq(rdi, Operand(rbp, kFunctionOffset)); }
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Compute the receiver.
Label call_to_object, use_global_receiver, push_receiver;
__ movq(rbx, Operand(rbp, kReceiverOffset));
__ JumpIfSmi(rbx, &call_to_object);
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
__ j(equal, &use_global_receiver);
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &use_global_receiver);
// If given receiver is already a JavaScript object then there's no static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
// reason for converting it. bool is_construct) {
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx); // Expects five C++ function parameters.
__ j(below, &call_to_object); // - Address entry (ignored)
__ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE); // - JSFunction* function (
__ j(below_equal, &push_receiver); // - Object* receiver
// - int argc
// - Object*** argv
// (see Handle::Invoke in execution.cc).
// Convert the receiver to an object. // Platform specific argument handling. After this, the stack contains
__ bind(&call_to_object); // an internal frame and the pushed function and receiver, and
__ push(rbx); // register rax and rbx holds the argument count and argument array,
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); // while rdi holds the function pointer and rsi the context.
__ movq(rbx, rax); #ifdef _WIN64
__ jmp(&push_receiver); // MSVC parameters in:
// rcx : entry (ignored)
// rdx : function
// r8 : receiver
// r9 : argc
// [rsp+0x20] : argv
// Use the current global receiver object as the receiver. // Clear the context before we push it when entering the JS frame.
__ bind(&use_global_receiver); __ xor_(rsi, rsi);
const int kGlobalOffset = __ EnterInternalFrame();
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ movq(rbx, FieldOperand(rsi, kGlobalOffset));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset));
__ movq(rbx, FieldOperand(rbx, kGlobalOffset));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
// Push the receiver. // Load the function context into rsi.
__ bind(&push_receiver); __ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset));
__ push(rbx);
// Copy all arguments from the array to the stack. // Push the function and the receiver onto the stack.
Label entry, loop; __ push(rdx);
__ movq(rax, Operand(rbp, kIndexOffset)); __ push(r8);
__ jmp(&entry);
__ bind(&loop);
__ movq(rdx, Operand(rbp, kArgumentsOffset)); // load arguments
// Use inline caching to speed up access to arguments. // Load the number of arguments and setup pointer to the arguments.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ movq(rax, r9);
__ Call(ic, RelocInfo::CODE_TARGET); // Load the previous frame pointer to access C argument on stack
// It is important that we do not have a test instruction after the __ movq(kScratchRegister, Operand(rbp, 0));
// call. A test instruction after the call is used to indicate that __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
// we have generated an inline version of the keyed load. In this // Load the function pointer into rdi.
// case, we know that we are not generating a test instruction next. __ movq(rdi, rdx);
#else // _WIN64
// GCC parameters in:
// rdi : entry (ignored)
// rsi : function
// rdx : receiver
// rcx : argc
// r8 : argv
// Push the nth argument. __ movq(rdi, rsi);
__ push(rax); // rdi : function
// Update the index on the stack and in register rax. // Clear the context before we push it when entering the JS frame.
__ movq(rax, Operand(rbp, kIndexOffset)); __ xor_(rsi, rsi);
__ SmiAddConstant(rax, rax, Smi::FromInt(1)); // Enter an internal frame.
__ movq(Operand(rbp, kIndexOffset), rax); __ EnterInternalFrame();
// Push the function and receiver and setup the context.
__ push(rdi);
__ push(rdx);
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Load the number of arguments and setup pointer to the arguments.
__ movq(rax, rcx);
__ movq(rbx, r8);
#endif // _WIN64
// Current stack contents:
// [rsp + 2 * kPointerSize ... ]: Internal frame
// [rsp + kPointerSize] : function
// [rsp] : receiver
// Current register contents:
// rax : argc
// rbx : argv
// rsi : context
// rdi : function
// Copy arguments to the stack in a loop.
// Register rbx points to array of pointers to handle locations.
// Push the values of these handles.
Label loop, entry;
__ xor_(rcx, rcx); // Set loop variable to 0.
__ jmp(&entry);
__ bind(&loop);
__ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ push(Operand(kScratchRegister, 0)); // dereference handle
__ addq(rcx, Immediate(1));
__ bind(&entry); __ bind(&entry);
__ cmpq(rax, Operand(rbp, kLimitOffset)); __ cmpq(rcx, rax);
__ j(not_equal, &loop); __ j(not_equal, &loop);
// Invoke the function. // Invoke the code.
ParameterCount actual(rax); if (is_construct) {
__ SmiToInteger32(rax, rax); // Expects rdi to hold function pointer.
__ movq(rdi, Operand(rbp, kFunctionOffset)); __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
__ InvokeFunction(rdi, actual, CALL_FUNCTION); RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(rax);
// Function must be in rdi.
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
}
// Exit the JS frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
__ LeaveInternalFrame(); __ LeaveInternalFrame();
__ ret(3 * kPointerSize); // remove function, receiver, and arguments // TODO(X64): Is argument correct? Is there a receiver to remove?
__ ret(1 * kPointerSize); // remove receiver
} }
// Load the built-in Array function from the current context. void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { Generate_JSEntryTrampolineHelper(masm, false);
// Load the global context.
__ movq(result, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(result, FieldOperand(result, GlobalObject::kGlobalContextOffset));
// Load the Array function from the global context.
__ movq(result,
Operand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
} }
// Number of empty elements to allocate for an empty array. void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
static const int kPreallocatedArrayElements = 4; Generate_JSEntryTrampolineHelper(masm, true);
}
// Allocate an empty JSArray. The allocated array is put into the result void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
// register. If the parameter initial_capacity is larger than zero an elements // Enter an internal frame.
// backing store is allocated with this size and filled with the hole values. __ EnterInternalFrame();
// Otherwise the elements backing store is set to the empty FixedArray.
static void AllocateEmptyJSArray(MacroAssembler* masm,
Register array_function,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
int initial_capacity,
Label* gc_required) {
ASSERT(initial_capacity >= 0);
// Load the initial map from the array function. // Push a copy of the function onto the stack.
__ movq(scratch1, FieldOperand(array_function, __ push(rdi);
JSFunction::kPrototypeOrInitialMapOffset));
// Allocate the JSArray object together with space for a fixed array with the __ push(rdi); // Function is also the parameter to the runtime call.
// requested elements. __ CallRuntime(Runtime::kLazyCompile, 1);
int size = JSArray::kSize; __ pop(rdi);
if (initial_capacity > 0) {
size += FixedArray::SizeFor(initial_capacity);
}
__ AllocateInNewSpace(size,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements // Tear down temporary frame.
// array. __ LeaveInternalFrame();
// result: JSObject
// scratch1: initial map
// scratch2: start of next object
__ movq(FieldOperand(result, JSObject::kMapOffset), scratch1);
__ Move(FieldOperand(result, JSArray::kPropertiesOffset),
Factory::empty_fixed_array());
// Field JSArray::kElementsOffset is initialized later.
__ Move(FieldOperand(result, JSArray::kLengthOffset), Smi::FromInt(0));
// If no storage is requested for the elements array just set the empty // Do a tail-call of the compiled function.
// fixed array. __ lea(rcx, FieldOperand(rax, Code::kHeaderSize));
if (initial_capacity == 0) { __ jmp(rcx);
__ Move(FieldOperand(result, JSArray::kElementsOffset), }
Factory::empty_fixed_array());
return;
}
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// scratch2: start of next object
__ lea(scratch1, Operand(result, JSArray::kSize));
__ movq(FieldOperand(result, JSArray::kElementsOffset), scratch1);
// Initialize the FixedArray and fill it with holes. FixedArray length is void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
// stored as a smi. // Enter an internal frame.
// result: JSObject __ EnterInternalFrame();
// scratch1: elements array
// scratch2: start of next object
__ Move(FieldOperand(scratch1, HeapObject::kMapOffset),
Factory::fixed_array_map());
__ Move(FieldOperand(scratch1, FixedArray::kLengthOffset),
Smi::FromInt(initial_capacity));
// Fill the FixedArray with the hole value. Inline the code if short. // Push a copy of the function onto the stack.
// Reconsider loop unfolding if kPreallocatedArrayElements gets changed. __ push(rdi);
static const int kLoopUnfoldLimit = 4;
ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit);
__ Move(scratch3, Factory::the_hole_value());
if (initial_capacity <= kLoopUnfoldLimit) {
// Use a scratch register here to have only one reloc info when unfolding
// the loop.
for (int i = 0; i < initial_capacity; i++) {
__ movq(FieldOperand(scratch1,
FixedArray::kHeaderSize + i * kPointerSize),
scratch3);
}
} else {
Label loop, entry;
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(scratch1, 0), scratch3);
__ addq(scratch1, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(scratch1, scratch2);
__ j(below, &loop);
}
}
__ push(rdi); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kLazyRecompile, 1);
// Allocate a JSArray with the number of elements stored in a register. The // Restore function and tear down temporary frame.
// register array_function holds the built-in Array function and the register __ pop(rdi);
// array_size holds the size of the array as a smi. The allocated array is put __ LeaveInternalFrame();
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array and elements_array_end (see
// below for when that is not the case). If the parameter fill_with_holes is
// true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array is scratched.
static void AllocateJSArray(MacroAssembler* masm,
Register array_function, // Array function.
Register array_size, // As a smi.
Register result,
Register elements_array,
Register elements_array_end,
Register scratch,
bool fill_with_hole,
Label* gc_required) {
Label not_empty, allocated;
// Load the initial map from the array function. // Do a tail-call of the compiled function.
__ movq(elements_array, __ lea(rcx, FieldOperand(rax, Code::kHeaderSize));
FieldOperand(array_function, __ jmp(rcx);
JSFunction::kPrototypeOrInitialMapOffset)); }
// Check whether an empty sized array is requested.
__ testq(array_size, array_size);
__ j(not_zero, &not_empty);
// If an empty array is requested allocate a small elements array anyway. This static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
// keeps the code below free of special casing for the empty array. Deoptimizer::BailoutType type) {
int size = JSArray::kSize + FixedArray::SizeFor(kPreallocatedArrayElements); __ int3();
__ AllocateInNewSpace(size, }
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
__ jmp(&allocated);
// Allocate the JSArray object together with space for a FixedArray with the void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
// requested elements. Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
__ bind(&not_empty); }
SmiIndex index =
masm->SmiToIndex(kScratchRegister, array_size, kPointerSizeLog2);
__ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
index.scale,
index.reg,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// elements_array: initial map
// elements_array_end: start of next object
// array_size: size of array (smi)
__ bind(&allocated);
__ movq(FieldOperand(result, JSObject::kMapOffset), elements_array);
__ Move(elements_array, Factory::empty_fixed_array());
__ movq(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
// Field JSArray::kElementsOffset is initialized later.
__ movq(FieldOperand(result, JSArray::kLengthOffset), array_size);
// Calculate the location of the elements array and set elements array member void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
// of the JSArray. Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
// result: JSObject }
// elements_array_end: start of next object
// array_size: size of array (smi)
__ lea(elements_array, Operand(result, JSArray::kSize));
__ movq(FieldOperand(result, JSArray::kElementsOffset), elements_array);
// Initialize the fixed array. FixedArray length is stored as a smi.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
// array_size: size of array (smi)
__ Move(FieldOperand(elements_array, JSObject::kMapOffset),
Factory::fixed_array_map());
Label not_empty_2, fill_array;
__ SmiTest(array_size);
__ j(not_zero, &not_empty_2);
// Length of the FixedArray is the number of pre-allocated elements even
// though the actual JSArray has length 0.
__ Move(FieldOperand(elements_array, FixedArray::kLengthOffset),
Smi::FromInt(kPreallocatedArrayElements));
__ jmp(&fill_array);
__ bind(&not_empty_2);
// For non-empty JSArrays the length of the FixedArray and the JSArray is the
// same.
__ movq(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);
// Fill the allocated FixedArray with the hole value if requested. void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
// result: JSObject __ int3();
// elements_array: elements array
// elements_array_end: start of next object
__ bind(&fill_array);
if (fill_with_hole) {
Label loop, entry;
__ Move(scratch, Factory::the_hole_value());
__ lea(elements_array, Operand(elements_array,
FixedArray::kHeaderSize - kHeapObjectTag));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(elements_array, 0), scratch);
__ addq(elements_array, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(elements_array, elements_array_end);
__ j(below, &loop);
}
} }
// Create a new array for the built-in Array function. This function allocates void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// the JSArray object and the FixedArray elements array and initializes these. // Stack Layout:
// If the Array cannot be constructed in native code the runtime is called. This // rsp[0]: Return address
// function assumes the following state: // rsp[1]: Argument n
// rdi: constructor (built-in Array function) // rsp[2]: Argument n-1
// rax: argc // ...
// rsp[0]: return address // rsp[n]: Argument 1
// rsp[8]: last argument // rsp[n+1]: Receiver (function to call)
// This function is used for both construct and normal calls of Array. The only //
// difference between handling a construct call and a normal call is that for a // rax contains the number of arguments, n, not counting the receiver.
// construct call the constructor function in rdi needs to be preserved for //
// entering the generic code. In both cases argc in rax needs to be preserved. // 1. Make sure we have at least one argument.
// Both registers are preserved by this code so no need to differentiate between { Label done;
// a construct call and a normal call. __ testq(rax, rax);
static void ArrayNativeCode(MacroAssembler* masm, __ j(not_zero, &done);
Label *call_generic_code) { __ pop(rbx);
Label argc_one_or_more, argc_two_or_more; __ Push(Factory::undefined_value());
__ push(rbx);
__ incq(rax);
__ bind(&done);
}
// Check for array construction with zero arguments. // 2. Get the function to call (passed as receiver) from the stack, check
__ testq(rax, rax); // if it is a function.
__ j(not_zero, &argc_one_or_more); Label non_function;
// The function to call is at position n+1 on the stack.
__ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
__ JumpIfSmi(rdi, &non_function);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &non_function);
// Handle construction of an empty array. // 3a. Patch the first argument if necessary when calling a function.
AllocateEmptyJSArray(masm, Label shift_arguments;
rdi, { Label convert_to_object, use_global_receiver, patch_receiver;
rbx, // Change context eagerly in case we need the global receiver.
rcx, __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
rdx,
r8,
kPreallocatedArrayElements,
call_generic_code);
__ IncrementCounter(&Counters::array_function_native, 1);
__ movq(rax, rbx);
__ ret(kPointerSize);
// Check for one argument. Bail out if argument is not smi or if it is __ movq(rbx, Operand(rsp, rax, times_pointer_size, 0));
// negative. __ JumpIfSmi(rbx, &convert_to_object);
__ bind(&argc_one_or_more);
__ cmpq(rax, Immediate(1));
__ j(not_equal, &argc_two_or_more);
__ movq(rdx, Operand(rsp, kPointerSize)); // Get the argument from the stack.
__ JumpUnlessNonNegativeSmi(rdx, call_generic_code);
// Handle construction of an empty array of a certain size. Bail out if size __ CompareRoot(rbx, Heap::kNullValueRootIndex);
// is to large to actually allocate an elements array. __ j(equal, &use_global_receiver);
__ SmiCompare(rdx, Smi::FromInt(JSObject::kInitialMaxFastElementArray)); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(greater_equal, call_generic_code); __ j(equal, &use_global_receiver);
// rax: argc __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx);
// rdx: array_size (smi) __ j(below, &convert_to_object);
// rdi: constructor __ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE);
// esp[0]: return address __ j(below_equal, &shift_arguments);
// esp[8]: argument
AllocateJSArray(masm,
rdi,
rdx,
rbx,
rcx,
r8,
r9,
true,
call_generic_code);
__ IncrementCounter(&Counters::array_function_native, 1);
__ movq(rax, rbx);
__ ret(2 * kPointerSize);
// Handle construction of an array from a list of arguments. __ bind(&convert_to_object);
__ bind(&argc_two_or_more); __ EnterInternalFrame(); // In order to preserve argument count.
__ movq(rdx, rax); __ Integer32ToSmi(rax, rax);
__ Integer32ToSmi(rdx, rdx); // Convet argc to a smi. __ push(rax);
// rax: argc
// rdx: array_size (smi)
// rdi: constructor
// esp[0] : return address
// esp[8] : last argument
AllocateJSArray(masm,
rdi,
rdx,
rbx,
rcx,
r8,
r9,
false,
call_generic_code);
__ IncrementCounter(&Counters::array_function_native, 1);
// rax: argc __ push(rbx);
// rbx: JSArray __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
// rcx: elements_array __ movq(rbx, rax);
// r8: elements_array_end (untagged)
// esp[0]: return address
// esp[8]: last argument
// Location of the last argument __ pop(rax);
__ lea(r9, Operand(rsp, kPointerSize)); __ SmiToInteger32(rax, rax);
__ LeaveInternalFrame();
// Restore the function to rdi.
__ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
__ jmp(&patch_receiver);
// Location of the first array element (Parameter fill_with_holes to // Use the global receiver object from the called function as the
// AllocateJSArrayis false, so the FixedArray is returned in rcx). // receiver.
__ lea(rdx, Operand(rcx, FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ movq(rbx, FieldOperand(rsi, kGlobalIndex));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset));
__ movq(rbx, FieldOperand(rbx, kGlobalIndex));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
// rax: argc __ bind(&patch_receiver);
// rbx: JSArray __ movq(Operand(rsp, rax, times_pointer_size, 0), rbx);
// rdx: location of the first array element
// r9: location of the last argument
// esp[0]: return address
// esp[8]: last argument
Label loop, entry;
__ movq(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ movq(kScratchRegister, Operand(r9, rcx, times_pointer_size, 0));
__ movq(Operand(rdx, 0), kScratchRegister);
__ addq(rdx, Immediate(kPointerSize));
__ bind(&entry);
__ decq(rcx);
__ j(greater_equal, &loop);
// Remove caller arguments from the stack and return. __ jmp(&shift_arguments);
// rax: argc }
// rbx: JSArray
// esp[0]: return address
// esp[8]: last argument
__ pop(rcx);
__ lea(rsp, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
__ push(rcx);
__ movq(rax, rbx);
__ ret(0);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // 3b. Patch the first argument when calling a non-function. The
// ----------- S t a t e ------------- // CALL_NON_FUNCTION builtin expects the non-function callee as
// -- rax : argc // receiver, so overwrite the first argument which will ultimately
// -- rsp[0] : return address // become the receiver.
// -- rsp[8] : last argument __ bind(&non_function);
// ----------------------------------- __ movq(Operand(rsp, rax, times_pointer_size, 0), rdi);
Label generic_array_code; __ xor_(rdi, rdi);
// Get the Array function. // 4. Shift arguments and return address one slot down on the stack
GenerateLoadArrayFunction(masm, rdi); // (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
__ bind(&shift_arguments);
{ Label loop;
__ movq(rcx, rax);
__ bind(&loop);
__ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0));
__ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx);
__ decq(rcx);
__ j(not_sign, &loop); // While non-negative (to copy return address).
__ pop(rbx); // Discard copy of return address.
__ decq(rax); // One fewer argument (first argument is new receiver).
}
if (FLAG_debug_code) { // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
// Initial map for the builtin Array function shoud be a map. { Label function;
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); __ testq(rdi, rdi);
// Will both indicate a NULL and a Smi. __ j(not_zero, &function);
ASSERT(kSmiTag == 0); __ xor_(rbx, rbx);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
__ Check(not_smi, "Unexpected initial map for Array function"); __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
__ CmpObjectType(rbx, MAP_TYPE, rcx); RelocInfo::CODE_TARGET);
__ Check(equal, "Unexpected initial map for Array function"); __ bind(&function);
} }
// Run the native code for the Array function called as a normal function. // 5b. Get the code to call from the function and check that the number of
ArrayNativeCode(masm, &generic_array_code); // expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
__ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movsxlq(rbx,
FieldOperand(rdx,
SharedFunctionInfo::kFormalParameterCountOffset));
__ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ cmpq(rax, rbx);
__ j(not_equal,
Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET);
// Jump to the generic array code in case the specialized code cannot handle ParameterCount expected(0);
// the construction. __ InvokeCode(rdx, expected, expected, JUMP_FUNCTION);
__ bind(&generic_array_code);
Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
Handle<Code> array_code(code);
__ Jump(array_code, RelocInfo::CODE_TARGET);
} }
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
// ----------- S t a t e ------------- // Stack at entry:
// -- rax : argc // rsp: return address
// -- rdi : constructor // rsp+8: arguments
// -- rsp[0] : return address // rsp+16: receiver ("this")
// -- rsp[8] : last argument // rsp+24: function
// ----------------------------------- __ EnterInternalFrame();
Label generic_constructor; // Stack frame:
// rbp: Old base pointer
if (FLAG_debug_code) { // rbp[1]: return address
// The array construct code is only set for the builtin Array function which // rbp[2]: function arguments
// does always have a map. // rbp[3]: receiver
GenerateLoadArrayFunction(masm, rbx); // rbp[4]: function
__ cmpq(rdi, rbx); static const int kArgumentsOffset = 2 * kPointerSize;
__ Check(equal, "Unexpected Array function"); static const int kReceiverOffset = 3 * kPointerSize;
// Initial map for the builtin Array function should be a map. static const int kFunctionOffset = 4 * kPointerSize;
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); __ push(Operand(rbp, kFunctionOffset));
// Will both indicate a NULL and a Smi. __ push(Operand(rbp, kArgumentsOffset));
ASSERT(kSmiTag == 0); __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, "Unexpected initial map for Array function");
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as constructor. // Check the stack for overflow. We are not trying need to catch
ArrayNativeCode(masm, &generic_constructor); // interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movq(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subq(rcx, kScratchRegister);
// Make rdx the space we need for the array when it is unrolled onto the
// stack.
__ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2);
// Check if the arguments will overflow the stack.
__ cmpq(rcx, rdx);
__ j(greater, &okay); // Signed comparison.
// Jump to the generic construct code in case the specialized code cannot // Out of stack space.
// handle the construction. __ push(Operand(rbp, kFunctionOffset));
__ bind(&generic_constructor); __ push(rax);
Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric); __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
Handle<Code> generic_construct_stub(code); __ bind(&okay);
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); // End of stack check.
}
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ push(rax); // limit
__ push(Immediate(0)); // index
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // Change context eagerly to get the right global object if
// TODO(849): implement custom construct stub. // necessary.
// Generate a copy of the generic stub for now. __ movq(rdi, Operand(rbp, kFunctionOffset));
Generate_JSConstructStubGeneric(masm); __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
}
// Compute the receiver.
Label call_to_object, use_global_receiver, push_receiver;
__ movq(rbx, Operand(rbp, kReceiverOffset));
__ JumpIfSmi(rbx, &call_to_object);
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
__ j(equal, &use_global_receiver);
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &use_global_receiver);
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { // If given receiver is already a JavaScript object then there's no
// ----------- S t a t e ------------- // reason for converting it.
// -- rax: number of arguments __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx);
// -- rdi: constructor function __ j(below, &call_to_object);
// ----------------------------------- __ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE);
__ j(below_equal, &push_receiver);
Label non_function_call; // Convert the receiver to an object.
// Check that function is not a smi. __ bind(&call_to_object);
__ JumpIfSmi(rdi, &non_function_call); __ push(rbx);
// Check that function is a JSFunction. __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ movq(rbx, rax);
__ j(not_equal, &non_function_call); __ jmp(&push_receiver);
// Jump to the function-specific construct stub.
__ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset));
__ lea(rbx, FieldOperand(rbx, Code::kHeaderSize));
__ jmp(rbx);
// rdi: called object // Use the current global receiver object as the receiver.
// rax: number of arguments __ bind(&use_global_receiver);
__ bind(&non_function_call); const int kGlobalOffset =
// Set expected number of arguments to zero (not changing rax). Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ movq(rbx, Immediate(0)); __ movq(rbx, FieldOperand(rsi, kGlobalOffset));
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset));
__ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)), __ movq(rbx, FieldOperand(rbx, kGlobalOffset));
RelocInfo::CODE_TARGET); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
}
// Push the receiver.
__ bind(&push_receiver);
__ push(rbx);
static void Generate_JSConstructStubHelper(MacroAssembler* masm, // Copy all arguments from the array to the stack.
bool is_api_function, Label entry, loop;
bool count_constructions) { __ movq(rax, Operand(rbp, kIndexOffset));
// Should never count constructions for api objects. __ jmp(&entry);
ASSERT(!is_api_function || !count_constructions); __ bind(&loop);
__ movq(rdx, Operand(rbp, kArgumentsOffset)); // load arguments
// Enter a construct frame. // Use inline caching to speed up access to arguments.
__ EnterConstructFrame(); Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// It is important that we do not have a test instruction after the
// call. A test instruction after the call is used to indicate that
// we have generated an inline version of the keyed load. In this
// case, we know that we are not generating a test instruction next.
// Store a smi-tagged arguments count on the stack. // Push the nth argument.
__ Integer32ToSmi(rax, rax);
__ push(rax); __ push(rax);
// Push the function to invoke on the stack. // Update the index on the stack and in register rax.
__ push(rdi); __ movq(rax, Operand(rbp, kIndexOffset));
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
__ movq(Operand(rbp, kIndexOffset), rax);
// Try to allocate the object without transitioning into C code. If any of the __ bind(&entry);
// preconditions is not met, the code bails out to the runtime call. __ cmpq(rax, Operand(rbp, kLimitOffset));
Label rt_call, allocated; __ j(not_equal, &loop);
if (FLAG_inline_new) {
Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT // Invoke the function.
ExternalReference debug_step_in_fp = ParameterCount actual(rax);
ExternalReference::debug_step_in_fp_address(); __ SmiToInteger32(rax, rax);
__ movq(kScratchRegister, debug_step_in_fp); __ movq(rdi, Operand(rbp, kFunctionOffset));
__ cmpq(Operand(kScratchRegister, 0), Immediate(0)); __ InvokeFunction(rdi, actual, CALL_FUNCTION);
__ j(not_equal, &rt_call);
#endif
// Verified that the constructor is a JSFunction. __ LeaveInternalFrame();
// Load the initial map and verify that it is in fact a map. __ ret(3 * kPointerSize); // remove function, receiver, and arguments
// rdi: constructor }
__ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
ASSERT(kSmiTag == 0);
__ JumpIfSmi(rax, &rt_call);
// rdi: constructor
// rax: initial map (if proven valid below)
__ CmpObjectType(rax, MAP_TYPE, rbx);
__ j(not_equal, &rt_call);
// Check that the constructor is not constructing a JSFunction (see comments
// in Runtime_NewObject in runtime.cc). In which case the initial map's
// instance type would be JS_FUNCTION_TYPE.
// rdi: constructor
// rax: initial map
__ CmpInstanceType(rax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
if (count_constructions) { // Number of empty elements to allocate for an empty array.
Label allocate; static const int kPreallocatedArrayElements = 4;
// Decrease generous allocation count.
__ movq(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ decb(FieldOperand(rcx, SharedFunctionInfo::kConstructionCountOffset));
__ j(not_zero, &allocate);
__ push(rax);
__ push(rdi);
__ push(rdi); // constructor // Allocate an empty JSArray. The allocated array is put into the result
// The call will replace the stub, so the countdown is only done once. // register. If the parameter initial_capacity is larger than zero an elements
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1); // backing store is allocated with this size and filled with the hole values.
// Otherwise the elements backing store is set to the empty FixedArray.
static void AllocateEmptyJSArray(MacroAssembler* masm,
Register array_function,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
int initial_capacity,
Label* gc_required) {
ASSERT(initial_capacity >= 0);
__ pop(rdi); // Load the initial map from the array function.
__ pop(rax); __ movq(scratch1, FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
__ bind(&allocate); // Allocate the JSArray object together with space for a fixed array with the
} // requested elements.
int size = JSArray::kSize;
if (initial_capacity > 0) {
size += FixedArray::SizeFor(initial_capacity);
}
__ AllocateInNewSpace(size,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Now allocate the JSObject on the heap. // Allocated the JSArray. Now initialize the fields except for the elements
__ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset)); // array.
__ shl(rdi, Immediate(kPointerSizeLog2)); // result: JSObject
// rdi: size of new object // scratch1: initial map
__ AllocateInNewSpace(rdi, // scratch2: start of next object
rbx, __ movq(FieldOperand(result, JSObject::kMapOffset), scratch1);
rdi, __ Move(FieldOperand(result, JSArray::kPropertiesOffset),
no_reg, Factory::empty_fixed_array());
&rt_call, // Field JSArray::kElementsOffset is initialized later.
NO_ALLOCATION_FLAGS); __ Move(FieldOperand(result, JSArray::kLengthOffset), Smi::FromInt(0));
// Allocated the JSObject, now initialize the fields.
// rax: initial map
// rbx: JSObject (not HeapObject tagged - the actual address).
// rdi: start of next object
__ movq(Operand(rbx, JSObject::kMapOffset), rax);
__ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
__ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx);
__ movq(Operand(rbx, JSObject::kElementsOffset), rcx);
// Set extra fields in the newly allocated object.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
{ Label loop, entry;
// To allow for truncation.
if (count_constructions) {
__ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
} else {
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
}
__ lea(rcx, Operand(rbx, JSObject::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(rcx, 0), rdx);
__ addq(rcx, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(rcx, rdi);
__ j(less, &loop);
}
// Add the object tag to make the JSObject real, so that we can continue and // If no storage is requested for the elements array just set the empty
// jump into the continuation code at any time from now on. Any failures // fixed array.
// need to undo the allocation, so that the heap is in a consistent state if (initial_capacity == 0) {
// and verifiable. __ Move(FieldOperand(result, JSArray::kElementsOffset),
// rax: initial map Factory::empty_fixed_array());
// rbx: JSObject return;
// rdi: start of next object }
__ or_(rbx, Immediate(kHeapObjectTag));
// Check if a non-empty properties array is needed. // Calculate the location of the elements array and set elements array member
// Allocate and initialize a FixedArray if it is. // of the JSArray.
// rax: initial map // result: JSObject
// rbx: JSObject // scratch2: start of next object
// rdi: start of next object __ lea(scratch1, Operand(result, JSArray::kSize));
// Calculate total properties described map. __ movq(FieldOperand(result, JSArray::kElementsOffset), scratch1);
__ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
__ movzxbq(rcx, FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
__ addq(rdx, rcx);
// Calculate unused properties past the end of the in-object properties.
__ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset));
__ subq(rdx, rcx);
// Done if no extra properties are to be allocated.
__ j(zero, &allocated);
__ Assert(positive, "Property allocation count failed.");
// Scale the number of elements by pointer size and add the header for // Initialize the FixedArray and fill it with holes. FixedArray length is
// FixedArrays to the start of the next object calculation from above. // stored as a smi.
// rbx: JSObject // result: JSObject
// rdi: start of next object (will be start of FixedArray) // scratch1: elements array
// rdx: number of elements in properties array // scratch2: start of next object
__ AllocateInNewSpace(FixedArray::kHeaderSize, __ Move(FieldOperand(scratch1, HeapObject::kMapOffset),
times_pointer_size, Factory::fixed_array_map());
rdx, __ Move(FieldOperand(scratch1, FixedArray::kLengthOffset),
rdi, Smi::FromInt(initial_capacity));
rax,
no_reg,
&undo_allocation,
RESULT_CONTAINS_TOP);
// Initialize the FixedArray. // Fill the FixedArray with the hole value. Inline the code if short.
// rbx: JSObject // Reconsider loop unfolding if kPreallocatedArrayElements gets changed.
// rdi: FixedArray static const int kLoopUnfoldLimit = 4;
// rdx: number of elements ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit);
// rax: start of next object __ Move(scratch3, Factory::the_hole_value());
__ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex); if (initial_capacity <= kLoopUnfoldLimit) {
__ movq(Operand(rdi, HeapObject::kMapOffset), rcx); // setup the map // Use a scratch register here to have only one reloc info when unfolding
__ Integer32ToSmi(rdx, rdx); // the loop.
__ movq(Operand(rdi, FixedArray::kLengthOffset), rdx); // and length for (int i = 0; i < initial_capacity; i++) {
__ movq(FieldOperand(scratch1,
// Initialize the fields to undefined. FixedArray::kHeaderSize + i * kPointerSize),
// rbx: JSObject scratch3);
// rdi: FixedArray
// rax: start of next object
// rdx: number of elements
{ Label loop, entry;
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ lea(rcx, Operand(rdi, FixedArray::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(rcx, 0), rdx);
__ addq(rcx, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(rcx, rax);
__ j(below, &loop);
} }
// Store the initialized FixedArray into the properties field of
// the JSObject
// rbx: JSObject
// rdi: FixedArray
__ or_(rdi, Immediate(kHeapObjectTag)); // add the heap tag
__ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi);
// Continue with JSObject being successfully allocated
// rbx: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// rbx: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(rbx);
}
// Allocate the new receiver object using the runtime call.
// rdi: function (constructor)
__ bind(&rt_call);
// Must restore rdi (constructor) before calling runtime.
__ movq(rdi, Operand(rsp, 0));
__ push(rdi);
__ CallRuntime(Runtime::kNewObject, 1);
__ movq(rbx, rax); // store result in rbx
// New object allocated.
// rbx: newly allocated object
__ bind(&allocated);
// Retrieve the function from the stack.
__ pop(rdi);
// Retrieve smi-tagged arguments count from the stack.
__ movq(rax, Operand(rsp, 0));
__ SmiToInteger32(rax, rax);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(rbx);
__ push(rbx);
// Setup pointer to last argument.
__ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movq(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decq(rcx);
__ j(greater_equal, &loop);
// Call the function.
if (is_api_function) {
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
Handle<Code> code = Handle<Code>(
Builtins::builtin(Builtins::HandleApiCallConstruct));
ParameterCount expected(0);
__ InvokeCode(code, expected, expected,
RelocInfo::CODE_TARGET, CALL_FUNCTION);
} else { } else {
ParameterCount actual(rax); Label loop, entry;
__ InvokeFunction(rdi, actual, CALL_FUNCTION); __ jmp(&entry);
__ bind(&loop);
__ movq(Operand(scratch1, 0), scratch3);
__ addq(scratch1, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(scratch1, scratch2);
__ j(below, &loop);
} }
}
// Restore context from the frame.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(rax, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(above_equal, &exit);
// Throw away the result of the constructor invocation and use the // Allocate a JSArray with the number of elements stored in a register. The
// on-stack receiver as the result. // register array_function holds the built-in Array function and the register
__ bind(&use_receiver); // array_size holds the size of the array as a smi. The allocated array is put
__ movq(rax, Operand(rsp, 0)); // into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array and elements_array_end (see
// below for when that is not the case). If the parameter fill_with_holes is
// true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array is scratched.
static void AllocateJSArray(MacroAssembler* masm,
Register array_function, // Array function.
Register array_size, // As a smi.
Register result,
Register elements_array,
Register elements_array_end,
Register scratch,
bool fill_with_hole,
Label* gc_required) {
Label not_empty, allocated;
// Restore the arguments count and leave the construct frame. // Load the initial map from the array function.
__ bind(&exit); __ movq(elements_array,
__ movq(rbx, Operand(rsp, kPointerSize)); // get arguments count FieldOperand(array_function,
__ LeaveConstructFrame(); JSFunction::kPrototypeOrInitialMapOffset));
// Remove caller arguments from the stack and return. // Check whether an empty sized array is requested.
__ pop(rcx); __ testq(array_size, array_size);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ j(not_zero, &not_empty);
__ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ push(rcx);
__ IncrementCounter(&Counters::constructed_objects, 1);
__ ret(0);
}
// If an empty array is requested allocate a small elements array anyway. This
// keeps the code below free of special casing for the empty array.
int size = JSArray::kSize + FixedArray::SizeFor(kPreallocatedArrayElements);
__ AllocateInNewSpace(size,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
__ jmp(&allocated);
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { // Allocate the JSArray object together with space for a FixedArray with the
Generate_JSConstructStubHelper(masm, false, true); // requested elements.
} __ bind(&not_empty);
SmiIndex index =
masm->SmiToIndex(kScratchRegister, array_size, kPointerSizeLog2);
__ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
index.scale,
index.reg,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// elements_array: initial map
// elements_array_end: start of next object
// array_size: size of array (smi)
__ bind(&allocated);
__ movq(FieldOperand(result, JSObject::kMapOffset), elements_array);
__ Move(elements_array, Factory::empty_fixed_array());
__ movq(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
// Field JSArray::kElementsOffset is initialized later.
__ movq(FieldOperand(result, JSArray::kLengthOffset), array_size);
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // Calculate the location of the elements array and set elements array member
Generate_JSConstructStubHelper(masm, false, false); // of the JSArray.
} // result: JSObject
// elements_array_end: start of next object
// array_size: size of array (smi)
__ lea(elements_array, Operand(result, JSArray::kSize));
__ movq(FieldOperand(result, JSArray::kElementsOffset), elements_array);
// Initialize the fixed array. FixedArray length is stored as a smi.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
// array_size: size of array (smi)
__ Move(FieldOperand(elements_array, JSObject::kMapOffset),
Factory::fixed_array_map());
Label not_empty_2, fill_array;
__ SmiTest(array_size);
__ j(not_zero, &not_empty_2);
// Length of the FixedArray is the number of pre-allocated elements even
// though the actual JSArray has length 0.
__ Move(FieldOperand(elements_array, FixedArray::kLengthOffset),
Smi::FromInt(kPreallocatedArrayElements));
__ jmp(&fill_array);
__ bind(&not_empty_2);
// For non-empty JSArrays the length of the FixedArray and the JSArray is the
// same.
__ movq(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { // Fill the allocated FixedArray with the hole value if requested.
Generate_JSConstructStubHelper(masm, true, false); // result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
__ bind(&fill_array);
if (fill_with_hole) {
Label loop, entry;
__ Move(scratch, Factory::the_hole_value());
__ lea(elements_array, Operand(elements_array,
FixedArray::kHeaderSize - kHeapObjectTag));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(elements_array, 0), scratch);
__ addq(elements_array, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(elements_array, elements_array_end);
__ j(below, &loop);
}
} }
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, // Create a new array for the built-in Array function. This function allocates
bool is_construct) { // the JSArray object and the FixedArray elements array and initializes these.
// Expects five C++ function parameters. // If the Array cannot be constructed in native code the runtime is called. This
// - Address entry (ignored) // function assumes the following state:
// - JSFunction* function ( // rdi: constructor (built-in Array function)
// - Object* receiver // rax: argc
// - int argc // rsp[0]: return address
// - Object*** argv // rsp[8]: last argument
// (see Handle::Invoke in execution.cc). // This function is used for both construct and normal calls of Array. The only
// difference between handling a construct call and a normal call is that for a
// Platform specific argument handling. After this, the stack contains // construct call the constructor function in rdi needs to be preserved for
// an internal frame and the pushed function and receiver, and // entering the generic code. In both cases argc in rax needs to be preserved.
// register rax and rbx holds the argument count and argument array, // Both registers are preserved by this code so no need to differentiate between
// while rdi holds the function pointer and rsi the context. // a construct call and a normal call.
#ifdef _WIN64 static void ArrayNativeCode(MacroAssembler* masm,
// MSVC parameters in: Label *call_generic_code) {
// rcx : entry (ignored) Label argc_one_or_more, argc_two_or_more;
// rdx : function
// r8 : receiver
// r9 : argc
// [rsp+0x20] : argv
// Clear the context before we push it when entering the JS frame.
__ xor_(rsi, rsi);
__ EnterInternalFrame();
// Load the function context into rsi.
__ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack. // Check for array construction with zero arguments.
__ push(rdx); __ testq(rax, rax);
__ push(r8); __ j(not_zero, &argc_one_or_more);
// Load the number of arguments and setup pointer to the arguments. // Handle construction of an empty array.
__ movq(rax, r9); AllocateEmptyJSArray(masm,
// Load the previous frame pointer to access C argument on stack rdi,
__ movq(kScratchRegister, Operand(rbp, 0)); rbx,
__ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); rcx,
// Load the function pointer into rdi. rdx,
__ movq(rdi, rdx); r8,
#else // _WIN64 kPreallocatedArrayElements,
// GCC parameters in: call_generic_code);
// rdi : entry (ignored) __ IncrementCounter(&Counters::array_function_native, 1);
// rsi : function __ movq(rax, rbx);
// rdx : receiver __ ret(kPointerSize);
// rcx : argc
// r8 : argv
__ movq(rdi, rsi); // Check for one argument. Bail out if argument is not smi or if it is
// rdi : function // negative.
__ bind(&argc_one_or_more);
__ cmpq(rax, Immediate(1));
__ j(not_equal, &argc_two_or_more);
__ movq(rdx, Operand(rsp, kPointerSize)); // Get the argument from the stack.
__ JumpUnlessNonNegativeSmi(rdx, call_generic_code);
// Clear the context before we push it when entering the JS frame. // Handle construction of an empty array of a certain size. Bail out if size
__ xor_(rsi, rsi); // is to large to actually allocate an elements array.
// Enter an internal frame. __ SmiCompare(rdx, Smi::FromInt(JSObject::kInitialMaxFastElementArray));
__ EnterInternalFrame(); __ j(greater_equal, call_generic_code);
// Push the function and receiver and setup the context. // rax: argc
__ push(rdi); // rdx: array_size (smi)
__ push(rdx); // rdi: constructor
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // esp[0]: return address
// esp[8]: argument
AllocateJSArray(masm,
rdi,
rdx,
rbx,
rcx,
r8,
r9,
true,
call_generic_code);
__ IncrementCounter(&Counters::array_function_native, 1);
__ movq(rax, rbx);
__ ret(2 * kPointerSize);
// Load the number of arguments and setup pointer to the arguments. // Handle construction of an array from a list of arguments.
__ movq(rax, rcx); __ bind(&argc_two_or_more);
__ movq(rbx, r8); __ movq(rdx, rax);
#endif // _WIN64 __ Integer32ToSmi(rdx, rdx); // Convet argc to a smi.
// rax: argc
// rdx: array_size (smi)
// rdi: constructor
// esp[0] : return address
// esp[8] : last argument
AllocateJSArray(masm,
rdi,
rdx,
rbx,
rcx,
r8,
r9,
false,
call_generic_code);
__ IncrementCounter(&Counters::array_function_native, 1);
// Current stack contents: // rax: argc
// [rsp + 2 * kPointerSize ... ]: Internal frame // rbx: JSArray
// [rsp + kPointerSize] : function // rcx: elements_array
// [rsp] : receiver // r8: elements_array_end (untagged)
// Current register contents: // esp[0]: return address
// rax : argc // esp[8]: last argument
// rbx : argv
// rsi : context
// rdi : function
// Copy arguments to the stack in a loop. // Location of the last argument
// Register rbx points to array of pointers to handle locations. __ lea(r9, Operand(rsp, kPointerSize));
// Push the values of these handles.
// Location of the first array element (Parameter fill_with_holes to
// AllocateJSArrayis false, so the FixedArray is returned in rcx).
__ lea(rdx, Operand(rcx, FixedArray::kHeaderSize - kHeapObjectTag));
// rax: argc
// rbx: JSArray
// rdx: location of the first array element
// r9: location of the last argument
// esp[0]: return address
// esp[8]: last argument
Label loop, entry; Label loop, entry;
__ xor_(rcx, rcx); // Set loop variable to 0. __ movq(rcx, rax);
__ jmp(&entry); __ jmp(&entry);
__ bind(&loop); __ bind(&loop);
__ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ movq(kScratchRegister, Operand(r9, rcx, times_pointer_size, 0));
__ push(Operand(kScratchRegister, 0)); // dereference handle __ movq(Operand(rdx, 0), kScratchRegister);
__ addq(rcx, Immediate(1)); __ addq(rdx, Immediate(kPointerSize));
__ bind(&entry); __ bind(&entry);
__ cmpq(rcx, rax); __ decq(rcx);
__ j(not_equal, &loop); __ j(greater_equal, &loop);
// Invoke the code. // Remove caller arguments from the stack and return.
if (is_construct) { // rax: argc
// Expects rdi to hold function pointer. // rbx: JSArray
__ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)), // esp[0]: return address
RelocInfo::CODE_TARGET); // esp[8]: last argument
} else { __ pop(rcx);
ParameterCount actual(rax); __ lea(rsp, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
// Function must be in rdi. __ push(rcx);
__ InvokeFunction(rdi, actual, CALL_FUNCTION); __ movq(rax, rbx);
__ ret(0);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin Array function shoud be a map.
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, "Unexpected initial map for Array function");
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, "Unexpected initial map for Array function");
} }
// Exit the JS frame. Notice that this also removes the empty // Run the native code for the Array function called as a normal function.
// context and the function left on the stack by the code ArrayNativeCode(masm, &generic_array_code);
// invocation.
__ LeaveInternalFrame(); // Jump to the generic array code in case the specialized code cannot handle
// TODO(X64): Is argument correct? Is there a receiver to remove? // the construction.
__ ret(1 * kPointerSize); // remove receiver __ bind(&generic_array_code);
Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
Handle<Code> array_code(code);
__ Jump(array_code, RelocInfo::CODE_TARGET);
} }
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false); // ----------- S t a t e -------------
// -- rax : argc
// -- rdi : constructor
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_constructor;
if (FLAG_debug_code) {
// The array construct code is only set for the builtin Array function which
// does always have a map.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rbx);
__ cmpq(rdi, rbx);
__ Check(equal, "Unexpected Array function");
// Initial map for the builtin Array function should be a map.
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, "Unexpected initial map for Array function");
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as constructor.
ArrayNativeCode(masm, &generic_constructor);
// Jump to the generic construct code in case the specialized code cannot
// handle the construction.
__ bind(&generic_constructor);
Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
Handle<Code> generic_construct_stub(code);
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
} }
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true); // TODO(849): implement custom construct stub.
// Generate a copy of the generic stub for now.
Generate_JSConstructStubGeneric(masm);
} }
void Builtins::Generate_LazyCompile(MacroAssembler* masm) { static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
// Enter an internal frame. __ push(rbp);
__ EnterInternalFrame(); __ movq(rbp, rsp);
// Push a copy of the function onto the stack. // Store the arguments adaptor context sentinel.
__ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
// Push the function on the stack.
__ push(rdi); __ push(rdi);
__ push(rdi); // Function is also the parameter to the runtime call. // Preserve the number of arguments on the stack. Must preserve both
__ CallRuntime(Runtime::kLazyCompile, 1); // rax and rbx because these registers are used when copying the
__ pop(rdi); // arguments and the receiver.
__ Integer32ToSmi(rcx, rax);
__ push(rcx);
}
// Tear down temporary frame.
__ LeaveInternalFrame();
// Do a tail-call of the compiled function. static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
__ lea(rcx, FieldOperand(rax, Code::kHeaderSize)); // Retrieve the number of arguments from the stack. Number is a Smi.
__ jmp(rcx); __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ movq(rsp, rbp);
__ pop(rbp);
// Remove caller arguments from the stack.
__ pop(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ push(rcx);
} }
void Builtins::Generate_LazyRecompile(MacroAssembler* masm) { void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// Enter an internal frame. // ----------- S t a t e -------------
__ EnterInternalFrame(); // -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdx : code entry to call
// -----------------------------------
// Push a copy of the function onto the stack. Label invoke, dont_adapt_arguments;
__ push(rdi); __ IncrementCounter(&Counters::arguments_adaptors, 1);
__ push(rdi); // Function is also the parameter to the runtime call. Label enough, too_few;
__ CallRuntime(Runtime::kLazyRecompile, 1); __ cmpq(rax, rbx);
__ j(less, &too_few);
__ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ j(equal, &dont_adapt_arguments);
// Restore function and tear down temporary frame. { // Enough parameters: Actual >= expected.
__ pop(rdi); __ bind(&enough);
__ LeaveInternalFrame(); EnterArgumentsAdaptorFrame(masm);
// Do a tail-call of the compiled function. // Copy receiver and all expected arguments.
__ lea(rcx, FieldOperand(rax, Code::kHeaderSize)); const int offset = StandardFrameConstants::kCallerSPOffset;
__ jmp(rcx); __ lea(rax, Operand(rbp, rax, times_pointer_size, offset));
} __ movq(rcx, Immediate(-1)); // account for receiver
Label copy;
__ bind(&copy);
__ incq(rcx);
__ push(Operand(rax, 0));
__ subq(rax, Immediate(kPointerSize));
__ cmpq(rcx, rbx);
__ j(less, &copy);
__ jmp(&invoke);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { // Too few parameters: Actual < expected.
__ int3(); __ bind(&too_few);
} EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(rdi, Operand(rbp, rax, times_pointer_size, offset));
__ movq(rcx, Immediate(-1)); // account for receiver
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Label copy;
__ int3(); __ bind(&copy);
} __ incq(rcx);
__ push(Operand(rdi, 0));
__ subq(rdi, Immediate(kPointerSize));
__ cmpq(rcx, rax);
__ j(less, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ bind(&fill);
__ incq(rcx);
__ push(kScratchRegister);
__ cmpq(rcx, rbx);
__ j(less, &fill);
void Builtins::Generate_NotifyOSR(MacroAssembler* masm) { // Restore function pointer.
__ int3(); __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ call(rdx);
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ jmp(rdx);
} }
...@@ -1388,6 +1384,8 @@ void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { ...@@ -1388,6 +1384,8 @@ void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
} }
#undef __
} } // namespace v8::internal } } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64 #endif // V8_TARGET_ARCH_X64
...@@ -2250,6 +2250,31 @@ void MacroAssembler::LoadContext(Register dst, int context_chain_length) { ...@@ -2250,6 +2250,31 @@ void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
} }
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the global or builtins object from the current context.
movq(function, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
movq(function, FieldOperand(function, GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
movq(function, Operand(function, Context::SlotOffset(index)));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map) {
// Load the initial map. The global functions all have initial maps.
movq(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (FLAG_debug_code) {
Label ok, fail;
CheckMap(map, Factory::meta_map(), &fail, false);
jmp(&ok);
bind(&fail);
Abort("Global functions must have initial map");
bind(&ok);
}
}
int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) { int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) {
// On Windows 64 stack slots are reserved by the caller for all arguments // On Windows 64 stack slots are reserved by the caller for all arguments
// including the ones passed in registers, and space is always allocated for // including the ones passed in registers, and space is always allocated for
......
...@@ -772,6 +772,13 @@ class MacroAssembler: public Assembler { ...@@ -772,6 +772,13 @@ class MacroAssembler: public Assembler {
// Find the function context up the context chain. // Find the function context up the context chain.
void LoadContext(Register dst, int context_chain_length); void LoadContext(Register dst, int context_chain_length);
// Load the global function with the given index.
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers
// function and map can be the same.
void LoadGlobalFunctionInitialMap(Register function, Register map);
// --------------------------------------------------------------------------- // ---------------------------------------------------------------------------
// Runtime calls // Runtime calls
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment