Commit 808d00f8 authored by floitschV8@gmail.com's avatar floitschV8@gmail.com

Bignum implementation of Strtod.

This removes the dependency on Gay's strtod.

Review URL: http://codereview.chromium.org/4060001

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5778 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 17ac8903
......@@ -40,6 +40,7 @@ SOURCES = {
api.cc
assembler.cc
ast.cc
bignum.cc
bootstrapper.cc
builtins.cc
cached-powers.cc
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bignum.h"
#include "utils.h"
namespace v8 {
namespace internal {
Bignum::Bignum()
: bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
for (int i = 0; i < kBigitCapacity; ++i) {
bigits_[i] = 0;
}
}
template<typename S>
static int BitSize(S value) {
return 8 * sizeof(value);
}
// Guaranteed to lie in one Bigit.
void Bignum::AssignUInt16(uint16_t value) {
ASSERT(kBigitSize >= BitSize(value));
Zero();
if (value == 0) return;
EnsureCapacity(1);
bigits_[0] = value;
used_digits_ = 1;
}
void Bignum::AssignUInt64(uint64_t value) {
const int kUInt64Size = 64;
Zero();
if (value == 0) return;
int needed_bigits = kUInt64Size / kBigitSize + 1;
EnsureCapacity(needed_bigits);
for (int i = 0; i < needed_bigits; ++i) {
bigits_[i] = value & kBigitMask;
value = value >> kBigitSize;
}
used_digits_ = needed_bigits;
Clamp();
}
void Bignum::AssignBignum(const Bignum& other) {
exponent_ = other.exponent_;
for (int i = 0; i < other.used_digits_; ++i) {
bigits_[i] = other.bigits_[i];
}
// Clear the excess digits (if there were any).
for (int i = other.used_digits_; i < used_digits_; ++i) {
bigits_[i] = 0;
}
used_digits_ = other.used_digits_;
}
static uint64_t ReadUInt64(Vector<const char> buffer,
int from,
int digits_to_read) {
uint64_t result = 0;
for (int i = from; i < from + digits_to_read; ++i) {
int digit = buffer[i] - '0';
ASSERT(0 <= digit && digit <= 9);
result = result * 10 + digit;
}
return result;
}
void Bignum::AssignDecimalString(Vector<const char> value) {
// 2^64 = 18446744073709551616 > 10^19
const int kMaxUint64DecimalDigits = 19;
Zero();
int length = value.length();
int pos = 0;
// Let's just say that each digit needs 4 bits.
while (length >= kMaxUint64DecimalDigits) {
uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
pos += kMaxUint64DecimalDigits;
length -= kMaxUint64DecimalDigits;
MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
AddUInt64(digits);
}
uint64_t digits = ReadUInt64(value, pos, length);
MultiplyByPowerOfTen(length);
AddUInt64(digits);
Clamp();
}
static int HexCharValue(char c) {
if ('0' <= c && c <= '9') return c - '0';
if ('a' <= c && c <= 'f') return 10 + c - 'a';
if ('A' <= c && c <= 'F') return 10 + c - 'A';
UNREACHABLE();
return 0; // To make compiler happy.
}
void Bignum::AssignHexString(Vector<const char> value) {
Zero();
int length = value.length();
int needed_bigits = length * 4 / kBigitSize + 1;
EnsureCapacity(needed_bigits);
int string_index = length - 1;
for (int i = 0; i < needed_bigits - 1; ++i) {
// These bigits are guaranteed to be "full".
Chunk current_bigit = 0;
for (int j = 0; j < kBigitSize / 4; j++) {
current_bigit += HexCharValue(value[string_index--]) << (j * 4);
}
bigits_[i] = current_bigit;
}
used_digits_ = needed_bigits - 1;
Chunk most_significant_bigit = 0; // Could be = 0;
for (int j = 0; j <= string_index; ++j) {
most_significant_bigit <<= 4;
most_significant_bigit += HexCharValue(value[j]);
}
if (most_significant_bigit != 0) {
bigits_[used_digits_] = most_significant_bigit;
used_digits_++;
}
Clamp();
}
void Bignum::AddUInt64(uint64_t operand) {
if (operand == 0) return;
Bignum other;
other.AssignUInt64(operand);
AddBignum(other);
}
void Bignum::AddBignum(const Bignum& other) {
ASSERT(IsClamped());
ASSERT(other.IsClamped());
// If this has a greater exponent than other append zero-bigits to this.
// After this call exponent_ <= other.exponent_.
Align(other);
// There are two possibilities:
// aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
// bbbbb 00000000
// ----------------
// ccccccccccc 0000
// or
// aaaaaaaaaa 0000
// bbbbbbbbb 0000000
// -----------------
// cccccccccccc 0000
// In both cases we might need a carry bigit.
EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
Chunk carry = 0;
int bigit_pos = other.exponent_ - exponent_;
ASSERT(bigit_pos >= 0);
for (int i = 0; i < other.used_digits_; ++i) {
Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
bigits_[bigit_pos] = sum & kBigitMask;
carry = sum >> kBigitSize;
bigit_pos++;
}
while (carry != 0) {
Chunk sum = bigits_[bigit_pos] + carry;
bigits_[bigit_pos] = sum & kBigitMask;
carry = sum >> kBigitSize;
bigit_pos++;
}
used_digits_ = Max(bigit_pos, used_digits_);
ASSERT(IsClamped());
}
void Bignum::SubtractBignum(const Bignum& other) {
ASSERT(IsClamped());
ASSERT(other.IsClamped());
// We require this to be bigger than other.
ASSERT(LessEqual(other, *this));
Align(other);
int offset = other.exponent_ - exponent_;
Chunk borrow = 0;
int i;
for (i = 0; i < other.used_digits_; ++i) {
ASSERT((borrow == 0) || (borrow == 1));
Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
bigits_[i + offset] = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
}
while (borrow != 0) {
Chunk difference = bigits_[i + offset] - borrow;
bigits_[i + offset] = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
++i;
}
Clamp();
}
void Bignum::ShiftLeft(int shift_amount) {
if (used_digits_ == 0) return;
exponent_ += shift_amount / kBigitSize;
int local_shift = shift_amount % kBigitSize;
EnsureCapacity(used_digits_ + 1);
BigitsShiftLeft(local_shift);
}
void Bignum::MultiplyByUInt32(uint32_t factor) {
if (factor == 1) return;
if (factor == 0) {
Zero();
return;
}
if (used_digits_ == 0) return;
// The product of a bigit with the factor is of size kBigitSize + 32.
// Assert that this number + 1 (for the carry) fits into double chunk.
ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
DoubleChunk carry = 0;
for (int i = 0; i < used_digits_; ++i) {
DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
bigits_[i] = static_cast<Chunk>(product & kBigitMask);
carry = (product >> kBigitSize);
}
while (carry != 0) {
EnsureCapacity(used_digits_ + 1);
bigits_[used_digits_] = carry & kBigitMask;
used_digits_++;
carry >>= kBigitSize;
}
}
void Bignum::MultiplyByUInt64(uint64_t factor) {
if (factor == 1) return;
if (factor == 0) {
Zero();
return;
}
ASSERT(kBigitSize < 32);
uint64_t carry = 0;
uint64_t low = factor & 0xFFFFFFFF;
uint64_t high = factor >> 32;
for (int i = 0; i < used_digits_; ++i) {
uint64_t product_low = low * bigits_[i];
uint64_t product_high = high * bigits_[i];
uint64_t tmp = (carry & kBigitMask) + product_low;
bigits_[i] = tmp & kBigitMask;
carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
(product_high << (32 - kBigitSize));
}
while (carry != 0) {
EnsureCapacity(used_digits_ + 1);
bigits_[used_digits_] = carry & kBigitMask;
used_digits_++;
carry >>= kBigitSize;
}
}
void Bignum::MultiplyByPowerOfTen(int exponent) {
const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
const uint16_t kFive1 = 5;
const uint16_t kFive2 = kFive1 * 5;
const uint16_t kFive3 = kFive2 * 5;
const uint16_t kFive4 = kFive3 * 5;
const uint16_t kFive5 = kFive4 * 5;
const uint16_t kFive6 = kFive5 * 5;
const uint32_t kFive7 = kFive6 * 5;
const uint32_t kFive8 = kFive7 * 5;
const uint32_t kFive9 = kFive8 * 5;
const uint32_t kFive10 = kFive9 * 5;
const uint32_t kFive11 = kFive10 * 5;
const uint32_t kFive12 = kFive11 * 5;
const uint32_t kFive13 = kFive12 * 5;
const uint32_t kFive1_to_12[] =
{ kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
ASSERT(exponent >= 0);
if (exponent == 0) return;
if (used_digits_ == 0) return;
// We shift by exponent at the end just before returning.
int remaining_exponent = exponent;
while (remaining_exponent >= 27) {
MultiplyByUInt64(kFive27);
remaining_exponent -= 27;
}
while (remaining_exponent >= 13) {
MultiplyByUInt32(kFive13);
remaining_exponent -= 13;
}
if (remaining_exponent > 0) {
MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
}
ShiftLeft(exponent);
}
void Bignum::Square() {
ASSERT(IsClamped());
int product_length = 2 * used_digits_;
EnsureCapacity(product_length);
// Comba multiplication: compute each column separately.
// Example: r = a2a1a0 * b2b1b0.
// r = 1 * a0b0 +
// 10 * (a1b0 + a0b1) +
// 100 * (a2b0 + a1b1 + a0b2) +
// 1000 * (a2b1 + a1b2) +
// 10000 * a2b2
//
// In the worst case we have to accumulate nb-digits products of digit*digit.
//
// Assert that the additional number of bits in a DoubleChunk are enough to
// sum up used_digits of Bigit*Bigit.
if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
UNIMPLEMENTED();
}
DoubleChunk accumulator = 0;
// First shift the digits so we don't overwrite them.
int copy_offset = used_digits_;
for (int i = 0; i < used_digits_; ++i) {
bigits_[copy_offset + i] = bigits_[i];
}
// We have two loops to avoid some 'if's in the loop.
for (int i = 0; i < used_digits_; ++i) {
// Process temporary digit i with power i.
// The sum of the two indices must be equal to i.
int bigit_index1 = i;
int bigit_index2 = 0;
// Sum all of the sub-products.
while (bigit_index1 >= 0) {
Chunk chunk1 = bigits_[copy_offset + bigit_index1];
Chunk chunk2 = bigits_[copy_offset + bigit_index2];
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
bigit_index1--;
bigit_index2++;
}
bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
accumulator >>= kBigitSize;
}
for (int i = used_digits_; i < product_length; ++i) {
int bigit_index1 = used_digits_ - 1;
int bigit_index2 = i - bigit_index1;
// Invariant: sum of both indices is again equal to i.
// Inner loop runs 0 times on last iteration, emptying accumulator.
while (bigit_index2 < used_digits_) {
Chunk chunk1 = bigits_[copy_offset + bigit_index1];
Chunk chunk2 = bigits_[copy_offset + bigit_index2];
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
bigit_index1--;
bigit_index2++;
}
// The overwritten bigits_[i] will never be read in further loop iterations,
// because bigit_index1 and bigit_index2 are always greater
// than i - used_digits_.
bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
accumulator >>= kBigitSize;
}
// Since the result was guaranteed to lie inside the number the
// accumulator must be 0 now.
ASSERT(accumulator == 0);
// Don't forget to update the used_digits and the exponent.
used_digits_ = product_length;
exponent_ *= 2;
Clamp();
}
void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
ASSERT(base != 0);
ASSERT(power_exponent >= 0);
if (power_exponent == 0) {
AssignUInt16(1);
return;
}
Zero();
int shifts = 0;
// We expect base to be in range 2-32, and most often to be 10.
// It does not make much sense to implement different algorithms for counting
// the bits.
while ((base & 1) == 0) {
base >>= 1;
shifts++;
}
int bit_size = 0;
int tmp_base = base;
while (tmp_base != 0) {
tmp_base >>= 1;
bit_size++;
}
int final_size = bit_size * power_exponent;
// 1 extra bigit for the shifting, and one for rounded final_size.
EnsureCapacity(final_size / kBigitSize + 2);
// Left to Right exponentiation.
int mask = 1;
while (power_exponent >= mask) mask <<= 1;
// The mask is now pointing to the bit above the most significant 1-bit of
// power_exponent.
// Get rid of first 1-bit;
mask >>= 2;
uint64_t this_value = base;
bool delayed_multipliciation = false;
const uint64_t max_32bits = 0xFFFFFFFF;
while (mask != 0 && this_value <= max_32bits) {
this_value = this_value * this_value;
// Verify that there is enough space in this_value to perform the
// multiplication. The first bit_size bits must be 0.
if ((power_exponent & mask) != 0) {
uint64_t base_bits_mask =
~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
bool high_bits_zero = (this_value & base_bits_mask) == 0;
if (high_bits_zero) {
this_value *= base;
} else {
delayed_multipliciation = true;
}
}
mask >>= 1;
}
AssignUInt64(this_value);
if (delayed_multipliciation) {
MultiplyByUInt32(base);
}
// Now do the same thing as a bignum.
while (mask != 0) {
Square();
if ((power_exponent & mask) != 0) {
MultiplyByUInt32(base);
}
mask >>= 1;
}
// And finally add the saved shifts.
ShiftLeft(shifts * power_exponent);
}
// Precondition: this/other < 16bit.
uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
ASSERT(IsClamped());
ASSERT(other.IsClamped());
ASSERT(other.used_digits_ > 0);
// Easy case: if we have less digits than the divisor than the result is 0.
// Note: this handles the case where this == 0, too.
if (BigitLength() < other.BigitLength()) {
return 0;
}
Align(other);
uint16_t result = 0;
// Start by removing multiples of 'other' until both numbers have the same
// number of digits.
while (BigitLength() > other.BigitLength()) {
// This naive approach is extremely inefficient if the this divided other
// might be big. This function is implemented for doubleToString where
// the result should be small (less than 10).
ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
// Remove the multiples of the first digit.
// Example this = 23 and other equals 9. -> Remove 2 multiples.
result += bigits_[used_digits_ - 1];
SubtractTimes(other, bigits_[used_digits_ - 1]);
}
ASSERT(BigitLength() == other.BigitLength());
// Both bignums are at the same length now.
// Since other has more than 0 digits we know that the access to
// bigits_[used_digits_ - 1] is safe.
Chunk this_bigit = bigits_[used_digits_ - 1];
Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
if (other.used_digits_ == 1) {
// Shortcut for easy (and common) case.
int quotient = this_bigit / other_bigit;
bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
result += quotient;
Clamp();
return result;
}
int division_estimate = this_bigit / (other_bigit + 1);
result += division_estimate;
SubtractTimes(other, division_estimate);
if (other_bigit * (division_estimate + 1) > this_bigit) {
// No need to even try to subtract. Even if other's remaining digits were 0
// another subtraction would be too much.
return result;
}
while (LessEqual(other, *this)) {
SubtractBignum(other);
result++;
}
return result;
}
template<typename S>
static int SizeInHexChars(S number) {
ASSERT(number > 0);
int result = 0;
while (number != 0) {
number >>= 4;
result++;
}
return result;
}
static char HexCharOfValue(int value) {
ASSERT(0 <= value && value <= 16);
if (value < 10) return value + '0';
return value - 10 + 'A';
}
bool Bignum::ToHexString(char* buffer, int buffer_size) const {
ASSERT(IsClamped());
// Each bigit must be printable as separate hex-character.
ASSERT(kBigitSize % 4 == 0);
const int kHexCharsPerBigit = kBigitSize / 4;
if (used_digits_ == 0) {
if (buffer_size < 2) return false;
buffer[0] = '0';
buffer[1] = '\0';
return true;
}
// We add 1 for the terminating '\0' character.
int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
if (needed_chars > buffer_size) return false;
int string_index = needed_chars - 1;
buffer[string_index--] = '\0';
for (int i = 0; i < exponent_; ++i) {
for (int j = 0; j < kHexCharsPerBigit; ++j) {
buffer[string_index--] = '0';
}
}
for (int i = 0; i < used_digits_ - 1; ++i) {
Chunk current_bigit = bigits_[i];
for (int j = 0; j < kHexCharsPerBigit; ++j) {
buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
current_bigit >>= 4;
}
}
// And finally the last bigit.
Chunk most_significant_bigit = bigits_[used_digits_ - 1];
while (most_significant_bigit != 0) {
buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
most_significant_bigit >>= 4;
}
return true;
}
Bignum::Chunk Bignum::BigitAt(int index) const {
if (index >= BigitLength()) return 0;
if (index < exponent_) return 0;
return bigits_[index - exponent_];
}
int Bignum::Compare(const Bignum& a, const Bignum& b) {
ASSERT(a.IsClamped());
ASSERT(b.IsClamped());
int bigit_length_a = a.BigitLength();
int bigit_length_b = b.BigitLength();
if (bigit_length_a < bigit_length_b) return -1;
if (bigit_length_a > bigit_length_b) return +1;
for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
Chunk bigit_a = a.BigitAt(i);
Chunk bigit_b = b.BigitAt(i);
if (bigit_a < bigit_b) return -1;
if (bigit_a > bigit_b) return +1;
// Otherwise they are equal up to this digit. Try the next digit.
}
return 0;
}
int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
ASSERT(a.IsClamped());
ASSERT(b.IsClamped());
ASSERT(c.IsClamped());
if (a.BigitLength() < b.BigitLength()) {
return PlusCompare(b, a, c);
}
if (a.BigitLength() + 1 < c.BigitLength()) return -1;
if (a.BigitLength() > c.BigitLength()) return +1;
// The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
// 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
// of 'a'.
if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
return -1;
}
Chunk borrow = 0;
// Starting at min_exponent all digits are == 0. So no need to compare them.
int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
Chunk chunk_a = a.BigitAt(i);
Chunk chunk_b = b.BigitAt(i);
Chunk chunk_c = c.BigitAt(i);
Chunk sum = chunk_a + chunk_b;
if (sum > chunk_c + borrow) {
return +1;
} else {
borrow = chunk_c + borrow - sum;
if (borrow > 1) return -1;
borrow <<= kBigitSize;
}
}
if (borrow == 0) return 0;
return -1;
}
void Bignum::Clamp() {
while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
used_digits_--;
}
if (used_digits_ == 0) {
// Zero.
exponent_ = 0;
}
}
bool Bignum::IsClamped() const {
return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
}
void Bignum::Zero() {
for (int i = 0; i < used_digits_; ++i) {
bigits_[i] = 0;
}
used_digits_ = 0;
exponent_ = 0;
}
void Bignum::Align(const Bignum& other) {
if (exponent_ > other.exponent_) {
// If "X" represents a "hidden" digit (by the exponent) then we are in the
// following case (a == this, b == other):
// a: aaaaaaXXXX or a: aaaaaXXX
// b: bbbbbbX b: bbbbbbbbXX
// We replace some of the hidden digits (X) of a with 0 digits.
// a: aaaaaa000X or a: aaaaa0XX
int zero_digits = exponent_ - other.exponent_;
EnsureCapacity(used_digits_ + zero_digits);
for (int i = used_digits_ - 1; i >= 0; --i) {
bigits_[i + zero_digits] = bigits_[i];
}
for (int i = 0; i < zero_digits; ++i) {
bigits_[i] = 0;
}
used_digits_ += zero_digits;
exponent_ -= zero_digits;
ASSERT(used_digits_ >= 0);
ASSERT(exponent_ >= 0);
}
}
void Bignum::BigitsShiftLeft(int shift_amount) {
ASSERT(shift_amount < kBigitSize);
ASSERT(shift_amount >= 0);
Chunk carry = 0;
for (int i = 0; i < used_digits_; ++i) {
Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
carry = new_carry;
}
if (carry != 0) {
bigits_[used_digits_] = carry;
used_digits_++;
}
}
void Bignum::SubtractTimes(const Bignum& other, int factor) {
ASSERT(exponent_ <= other.exponent_);
if (factor < 3) {
for (int i = 0; i < factor; ++i) {
SubtractBignum(other);
}
return;
}
Chunk borrow = 0;
int exponent_diff = other.exponent_ - exponent_;
for (int i = 0; i < other.used_digits_; ++i) {
DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
DoubleChunk remove = borrow + product;
Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask);
bigits_[i + exponent_diff] = difference & kBigitMask;
borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
(remove >> kBigitSize));
}
for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
if (borrow == 0) return;
Chunk difference = bigits_[i] - borrow;
bigits_[i] = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
++i;
}
Clamp();
}
} } // namespace v8::internal
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_BIGNUM_H_
#define V8_BIGNUM_H_
namespace v8 {
namespace internal {
class Bignum {
public:
// 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately.
// This bignum can encode much bigger numbers, since it contains an
// exponent.
static const int kMaxSignificantBits = 3584;
Bignum();
void AssignUInt16(uint16_t value);
void AssignUInt64(uint64_t value);
void AssignBignum(const Bignum& other);
void AssignDecimalString(Vector<const char> value);
void AssignHexString(Vector<const char> value);
void AssignPowerUInt16(uint16_t base, int exponent);
void AddUInt16(uint16_t operand);
void AddUInt64(uint64_t operand);
void AddBignum(const Bignum& other);
// Precondition: this >= other.
void SubtractBignum(const Bignum& other);
void Square();
void ShiftLeft(int shift_amount);
void MultiplyByUInt32(uint32_t factor);
void MultiplyByUInt64(uint64_t factor);
void MultiplyByPowerOfTen(int exponent);
void Times10() { return MultiplyByUInt32(10); }
// Pseudocode:
// int result = this / other;
// this = this % other;
// In the worst case this function is in O(this/other).
uint16_t DivideModuloIntBignum(const Bignum& other);
bool ToHexString(char* buffer, int buffer_size) const;
static int Compare(const Bignum& a, const Bignum& b);
static bool Equal(const Bignum& a, const Bignum& b) {
return Compare(a, b) == 0;
}
static bool LessEqual(const Bignum& a, const Bignum& b) {
return Compare(a, b) <= 0;
}
static bool Less(const Bignum& a, const Bignum& b) {
return Compare(a, b) < 0;
}
// Returns Compare(a + b, c);
static int PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c);
// Returns a + b == c
static bool PlusEqual(const Bignum& a, const Bignum& b, const Bignum& c) {
return PlusCompare(a, b, c) == 0;
}
// Returns a + b <= c
static bool PlusLessEqual(const Bignum& a, const Bignum& b, const Bignum& c) {
return PlusCompare(a, b, c) <= 0;
}
// Returns a + b < c
static bool PlusLess(const Bignum& a, const Bignum& b, const Bignum& c) {
return PlusCompare(a, b, c) < 0;
}
private:
typedef uint32_t Chunk;
typedef uint64_t DoubleChunk;
static const int kChunkSize = sizeof(Chunk) * 8;
static const int kDoubleChunkSize = sizeof(DoubleChunk) * 8;
// With bigit size of 28 we loose some bits, but a double still fits easily
// into two chunks, and more importantly we can use the Comba multiplication.
static const int kBigitSize = 28;
static const Chunk kBigitMask = (1 << kBigitSize) - 1;
// Every instance allocates kBigitLength chunks on the stack. Bignums cannot
// grow. There are no checks if the stack-allocated space is sufficient.
static const int kBigitCapacity = kMaxSignificantBits / kBigitSize;
void EnsureCapacity(int size) {
if (size > kBigitCapacity) {
UNREACHABLE();
}
}
void Align(const Bignum& other);
void Clamp();
bool IsClamped() const;
void Zero();
// Requires this to have enough capacity (no tests done).
// Updates used_digits_ if necessary.
// by must be < kBigitSize.
void BigitsShiftLeft(int shift_amount);
// BigitLength includes the "hidden" digits encoded in the exponent.
int BigitLength() const { return used_digits_ + exponent_; }
Chunk BigitAt(int index) const;
void SubtractTimes(const Bignum& other, int factor);
Chunk bigits_buffer_[kBigitCapacity];
// A vector backed by bigits_buffer_. This way accesses to the array are
// checked for out-of-bounds errors.
Vector<Chunk> bigits_;
int used_digits_;
// The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize).
int exponent_;
DISALLOW_COPY_AND_ASSIGN(Bignum);
};
} } // namespace v8::internal
#endif // V8_BIGNUM_H_
......@@ -82,6 +82,11 @@ class Double {
return d64_;
}
double NextDouble() const {
if (d64_ == kInfinity) return kInfinity;
return Double(d64_ + 1).value();
}
int Exponent() const {
if (IsDenormal()) return kDenormalExponent;
......@@ -120,19 +125,20 @@ class Double {
((d64 & kSignificandMask) != 0);
}
bool IsInfinite() const {
uint64_t d64 = AsUint64();
return ((d64 & kExponentMask) == kExponentMask) &&
((d64 & kSignificandMask) == 0);
}
int Sign() const {
uint64_t d64 = AsUint64();
return (d64 & kSignMask) == 0? 1: -1;
}
DiyFp UpperBoundary() const {
return DiyFp(Significand() * 2 + 1, Exponent() - 1);
}
// Returns the two boundaries of this.
// The bigger boundary (m_plus) is normalized. The lower boundary has the same
......
......@@ -31,6 +31,7 @@
#include "v8.h"
#include "strtod.h"
#include "bignum.h"
#include "cached-powers.h"
#include "double.h"
......@@ -83,44 +84,12 @@ static const double exact_powers_of_ten[] = {
// 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
10000000000000000000000.0
};
static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
extern "C" double gay_strtod(const char* s00, const char** se);
static double old_strtod(Vector<const char> buffer, int exponent) {
// gay_strtod is broken on Linux,x86. For numbers with few decimal digits
// the computation is done using floating-point operations which (on Linux)
// are prone to double-rounding errors.
// By adding several zeroes to the buffer gay_strtod falls back to a slower
// (but correct) algorithm.
const int kInsertedZeroesCount = 20;
char gay_buffer[1024];
Vector<char> gay_buffer_vector(gay_buffer, sizeof(gay_buffer));
int pos = 0;
for (int i = 0; i < buffer.length(); ++i) {
gay_buffer_vector[pos++] = buffer[i];
}
for (int i = 0; i < kInsertedZeroesCount; ++i) {
gay_buffer_vector[pos++] = '0';
}
exponent -= kInsertedZeroesCount;
gay_buffer_vector[pos++] = 'e';
if (exponent < 0) {
gay_buffer_vector[pos++] = '-';
exponent = -exponent;
}
const int kNumberOfExponentDigits = 5;
for (int i = kNumberOfExponentDigits - 1; i >= 0; i--) {
gay_buffer_vector[pos + i] = exponent % 10 + '0';
exponent /= 10;
}
pos += kNumberOfExponentDigits;
gay_buffer_vector[pos] = '\0';
return gay_strtod(gay_buffer, NULL);
}
// Maximum number of significant digits in the decimal representation.
// In fact the value is 772 (see conversions.cc), but to give us some margin
// we round up to 780.
static const int kMaxSignificantDecimalDigits = 780;
static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
for (int i = 0; i < buffer.length(); i++) {
......@@ -142,6 +111,23 @@ static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
}
static void TrimToMaxSignificantDigits(Vector<const char> buffer,
int exponent,
char* significant_buffer,
int* significant_exponent) {
for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
significant_buffer[i] = buffer[i];
}
// The input buffer has been trimmed. Therefore the last digit must be
// different from '0'.
ASSERT(buffer[buffer.length() - 1] != '0');
// Set the last digit to be non-zero. This is sufficient to guarantee
// correct rounding.
significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
*significant_exponent =
exponent + (buffer.length() - kMaxSignificantDecimalDigits);
}
// Reads digits from the buffer and converts them to a uint64.
// Reads in as many digits as fit into a uint64.
// When the string starts with "1844674407370955161" no further digit is read.
......@@ -374,20 +360,81 @@ static bool DiyFpStrtod(Vector<const char> buffer,
}
// Returns the correct double for the buffer*10^exponent.
// The variable guess should be a close guess that is either the correct double
// or its lower neighbor (the nearest double less than the correct one).
// Preconditions:
// buffer.length() + exponent <= kMaxDecimalPower + 1
// buffer.length() + exponent > kMinDecimalPower
// buffer.length() <= kMaxDecimalSignificantDigits
static double BignumStrtod(Vector<const char> buffer,
int exponent,
double guess) {
if (guess == V8_INFINITY) {
return guess;
}
DiyFp upper_boundary = Double(guess).UpperBoundary();
ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
ASSERT(buffer.length() + exponent > kMinDecimalPower);
ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
// Make sure that the Bignum will be able to hold all our numbers.
// Our Bignum implementation has a separate field for exponents. Shifts will
// consume at most one bigit (< 64 bits).
// ln(10) == 3.3219...
ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
Bignum input;
Bignum boundary;
input.AssignDecimalString(buffer);
boundary.AssignUInt64(upper_boundary.f());
if (exponent >= 0) {
input.MultiplyByPowerOfTen(exponent);
} else {
boundary.MultiplyByPowerOfTen(-exponent);
}
if (upper_boundary.e() > 0) {
boundary.ShiftLeft(upper_boundary.e());
} else {
input.ShiftLeft(-upper_boundary.e());
}
int comparison = Bignum::Compare(input, boundary);
if (comparison < 0) {
return guess;
} else if (comparison > 0) {
return Double(guess).NextDouble();
} else if ((Double(guess).Significand() & 1) == 0) {
// Round towards even.
return guess;
} else {
return Double(guess).NextDouble();
}
}
double Strtod(Vector<const char> buffer, int exponent) {
Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
exponent += left_trimmed.length() - trimmed.length();
if (trimmed.length() == 0) return 0.0;
if (trimmed.length() > kMaxSignificantDecimalDigits) {
char significant_buffer[kMaxSignificantDecimalDigits];
int significant_exponent;
TrimToMaxSignificantDigits(trimmed, exponent,
significant_buffer, &significant_exponent);
trimmed =
Vector<const char>(significant_buffer, kMaxSignificantDecimalDigits);
exponent = significant_exponent;
}
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
double result;
if (DoubleStrtod(trimmed, exponent, &result) ||
DiyFpStrtod(trimmed, exponent, &result)) {
return result;
double guess;
if (DoubleStrtod(trimmed, exponent, &guess) ||
DiyFpStrtod(trimmed, exponent, &guess)) {
return guess;
}
return old_strtod(trimmed, exponent);
return BignumStrtod(trimmed, exponent, guess);
}
} } // namespace v8::internal
......@@ -41,6 +41,7 @@ SOURCES = {
'test-alloc.cc',
'test-api.cc',
'test-ast.cc',
'test-bignum.cc',
'test-circular-queue.cc',
'test-compiler.cc',
'test-conversions.cc',
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "platform.h"
#include "cctest.h"
#include "bignum.h"
using namespace v8::internal;
static const int kBufferSize = 1024;
static void AssignHexString(Bignum* bignum, const char* str) {
bignum->AssignHexString(Vector<const char>(str, StrLength(str)));
}
static void AssignDecimalString(Bignum* bignum, const char* str) {
bignum->AssignDecimalString(Vector<const char>(str, StrLength(str)));
}
TEST(Assign) {
char buffer[kBufferSize];
Bignum bignum;
Bignum bignum2;
bignum.AssignUInt16(0);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("0", buffer);
bignum.AssignUInt16(0xA);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A", buffer);
bignum.AssignUInt16(0x20);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("20", buffer);
bignum.AssignUInt64(0);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("0", buffer);
bignum.AssignUInt64(0xA);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A", buffer);
bignum.AssignUInt64(0x20);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("20", buffer);
bignum.AssignUInt64(0x100);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("100", buffer);
// The first real test, since this will not fit into one bigit.
bignum.AssignUInt64(0x12345678);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("12345678", buffer);
uint64_t big = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
bignum.AssignUInt64(big);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFFFFFFFFFF", buffer);
big = V8_2PART_UINT64_C(0x12345678, 9ABCDEF0);
bignum.AssignUInt64(big);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("123456789ABCDEF0", buffer);
bignum2.AssignBignum(bignum);
CHECK(bignum2.ToHexString(buffer, kBufferSize));
CHECK_EQ("123456789ABCDEF0", buffer);
AssignDecimalString(&bignum, "0");
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("0", buffer);
AssignDecimalString(&bignum, "1");
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
AssignDecimalString(&bignum, "1234567890");
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("499602D2", buffer);
AssignHexString(&bignum, "0");
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("0", buffer);
AssignHexString(&bignum, "123456789ABCDEF0");
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("123456789ABCDEF0", buffer);
}
TEST(ShiftLeft) {
char buffer[kBufferSize];
Bignum bignum;
AssignHexString(&bignum, "0");
bignum.ShiftLeft(100);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("0", buffer);
AssignHexString(&bignum, "1");
bignum.ShiftLeft(1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2", buffer);
AssignHexString(&bignum, "1");
bignum.ShiftLeft(4);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10", buffer);
AssignHexString(&bignum, "1");
bignum.ShiftLeft(32);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("100000000", buffer);
AssignHexString(&bignum, "1");
bignum.ShiftLeft(64);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000", buffer);
AssignHexString(&bignum, "123456789ABCDEF");
bignum.ShiftLeft(64);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("123456789ABCDEF0000000000000000", buffer);
bignum.ShiftLeft(1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2468ACF13579BDE0000000000000000", buffer);
}
TEST(AddUInt64) {
char buffer[kBufferSize];
Bignum bignum;
AssignHexString(&bignum, "0");
bignum.AddUInt64(0xA);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A", buffer);
AssignHexString(&bignum, "1");
bignum.AddUInt64(0xA);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("B", buffer);
AssignHexString(&bignum, "1");
bignum.AddUInt64(0x100);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("101", buffer);
AssignHexString(&bignum, "1");
bignum.AddUInt64(0xFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000", buffer);
AssignHexString(&bignum, "FFFFFFF");
bignum.AddUInt64(0x1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000", buffer);
AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
bignum.AddUInt64(0xFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1000000000000000000000000000000000000000FFFF", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
bignum.AddUInt64(0x1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("100000000000000000000000000000000000000000000", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
bignum.AddUInt64(1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000000000001", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
bignum.AddUInt64(0xFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1000000000000000000000FFFF", buffer);
AssignHexString(&bignum, "0");
bignum.AddUInt64(V8_2PART_UINT64_C(0xA, 00000000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A00000000", buffer);
AssignHexString(&bignum, "1");
bignum.AddUInt64(V8_2PART_UINT64_C(0xA, 00000000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A00000001", buffer);
AssignHexString(&bignum, "1");
bignum.AddUInt64(V8_2PART_UINT64_C(0x100, 00000000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000001", buffer);
AssignHexString(&bignum, "1");
bignum.AddUInt64(V8_2PART_UINT64_C(0xFFFF, 00000000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFF00000001", buffer);
AssignHexString(&bignum, "FFFFFFF");
bignum.AddUInt64(V8_2PART_UINT64_C(0x1, 00000000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10FFFFFFF", buffer);
AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
bignum.AddUInt64(V8_2PART_UINT64_C(0xFFFF, 00000000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000000000000000000FFFF00000000", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
bignum.AddUInt64(V8_2PART_UINT64_C(0x1, 00000000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1000000000000000000000000000000000000FFFFFFFF", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
bignum.AddUInt64(V8_2PART_UINT64_C(0x1, 00000000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000100000000", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
bignum.AddUInt64(V8_2PART_UINT64_C(0xFFFF, 00000000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000FFFF00000000", buffer);
}
TEST(AddBignum) {
char buffer[kBufferSize];
Bignum bignum;
Bignum other;
AssignHexString(&other, "1");
AssignHexString(&bignum, "0");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
AssignHexString(&bignum, "1");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2", buffer);
AssignHexString(&bignum, "FFFFFFF");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFF");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("100000000000000", buffer);
AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000000000000000000000000000001", buffer);
AssignHexString(&other, "1000000000000");
AssignHexString(&bignum, "1");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1000000000001", buffer);
AssignHexString(&bignum, "FFFFFFF");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("100000FFFFFFF", buffer);
AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000000000000000001000000000000", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1000000000000000000000000000000FFFFFFFFFFFF", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000001000000000000", buffer);
other.ShiftLeft(64);
// other == "10000000000000000000000000000"
bignum.AssignUInt16(0x1);
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000000000000001", buffer);
AssignHexString(&bignum, "FFFFFFF");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1000000000000000000000FFFFFFF", buffer);
AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000010000000000000000000000000000", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("100000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFF", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
bignum.AddBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10010000000000000000000000000", buffer);
}
TEST(SubtractBignum) {
char buffer[kBufferSize];
Bignum bignum;
Bignum other;
AssignHexString(&bignum, "1");
AssignHexString(&other, "0");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
AssignHexString(&bignum, "2");
AssignHexString(&other, "0");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2", buffer);
AssignHexString(&bignum, "10000000");
AssignHexString(&other, "1");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFF", buffer);
AssignHexString(&bignum, "100000000000000");
AssignHexString(&other, "1");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFFFFFFFF", buffer);
AssignHexString(&bignum, "10000000000000000000000000000000000000000001");
AssignHexString(&other, "1");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000000000000000000000000000000", buffer);
AssignHexString(&bignum, "1000000000001");
AssignHexString(&other, "1000000000000");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
AssignHexString(&bignum, "100000FFFFFFF");
AssignHexString(&other, "1000000000000");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFF", buffer);
AssignHexString(&bignum, "10000000000000000000000000000001000000000000");
AssignHexString(&other, "1000000000000");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000000000000000000000000000000", buffer);
AssignHexString(&bignum, "1000000000000000000000000000000FFFFFFFFFFFF");
AssignHexString(&other, "1000000000000");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
// "10 0000 0000 0000 0000 0000 0000"
AssignHexString(&other, "1000000000000");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFFFFFFF000000000000", buffer);
AssignHexString(&other, "1000000000000");
other.ShiftLeft(48);
// other == "1000000000000000000000000"
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
// bignum == "10000000000000000000000000"
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("F000000000000000000000000", buffer);
other.AssignUInt16(0x1);
other.ShiftLeft(35);
// other == "800000000"
AssignHexString(&bignum, "FFFFFFF");
bignum.ShiftLeft(60);
// bignum = FFFFFFF000000000000000
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFEFFFFFF800000000", buffer);
AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF800000000", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
bignum.SubtractBignum(other);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFF", buffer);
}
TEST(MultiplyUInt32) {
char buffer[kBufferSize];
Bignum bignum;
AssignHexString(&bignum, "0");
bignum.MultiplyByUInt32(0x25);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("0", buffer);
AssignHexString(&bignum, "2");
bignum.MultiplyByUInt32(0x5);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A", buffer);
AssignHexString(&bignum, "10000000");
bignum.MultiplyByUInt32(0x9);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("90000000", buffer);
AssignHexString(&bignum, "100000000000000");
bignum.MultiplyByUInt32(0xFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFF00000000000000", buffer);
AssignHexString(&bignum, "100000000000000");
bignum.MultiplyByUInt32(0xFFFFFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFF00000000000000", buffer);
AssignHexString(&bignum, "1234567ABCD");
bignum.MultiplyByUInt32(0xFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("12333335552433", buffer);
AssignHexString(&bignum, "1234567ABCD");
bignum.MultiplyByUInt32(0xFFFFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("12345679998A985433", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
bignum.MultiplyByUInt32(0x2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1FFFFFFFFFFFFFFFE", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
bignum.MultiplyByUInt32(0x4);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("3FFFFFFFFFFFFFFFC", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
bignum.MultiplyByUInt32(0xF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("EFFFFFFFFFFFFFFF1", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
bignum.MultiplyByUInt32(0xFFFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFEFFFFFFFFFF000001", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
// "10 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt32(2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("20000000000000000000000000", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
// "10 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt32(0xF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("F0000000000000000000000000", buffer);
bignum.AssignUInt16(0xFFFF);
bignum.ShiftLeft(100);
// "FFFF0 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt32(0xFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFE00010000000000000000000000000", buffer);
bignum.AssignUInt16(0xFFFF);
bignum.ShiftLeft(100);
// "FFFF0 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt32(0xFFFFFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFEFFFF00010000000000000000000000000", buffer);
bignum.AssignUInt16(0xFFFF);
bignum.ShiftLeft(100);
// "FFFF0 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt32(0xFFFFFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFEFFFF00010000000000000000000000000", buffer);
AssignDecimalString(&bignum, "15611230384529777");
bignum.MultiplyByUInt32(10000000);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("210EDD6D4CDD2580EE80", buffer);
}
TEST(MultiplyUInt64) {
char buffer[kBufferSize];
Bignum bignum;
AssignHexString(&bignum, "0");
bignum.MultiplyByUInt64(0x25);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("0", buffer);
AssignHexString(&bignum, "2");
bignum.MultiplyByUInt64(0x5);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A", buffer);
AssignHexString(&bignum, "10000000");
bignum.MultiplyByUInt64(0x9);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("90000000", buffer);
AssignHexString(&bignum, "100000000000000");
bignum.MultiplyByUInt64(0xFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFF00000000000000", buffer);
AssignHexString(&bignum, "100000000000000");
bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFFFFFFFFFF00000000000000", buffer);
AssignHexString(&bignum, "1234567ABCD");
bignum.MultiplyByUInt64(0xFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("12333335552433", buffer);
AssignHexString(&bignum, "1234567ABCD");
bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0xFF, FFFFFFFF));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1234567ABCBDCBA985433", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
bignum.MultiplyByUInt64(0x2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1FFFFFFFFFFFFFFFE", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
bignum.MultiplyByUInt64(0x4);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("3FFFFFFFFFFFFFFFC", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
bignum.MultiplyByUInt64(0xF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("EFFFFFFFFFFFFFFF1", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFFFFFFFFFE0000000000000001", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
// "10 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt64(2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("20000000000000000000000000", buffer);
bignum.AssignUInt16(0x1);
bignum.ShiftLeft(100);
// "10 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt64(0xF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("F0000000000000000000000000", buffer);
bignum.AssignUInt16(0xFFFF);
bignum.ShiftLeft(100);
// "FFFF0 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt64(0xFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFE00010000000000000000000000000", buffer);
bignum.AssignUInt16(0xFFFF);
bignum.ShiftLeft(100);
// "FFFF0 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt64(0xFFFFFFFF);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFEFFFF00010000000000000000000000000", buffer);
bignum.AssignUInt16(0xFFFF);
bignum.ShiftLeft(100);
// "FFFF0 0000 0000 0000 0000 0000 0000"
bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFEFFFFFFFFFFFF00010000000000000000000000000", buffer);
AssignDecimalString(&bignum, "15611230384529777");
bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0x8ac72304, 89e80000));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1E10EE4B11D15A7F3DE7F3C7680000", buffer);
}
TEST(MultiplyPowerOfTen) {
char buffer[kBufferSize];
Bignum bignum;
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("3034", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1E208", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(3);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("12D450", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(4);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("BC4B20", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(5);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("75AEF40", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(6);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("498D5880", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(7);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2DF857500", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(8);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1CBB369200", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(9);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("11F5021B400", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(10);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("B3921510800", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(11);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("703B4D2A5000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(12);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("4625103A72000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(13);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2BD72A24874000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(14);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1B667A56D488000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(15);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("11200C7644D50000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(16);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("AB407C9EB0520000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(17);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("6B084DE32E3340000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(18);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("42E530ADFCE0080000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(19);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("29CF3E6CBE0C0500000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(20);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1A218703F6C783200000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(21);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1054F4627A3CB1F400000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(22);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A3518BD8C65EF38800000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(23);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("6612F7677BFB5835000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(24);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("3FCBDAA0AD7D17212000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(25);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("27DF68A46C6E2E74B4000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(26);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("18EBA166C3C4DD08F08000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(27);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("F9344E03A5B0A259650000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(28);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("9BC0B0C2478E6577DF20000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(29);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("61586E796CB8FF6AEB740000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(30);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("3CD7450BE3F39FA2D32880000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(31);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("26068B276E7843C5C3F9500000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(50);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("149D1B4CFED03B23AB5F4E1196EF45C08000000000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(100);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("5827249F27165024FBC47DFCA9359BF316332D1B91ACEECF471FBAB06D9B2"
"0000000000000000000000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(200);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("64C1F5C06C3816AFBF8DAFD5A3D756365BB0FD020E6F084E759C1F7C99E4F"
"55B9ACC667CEC477EB958C2AEEB3C6C19BA35A1AD30B35C51EB72040920000"
"0000000000000000000000000000000000000000000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(500);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("96741A625EB5D7C91039FEB5C5ACD6D9831EDA5B083D800E6019442C8C8223"
"3EAFB3501FE2058062221E15121334928880827DEE1EC337A8B26489F3A40A"
"CB440A2423734472D10BFCE886F41B3AF9F9503013D86D088929CA86EEB4D8"
"B9C831D0BD53327B994A0326227CFD0ECBF2EB48B02387AAE2D4CCCDF1F1A1"
"B8CC4F1FA2C56AD40D0E4DAA9C28CDBF0A549098EA13200000000000000000"
"00000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000", buffer);
AssignDecimalString(&bignum, "1234");
bignum.MultiplyByPowerOfTen(1000);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1258040F99B1CD1CC9819C676D413EA50E4A6A8F114BB0C65418C62D399B81"
"6361466CA8E095193E1EE97173553597C96673AF67FAFE27A66E7EF2E5EF2E"
"E3F5F5070CC17FE83BA53D40A66A666A02F9E00B0E11328D2224B8694C7372"
"F3D536A0AD1985911BD361496F268E8B23112500EAF9B88A9BC67B2AB04D38"
"7FEFACD00F5AF4F764F9ABC3ABCDE54612DE38CD90CB6647CA389EA0E86B16"
"BF7A1F34086E05ADBE00BD1673BE00FAC4B34AF1091E8AD50BA675E0381440"
"EA8E9D93E75D816BAB37C9844B1441C38FC65CF30ABB71B36433AF26DD97BD"
"ABBA96C03B4919B8F3515B92826B85462833380DC193D79F69D20DD6038C99"
"6114EF6C446F0BA28CC772ACBA58B81C04F8FFDE7B18C4E5A3ABC51E637FDF"
"6E37FDFF04C940919390F4FF92000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000", buffer);
Bignum bignum2;
AssignHexString(&bignum2, "3DA774C07FB5DF54284D09C675A492165B830D5DAAEB2A7501"
"DA17CF9DFA1CA2282269F92A25A97314296B717E3DCBB9FE17"
"41A842FE2913F540F40796F2381155763502C58B15AF7A7F88"
"6F744C9164FF409A28F7FA0C41F89ED79C1BE9F322C8578B97"
"841F1CBAA17D901BE1230E3C00E1C643AF32638B5674E01FEA"
"96FC90864E621B856A9E1CE56E6EB545B9C2F8F0CC10DDA88D"
"CC6D282605F8DB67044F2DFD3695E7BA63877AE16701536AE6"
"567C794D0BFE338DFBB42D92D4215AF3BB22BF0A8B283FDDC2"
"C667A10958EA6D2");
CHECK(bignum2.ToHexString(buffer, kBufferSize));
CHECK_EQ("3DA774C07FB5DF54284D09C675A492165B830D5DAAEB2A7501"
"DA17CF9DFA1CA2282269F92A25A97314296B717E3DCBB9FE17"
"41A842FE2913F540F40796F2381155763502C58B15AF7A7F88"
"6F744C9164FF409A28F7FA0C41F89ED79C1BE9F322C8578B97"
"841F1CBAA17D901BE1230E3C00E1C643AF32638B5674E01FEA"
"96FC90864E621B856A9E1CE56E6EB545B9C2F8F0CC10DDA88D"
"CC6D282605F8DB67044F2DFD3695E7BA63877AE16701536AE6"
"567C794D0BFE338DFBB42D92D4215AF3BB22BF0A8B283FDDC2"
"C667A10958EA6D2", buffer);
bignum.AssignBignum(bignum2);
bignum.MultiplyByPowerOfTen(1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2688A8F84FD1AB949930261C0986DB4DF931E85A8AD2FA8921284EE1C2BC51"
"E55915823BBA5789E7EC99E326EEE69F543ECE890929DED9AC79489884BE57"
"630AD569E121BB76ED8DAC8FB545A8AFDADF1F8860599AFC47A93B6346C191"
"7237F5BD36B73EB29371F4A4EE7A116CB5E8E5808D1BEA4D7F7E3716090C13"
"F29E5DDA53F0FD513362A2D20F6505314B9419DB967F8A8A89589FC43917C3"
"BB892062B17CBE421DB0D47E34ACCCE060D422CFF60DCBD0277EE038BD509C"
"7BC494D8D854F5B76696F927EA99BC00C4A5D7928434", buffer);
bignum.AssignBignum(bignum2);
bignum.MultiplyByPowerOfTen(2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1815699B31E30B3CDFBE17D185F44910BBBF313896C3DC95B4B9314D19B5B32"
"F57AD71655476B630F3E02DF855502394A74115A5BA2B480BCBCD5F52F6F69D"
"E6C5622CB5152A54788BD9D14B896DE8CB73B53C3800DDACC9C51E0C38FAE76"
"2F9964232872F9C2738E7150C4AE3F1B18F70583172706FAEE26DC5A78C77A2"
"FAA874769E52C01DA5C3499F233ECF3C90293E0FB69695D763DAA3AEDA5535B"
"43DAEEDF6E9528E84CEE0EC000C3C8495C1F9C89F6218AF4C23765261CD5ADD"
"0787351992A01E5BB8F2A015807AE7A6BB92A08", buffer);
bignum.AssignBignum(bignum2);
bignum.MultiplyByPowerOfTen(5);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("5E13A4863ADEE3E5C9FE8D0A73423D695D62D8450CED15A8C9F368952C6DC3"
"F0EE7D82F3D1EFB7AF38A3B3920D410AFCAD563C8F5F39116E141A3C5C14B3"
"58CD73077EA35AAD59F6E24AD98F10D5555ABBFBF33AC361EAF429FD5FBE94"
"17DA9EF2F2956011F9F93646AA38048A681D984ED88127073443247CCC167C"
"B354A32206EF5A733E73CF82D795A1AD598493211A6D613C39515E0E0F6304"
"DCD9C810F3518C7F6A7CB6C81E99E02FCC65E8FDB7B7AE97306CC16A8631CE"
"0A2AEF6568276BE4C176964A73C153FDE018E34CB4C2F40", buffer);
bignum.AssignBignum(bignum2);
bignum.MultiplyByPowerOfTen(10);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("8F8CB8EB51945A7E815809F6121EF2F4E61EF3405CD9432CAD2709749EEAFD"
"1B81E843F14A3667A7BDCCC9E0BB795F63CDFDB62844AC7438976C885A0116"
"29607DA54F9C023CC366570B7637ED0F855D931752038A614922D0923E382C"
"B8E5F6C975672DB76E0DE471937BB9EDB11E28874F1C122D5E1EF38CECE9D0"
"0723056BCBD4F964192B76830634B1D322B7EB0062F3267E84F5C824343A77"
"4B7DCEE6DD464F01EBDC8C671BB18BB4EF4300A42474A6C77243F2A12B03BF"
"0443C38A1C0D2701EDB393135AE0DEC94211F9D4EB51F990800", buffer);
bignum.AssignBignum(bignum2);
bignum.MultiplyByPowerOfTen(50);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("107A8BE345E24407372FC1DE442CBA696BC23C4FFD5B4BDFD9E5C39559815"
"86628CF8472D2D589F2FC2BAD6E0816EC72CBF85CCA663D8A1EC6C51076D8"
"2D247E6C26811B7EC4D4300FB1F91028DCB7B2C4E7A60C151161AA7E65E79"
"B40917B12B2B5FBE7745984D4E8EFA31F9AE6062427B068B144A9CB155873"
"E7C0C9F0115E5AC72DC5A73C4796DB970BF9205AB8C77A6996EB1B417F9D1"
"6232431E6313C392203601B9C22CC10DDA88DCC6D282605F8DB67044F2DFD"
"3695E7BA63877AE16701536AE6567C794D0BFE338DFBB42D924CF964BD2C0"
"F586E03A2FCD35A408000000000000", buffer);
bignum.AssignBignum(bignum2);
bignum.MultiplyByPowerOfTen(100);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("46784A90ACD0ED3E7759CC585FB32D36EB6034A6F78D92604E3BAA5ED3D8B"
"6E60E854439BE448897FB4B7EA5A3D873AA0FCB3CFFD80D0530880E45F511"
"722A50CE7E058B5A6F5464DB7500E34984EE3202A9441F44FA1554C0CEA96"
"B438A36F25E7C9D56D71AE2CD313EC37534DA299AC0854FC48591A7CF3171"
"31265AA4AE62DE32344CE7BEEEF894AE686A2DAAFE5D6D9A10971FFD9C064"
"5079B209E1048F58B5192D41D84336AC4C8C489EEF00939CFC9D55C122036"
"01B9C22CC10DDA88DCC6D282605F8DB67044F2DFD3695E7BA3F67B96D3A32"
"E11FB5561B68744C4035B0800DC166D49D98E3FD1D5BB2000000000000000"
"0000000000", buffer);
bignum.AssignBignum(bignum2);
bignum.MultiplyByPowerOfTen(200);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("508BD351221DF139D72D88CDC0416845A53EE2D0E6B98352509A9AC312F8C"
"6CB1A144889416201E0B6CE66EA3EBE259B5FD79ECFC1FD77963CE516CC7E"
"2FE73D4B5B710C19F6BCB092C7A2FD76286543B8DBD2C596DFF2C896720BA"
"DFF7BC9C366ACEA3A880AEC287C5E6207DF2739B5326FC19D773BD830B109"
"ED36C7086544BF8FDB9D4B73719C2B5BC2F571A5937EC46876CD428281F6B"
"F287E1E07F25C1B1D46BC37324FF657A8B2E0071DB83B86123CA34004F406"
"001082D7945E90C6E8C9A9FEC2B44BE0DDA46E9F52B152E4D1336D2FCFBC9"
"96E30CA0082256737365158FE36482AA7EB9DAF2AB128F10E7551A3CD5BE6"
"0A922F3A7D5EED38B634A7EC95BCF7021BA6820A292000000000000000000"
"00000000000000000000000000000000", buffer);
bignum.AssignBignum(bignum2);
bignum.MultiplyByPowerOfTen(500);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("7845F900E475B5086885BAAAE67C8E85185ACFE4633727F82A4B06B5582AC"
"BE933C53357DA0C98C20C5AC900C4D76A97247DF52B79F48F9E35840FB715"
"D392CE303E22622B0CF82D9471B398457DD3196F639CEE8BBD2C146873841"
"F0699E6C41F04FC7A54B48CEB995BEB6F50FE81DE9D87A8D7F849CC523553"
"7B7BBBC1C7CAAFF6E9650BE03B308C6D31012AEF9580F70D3EE2083ADE126"
"8940FA7D6308E239775DFD2F8C97FF7EBD525DAFA6512216F7047A62A93DC"
"38A0165BDC67E250DCC96A0181DE935A70B38704DC71819F02FC5261FF7E1"
"E5F11907678B0A3E519FF4C10A867B0C26CE02BE6960BA8621A87303C101C"
"3F88798BB9F7739655946F8B5744E6B1EAF10B0C5621330F0079209033C69"
"20DE2E2C8D324F0624463735D482BF291926C22A910F5B80FA25170B6B57D"
"8D5928C7BCA3FE87461275F69BD5A1B83181DAAF43E05FC3C72C4E93111B6"
"6205EBF49B28FEDFB7E7526CBDA658A332000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000", buffer);
}
TEST(DivideModuloIntBignum) {
char buffer[kBufferSize];
Bignum bignum;
Bignum other;
Bignum third;
bignum.AssignUInt16(10);
other.AssignUInt16(2);
CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("0", buffer);
bignum.AssignUInt16(10);
bignum.ShiftLeft(500);
other.AssignUInt16(2);
other.ShiftLeft(500);
CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
CHECK_EQ("0", buffer);
bignum.AssignUInt16(11);
other.AssignUInt16(2);
CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignUInt16(10);
bignum.ShiftLeft(500);
other.AssignUInt16(1);
bignum.AddBignum(other);
other.AssignUInt16(2);
other.ShiftLeft(500);
CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignUInt16(10);
bignum.ShiftLeft(500);
other.AssignBignum(bignum);
bignum.MultiplyByUInt32(0x1234);
third.AssignUInt16(0xFFF);
bignum.AddBignum(third);
CHECK_EQ(0x1234, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFF", buffer);
bignum.AssignUInt16(10);
AssignHexString(&other, "1234567890");
CHECK_EQ(0, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A", buffer);
AssignHexString(&bignum, "12345678");
AssignHexString(&other, "3789012");
CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("D9861E", buffer);
AssignHexString(&bignum, "70000001");
AssignHexString(&other, "1FFFFFFF");
CHECK_EQ(3, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000004", buffer);
AssignHexString(&bignum, "28000000");
AssignHexString(&other, "12A05F20");
CHECK_EQ(2, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2BF41C0", buffer);
bignum.AssignUInt16(10);
bignum.ShiftLeft(500);
other.AssignBignum(bignum);
bignum.MultiplyByUInt32(0x1234);
third.AssignUInt16(0xFFF);
other.SubtractBignum(third);
CHECK_EQ(0x1234, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1232DCC", buffer);
CHECK_EQ(0, bignum.DivideModuloIntBignum(other));
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1232DCC", buffer);
}
TEST(Compare) {
Bignum bignum1;
Bignum bignum2;
bignum1.AssignUInt16(1);
bignum2.AssignUInt16(1);
CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
CHECK(Bignum::Equal(bignum1, bignum2));
CHECK(Bignum::LessEqual(bignum1, bignum2));
CHECK(!Bignum::Less(bignum1, bignum2));
bignum1.AssignUInt16(0);
bignum2.AssignUInt16(1);
CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
CHECK(!Bignum::Equal(bignum1, bignum2));
CHECK(!Bignum::Equal(bignum2, bignum1));
CHECK(Bignum::LessEqual(bignum1, bignum2));
CHECK(!Bignum::LessEqual(bignum2, bignum1));
CHECK(Bignum::Less(bignum1, bignum2));
CHECK(!Bignum::Less(bignum2, bignum1));
AssignHexString(&bignum1, "1234567890ABCDEF12345");
AssignHexString(&bignum2, "1234567890ABCDEF12345");
CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
AssignHexString(&bignum1, "1234567890ABCDEF12345");
AssignHexString(&bignum2, "1234567890ABCDEF12346");
CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
AssignHexString(&bignum1, "1234567890ABCDEF12345");
bignum1.ShiftLeft(500);
AssignHexString(&bignum2, "1234567890ABCDEF12345");
bignum2.ShiftLeft(500);
CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
AssignHexString(&bignum1, "1234567890ABCDEF12345");
bignum1.ShiftLeft(500);
AssignHexString(&bignum2, "1234567890ABCDEF12346");
bignum2.ShiftLeft(500);
CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
bignum1.AssignUInt16(1);
bignum1.ShiftLeft(64);
AssignHexString(&bignum2, "10000000000000000");
CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(0, Bignum::Compare(bignum2, bignum1));
bignum1.AssignUInt16(1);
bignum1.ShiftLeft(64);
AssignHexString(&bignum2, "10000000000000001");
CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
bignum1.AssignUInt16(1);
bignum1.ShiftLeft(96);
AssignHexString(&bignum2, "10000000000000001");
bignum2.ShiftLeft(32);
CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
AssignHexString(&bignum1, "FFFFFFFFFFFFFFFF");
bignum2.AssignUInt16(1);
bignum2.ShiftLeft(64);
CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
AssignHexString(&bignum1, "FFFFFFFFFFFFFFFF");
bignum1.ShiftLeft(32);
bignum2.AssignUInt16(1);
bignum2.ShiftLeft(96);
CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
AssignHexString(&bignum1, "FFFFFFFFFFFFFFFF");
bignum1.ShiftLeft(32);
bignum2.AssignUInt16(1);
bignum2.ShiftLeft(95);
CHECK_EQ(+1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(-1, Bignum::Compare(bignum2, bignum1));
AssignHexString(&bignum1, "FFFFFFFFFFFFFFFF");
bignum1.ShiftLeft(32);
bignum2.AssignUInt16(1);
bignum2.ShiftLeft(100);
CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
AssignHexString(&bignum1, "100000000000000");
bignum2.AssignUInt16(1);
bignum2.ShiftLeft(14*4);
CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(0, Bignum::Compare(bignum2, bignum1));
AssignHexString(&bignum1, "100000000000001");
bignum2.AssignUInt16(1);
bignum2.ShiftLeft(14*4);
CHECK_EQ(+1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(-1, Bignum::Compare(bignum2, bignum1));
AssignHexString(&bignum1, "200000000000000");
bignum2.AssignUInt16(3);
bignum2.ShiftLeft(14*4);
CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
}
TEST(PlusCompare) {
Bignum a;
Bignum b;
Bignum c;
a.AssignUInt16(1);
b.AssignUInt16(0);
c.AssignUInt16(1);
CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
CHECK(Bignum::PlusEqual(a, b, c));
CHECK(Bignum::PlusLessEqual(a, b, c));
CHECK(!Bignum::PlusLess(a, b, c));
a.AssignUInt16(0);
b.AssignUInt16(0);
c.AssignUInt16(1);
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
CHECK_EQ(+1, Bignum::PlusCompare(c, b, a));
CHECK(!Bignum::PlusEqual(a, b, c));
CHECK(!Bignum::PlusEqual(c, b, a));
CHECK(Bignum::PlusLessEqual(a, b, c));
CHECK(!Bignum::PlusLessEqual(c, b, a));
CHECK(Bignum::PlusLess(a, b, c));
CHECK(!Bignum::PlusLess(c, b, a));
AssignHexString(&a, "1234567890ABCDEF12345");
b.AssignUInt16(1);
AssignHexString(&c, "1234567890ABCDEF12345");
CHECK_EQ(+1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890ABCDEF12344");
b.AssignUInt16(1);
AssignHexString(&c, "1234567890ABCDEF12345");
CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4);
AssignHexString(&b, "ABCDEF12345");
AssignHexString(&c, "1234567890ABCDEF12345");
CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4);
AssignHexString(&b, "ABCDEF12344");
AssignHexString(&c, "1234567890ABCDEF12345");
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4);
AssignHexString(&b, "ABCDEF12346");
AssignHexString(&c, "1234567890ABCDEF12345");
CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567891");
a.ShiftLeft(11*4);
AssignHexString(&b, "ABCDEF12345");
AssignHexString(&c, "1234567890ABCDEF12345");
CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567889");
a.ShiftLeft(11*4);
AssignHexString(&b, "ABCDEF12345");
AssignHexString(&c, "1234567890ABCDEF12345");
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12345");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF12345");
c.ShiftLeft(32);
CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12344");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF12345");
c.ShiftLeft(32);
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12346");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF12345");
c.ShiftLeft(32);
CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567891");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12345");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF12345");
c.ShiftLeft(32);
CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567889");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12345");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF12345");
c.ShiftLeft(32);
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12345");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF1234500000000");
CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12344");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF1234500000000");
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12346");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF1234500000000");
CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567891");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12345");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF1234500000000");
CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567889");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12345");
b.ShiftLeft(32);
AssignHexString(&c, "1234567890ABCDEF1234500000000");
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12345");
AssignHexString(&c, "123456789000000000ABCDEF12345");
CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12346");
AssignHexString(&c, "123456789000000000ABCDEF12345");
CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12344");
AssignHexString(&c, "123456789000000000ABCDEF12345");
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12345");
b.ShiftLeft(16);
AssignHexString(&c, "12345678900000ABCDEF123450000");
CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12344");
b.ShiftLeft(16);
AssignHexString(&c, "12345678900000ABCDEF123450000");
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12345");
b.ShiftLeft(16);
AssignHexString(&c, "12345678900000ABCDEF123450001");
CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
AssignHexString(&a, "1234567890");
a.ShiftLeft(11*4 + 32);
AssignHexString(&b, "ABCDEF12346");
b.ShiftLeft(16);
AssignHexString(&c, "12345678900000ABCDEF123450000");
CHECK_EQ(+1, Bignum::PlusCompare(a, b, c));
}
TEST(Square) {
Bignum bignum;
char buffer[kBufferSize];
bignum.AssignUInt16(1);
bignum.Square();
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignUInt16(2);
bignum.Square();
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("4", buffer);
bignum.AssignUInt16(10);
bignum.Square();
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("64", buffer);
AssignHexString(&bignum, "FFFFFFF");
bignum.Square();
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFE0000001", buffer);
AssignHexString(&bignum, "FFFFFFFFFFFFFF");
bignum.Square();
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FFFFFFFFFFFFFE00000000000001", buffer);
}
TEST(AssignPowerUInt16) {
Bignum bignum;
char buffer[kBufferSize];
bignum.AssignPowerUInt16(1, 0);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignPowerUInt16(1, 1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignPowerUInt16(1, 2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignPowerUInt16(2, 0);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignPowerUInt16(2, 1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2", buffer);
bignum.AssignPowerUInt16(2, 2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("4", buffer);
bignum.AssignPowerUInt16(16, 1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10", buffer);
bignum.AssignPowerUInt16(16, 2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("100", buffer);
bignum.AssignPowerUInt16(16, 5);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("100000", buffer);
bignum.AssignPowerUInt16(16, 8);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("100000000", buffer);
bignum.AssignPowerUInt16(16, 16);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000", buffer);
bignum.AssignPowerUInt16(16, 30);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1000000000000000000000000000000", buffer);
bignum.AssignPowerUInt16(10, 0);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignPowerUInt16(10, 1);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("A", buffer);
bignum.AssignPowerUInt16(10, 2);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("64", buffer);
bignum.AssignPowerUInt16(10, 5);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("186A0", buffer);
bignum.AssignPowerUInt16(10, 8);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("5F5E100", buffer);
bignum.AssignPowerUInt16(10, 16);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("2386F26FC10000", buffer);
bignum.AssignPowerUInt16(10, 30);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("C9F2C9CD04674EDEA40000000", buffer);
bignum.AssignPowerUInt16(10, 31);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("7E37BE2022C0914B2680000000", buffer);
bignum.AssignPowerUInt16(2, 0);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignPowerUInt16(2, 100);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("10000000000000000000000000", buffer);
bignum.AssignPowerUInt16(17, 0);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1", buffer);
bignum.AssignPowerUInt16(17, 99);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("1942BB9853FAD924A3D4DD92B89B940E0207BEF05DB9C26BC1B757"
"80BE0C5A2C2990E02A681224F34ED68558CE4C6E33760931",
buffer);
bignum.AssignPowerUInt16(0xFFFF, 99);
CHECK(bignum.ToHexString(buffer, kBufferSize));
CHECK_EQ("FF9D12F09B886C54E77E7439C7D2DED2D34F669654C0C2B6B8C288250"
"5A2211D0E3DC9A61831349EAE674B11D56E3049D7BD79DAAD6C9FA2BA"
"528E3A794299F2EE9146A324DAFE3E88967A0358233B543E233E575B9"
"DD4E3AA7942146426C328FF55BFD5C45E0901B1629260AF9AE2F310C5"
"50959FAF305C30116D537D80CF6EBDBC15C5694062AF1AC3D956D0A41"
"B7E1B79FF11E21D83387A1CE1F5882B31E4B5D8DE415BDBE6854466DF"
"343362267A7E8833119D31D02E18DB5B0E8F6A64B0ED0D0062FFFF",
buffer);
}
......@@ -4,7 +4,10 @@
#include "v8.h"
#include "bignum.h"
#include "cctest.h"
#include "diy-fp.h"
#include "double.h"
#include "strtod.h"
using namespace v8::internal;
......@@ -202,11 +205,14 @@ TEST(Strtod) {
CHECK_EQ(1.7976931348623158E+308, StrtodChar("17976931348623158", 292));
CHECK_EQ(V8_INFINITY, StrtodChar("17976931348623159", 292));
// The following number is the result of 89255.0/1e-22. Both floating-point
// The following number is the result of 89255.0/1e22. Both floating-point
// numbers can be accurately represented with doubles. However on Linux,x86
// the floating-point stack is set to 80bits and the double-rounding
// introduces an error.
CHECK_EQ(89255e-22, StrtodChar("89255", -22));
// Some random values.
CHECK_EQ(358416272e-33, StrtodChar("358416272", -33));
CHECK_EQ(104110013277974872254e-225,
StrtodChar("104110013277974872254", -225));
......@@ -252,4 +258,158 @@ TEST(Strtod) {
StrtodChar("1234567890123456789052345", 114));
CHECK_EQ(1234567890123456789052345e115,
StrtodChar("1234567890123456789052345", 115));
// Boundary cases.
// 0x1FFFFFFFFFFFF * 2^3 = 72057594037927928
// next: 72057594037927936
// boundary: 72057594037927932
CHECK_EQ(72057594037927928.0, StrtodChar("72057594037927928", 0));
CHECK_EQ(72057594037927936.0, StrtodChar("72057594037927936", 0));
CHECK_EQ(72057594037927936.0, StrtodChar("72057594037927932", 0));
CHECK_EQ(72057594037927928.0, StrtodChar("7205759403792793199999", -5));
CHECK_EQ(72057594037927936.0, StrtodChar("7205759403792793200001", -5));
// 0x1FFFFFFFFFFFF * 2^10 = 9223372036854774784
// next: 9223372036854775808
// boundary: 9223372036854775296
CHECK_EQ(9223372036854774784.0, StrtodChar("9223372036854774784", 0));
CHECK_EQ(9223372036854775808.0, StrtodChar("9223372036854775808", 0));
CHECK_EQ(9223372036854775296.0, StrtodChar("9223372036854775296", 0));
CHECK_EQ(9223372036854774784.0, StrtodChar("922337203685477529599999", -5));
CHECK_EQ(9223372036854775808.0, StrtodChar("922337203685477529600001", -5));
// 0x1FFFFFFFFFFFF * 2^50 = 10141204801825834086073718800384
// next: 10141204801825835211973625643008
// boundary: 10141204801825834649023672221696
CHECK_EQ(10141204801825834086073718800384.0,
StrtodChar("10141204801825834086073718800384", 0));
CHECK_EQ(10141204801825835211973625643008.0,
StrtodChar("10141204801825835211973625643008", 0));
CHECK_EQ(10141204801825834649023672221696.0,
StrtodChar("10141204801825834649023672221696", 0));
CHECK_EQ(10141204801825834086073718800384.0,
StrtodChar("1014120480182583464902367222169599999", -5));
CHECK_EQ(10141204801825835211973625643008.0,
StrtodChar("1014120480182583464902367222169600001", -5));
// 0x1FFFFFFFFFFFF * 2^99 = 5708990770823838890407843763683279797179383808
// next: 5708990770823839524233143877797980545530986496
// boundary: 5708990770823839207320493820740630171355185152
CHECK_EQ(5708990770823838890407843763683279797179383808.0,
StrtodChar("5708990770823838890407843763683279797179383808", 0));
CHECK_EQ(5708990770823839524233143877797980545530986496.0,
StrtodChar("5708990770823839524233143877797980545530986496", 0));
CHECK_EQ(5708990770823839207320493820740630171355185152.0,
StrtodChar("5708990770823839207320493820740630171355185152", 0));
CHECK_EQ(5708990770823838890407843763683279797179383808.0,
StrtodChar("5708990770823839207320493820740630171355185151999", -3));
CHECK_EQ(5708990770823839524233143877797980545530986496.0,
StrtodChar("5708990770823839207320493820740630171355185152001", -3));
}
static int CompareBignumToDiyFp(const Bignum& bignum_digits,
int bignum_exponent,
DiyFp diy_fp) {
Bignum bignum;
bignum.AssignBignum(bignum_digits);
Bignum other;
other.AssignUInt64(diy_fp.f());
if (bignum_exponent >= 0) {
bignum.MultiplyByPowerOfTen(bignum_exponent);
} else {
other.MultiplyByPowerOfTen(-bignum_exponent);
}
if (diy_fp.e() >= 0) {
other.ShiftLeft(diy_fp.e());
} else {
bignum.ShiftLeft(-diy_fp.e());
}
return Bignum::Compare(bignum, other);
}
static bool CheckDouble(Vector<const char> buffer,
int exponent,
double to_check) {
DiyFp lower_boundary;
DiyFp upper_boundary;
Bignum input_digits;
input_digits.AssignDecimalString(buffer);
if (to_check == 0.0) {
const double kMinDouble = 4e-324;
// Check that the buffer*10^exponent < (0 + kMinDouble)/2.
Double d(kMinDouble);
d.NormalizedBoundaries(&lower_boundary, &upper_boundary);
return CompareBignumToDiyFp(input_digits, exponent, lower_boundary) <= 0;
}
if (to_check == V8_INFINITY) {
const double kMaxDouble = 1.7976931348623157e308;
// Check that the buffer*10^exponent >= boundary between kMaxDouble and inf.
Double d(kMaxDouble);
d.NormalizedBoundaries(&lower_boundary, &upper_boundary);
return CompareBignumToDiyFp(input_digits, exponent, upper_boundary) >= 0;
}
Double d(to_check);
d.NormalizedBoundaries(&lower_boundary, &upper_boundary);
if ((d.Significand() & 1) == 0) {
return CompareBignumToDiyFp(input_digits, exponent, lower_boundary) >= 0 &&
CompareBignumToDiyFp(input_digits, exponent, upper_boundary) <= 0;
} else {
return CompareBignumToDiyFp(input_digits, exponent, lower_boundary) > 0 &&
CompareBignumToDiyFp(input_digits, exponent, upper_boundary) < 0;
}
}
// Copied from v8.cc and adapted to make the function deterministic.
static uint32_t DeterministicRandom() {
// Random number generator using George Marsaglia's MWC algorithm.
static uint32_t hi = 0;
static uint32_t lo = 0;
// Initialization values don't have any special meaning. (They are the result
// of two calls to random().)
if (hi == 0) hi = 0xbfe166e7;
if (lo == 0) lo = 0x64d1c3c9;
// Mix the bits.
hi = 36969 * (hi & 0xFFFF) + (hi >> 16);
lo = 18273 * (lo & 0xFFFF) + (lo >> 16);
return (hi << 16) + (lo & 0xFFFF);
}
static const int kBufferSize = 1024;
static const int kShortStrtodRandomCount = 2;
static const int kLargeStrtodRandomCount = 2;
TEST(RandomStrtod) {
char buffer[kBufferSize];
for (int length = 1; length < 15; length++) {
for (int i = 0; i < kShortStrtodRandomCount; ++i) {
int pos = 0;
for (int j = 0; j < length; ++j) {
buffer[pos++] = random() % 10 + '0';
}
int exponent = DeterministicRandom() % (25*2 + 1) - 25 - length;
buffer[pos] = '\0';
Vector<const char> vector(buffer, pos);
double strtod_result = Strtod(vector, exponent);
CHECK(CheckDouble(vector, exponent, strtod_result));
}
}
for (int length = 15; length < 800; length += 2) {
for (int i = 0; i < kLargeStrtodRandomCount; ++i) {
int pos = 0;
for (int j = 0; j < length; ++j) {
buffer[pos++] = random() % 10 + '0';
}
int exponent = DeterministicRandom() % (308*2 + 1) - 308 - length;
buffer[pos] = '\0';
Vector<const char> vector(buffer, pos);
double strtod_result = Strtod(vector, exponent);
CHECK(CheckDouble(vector, exponent, strtod_result));
}
}
}
......@@ -280,6 +280,10 @@
'../../src/ast.cc',
'../../src/ast-inl.h',
'../../src/ast.h',
'../../src/bignum.cc',
'../../src/bignum.h',
'../../src/bignum-dtoa.cc',
'../../src/bignum-dtoa.h',
'../../src/bootstrapper.cc',
'../../src/bootstrapper.h',
'../../src/builtins.cc',
......
......@@ -144,6 +144,22 @@
/>
</FileConfiguration>
</File>
<File
RelativePath="..\..\src\bignum.cc"
>
</File>
<File
RelativePath="..\..\src\bignum.h"
>
</File>
<File
RelativePath="..\..\src\bignum-dtoa.cc"
>
</File>
<File
RelativePath="..\..\src\bignum-dtoa.h"
>
</File>
<File
RelativePath="..\..\src\dtoa.cc"
>
......@@ -240,6 +256,22 @@
RelativePath="..\..\src\ast.h"
>
</File>
<File
RelativePath="..\..\src\bignum.cc"
>
</File>
<File
RelativePath="..\..\src\bignum.h"
>
</File>
<File
RelativePath="..\..\src\bignum-dtoa.cc"
>
</File>
<File
RelativePath="..\..\src\bignum-dtoa.h"
>
</File>
<File
RelativePath="..\..\src\bootstrapper.cc"
>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment