Commit 7fc98eb1 authored by floitschV8@gmail.com's avatar floitschV8@gmail.com

Dtoa for fixed notation.

Review URL: http://codereview.chromium.org/1956005

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4596 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent f1c5cdbb
......@@ -58,6 +58,7 @@ SOURCES = {
debug.cc
disassembler.cc
diy-fp.cc
dtoa.cc
execution.cc
factory.cc
flags.cc
......@@ -68,6 +69,7 @@ SOURCES = {
func-name-inferrer.cc
global-handles.cc
fast-dtoa.cc
fixed-dtoa.cc
handles.cc
hashmap.cc
heap-profiler.cc
......
......@@ -31,8 +31,8 @@
#include "v8.h"
#include "conversions-inl.h"
#include "dtoa.h"
#include "factory.h"
#include "fast-dtoa.h"
#include "scanner.h"
namespace v8 {
......@@ -766,15 +766,16 @@ const char* DoubleToCString(double v, Vector<char> buffer) {
default: {
int decimal_point;
int sign;
char* decimal_rep;
bool used_gay_dtoa = false;
const int kFastDtoaBufferCapacity = kFastDtoaMaximalLength + 1;
char fast_dtoa_buffer[kFastDtoaBufferCapacity];
const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1;
char v8_dtoa_buffer[kV8DtoaBufferCapacity];
int length;
if (FastDtoa(v, Vector<char>(fast_dtoa_buffer, kFastDtoaBufferCapacity),
&sign, &length, &decimal_point)) {
decimal_rep = fast_dtoa_buffer;
if (DoubleToAscii(v, DTOA_SHORTEST, 0,
Vector<char>(v8_dtoa_buffer, kV8DtoaBufferCapacity),
&sign, &length, &decimal_point)) {
decimal_rep = v8_dtoa_buffer;
} else {
decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL);
used_gay_dtoa = true;
......@@ -842,7 +843,11 @@ const char* IntToCString(int n, Vector<char> buffer) {
char* DoubleToFixedCString(double value, int f) {
const int kMaxDigitsBeforePoint = 20;
const double kFirstNonFixed = 1e21;
const int kMaxDigitsAfterPoint = 20;
ASSERT(f >= 0);
ASSERT(f <= kMaxDigitsAfterPoint);
bool negative = false;
double abs_value = value;
......@@ -851,7 +856,9 @@ char* DoubleToFixedCString(double value, int f) {
negative = true;
}
if (abs_value >= 1e21) {
// If abs_value has more than kMaxDigitsBeforePoint digits before the point
// use the non-fixed conversion routine.
if (abs_value >= kFirstNonFixed) {
char arr[100];
Vector<char> buffer(arr, ARRAY_SIZE(arr));
return StrDup(DoubleToCString(value, buffer));
......@@ -860,8 +867,16 @@ char* DoubleToFixedCString(double value, int f) {
// Find a sufficiently precise decimal representation of n.
int decimal_point;
int sign;
char* decimal_rep = dtoa(abs_value, 3, f, &decimal_point, &sign, NULL);
int decimal_rep_length = StrLength(decimal_rep);
// Add space for the '.' and the '\0' byte.
const int kDecimalRepCapacity =
kMaxDigitsBeforePoint + kMaxDigitsAfterPoint + 2;
char decimal_rep[kDecimalRepCapacity];
int decimal_rep_length;
bool status = DoubleToAscii(value, DTOA_FIXED, f,
Vector<char>(decimal_rep, kDecimalRepCapacity),
&sign, &decimal_rep_length, &decimal_point);
USE(status);
ASSERT(status);
// Create a representation that is padded with zeros if needed.
int zero_prefix_length = 0;
......@@ -884,7 +899,6 @@ char* DoubleToFixedCString(double value, int f) {
rep_builder.AddString(decimal_rep);
rep_builder.AddPadding('0', zero_postfix_length);
char* rep = rep_builder.Finalize();
freedtoa(decimal_rep);
// Create the result string by appending a minus and putting in a
// decimal point if needed.
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <math.h>
#include "v8.h"
#include "dtoa.h"
#include "double.h"
#include "fast-dtoa.h"
#include "fixed-dtoa.h"
namespace v8 {
namespace internal {
bool DoubleToAscii(double v, DtoaMode mode, int requested_digits,
Vector<char> buffer, int* sign, int* length, int* point) {
ASSERT(!Double(v).IsSpecial());
ASSERT(mode == DTOA_SHORTEST || requested_digits >= 0);
if (Double(v).Sign() < 0) {
*sign = 1;
v = -v;
} else {
*sign = 0;
}
if (v == 0) {
buffer[0] = '0';
buffer[1] = '\0';
*length = 1;
*point = 1;
return true;
}
if (mode == DTOA_PRECISION && requested_digits == 0) {
buffer[0] = '\0';
*length = 0;
return true;
}
switch (mode) {
case DTOA_SHORTEST:
return FastDtoa(v, buffer, length, point);
case DTOA_FIXED:
return FastFixedDtoa(v, requested_digits, buffer, length, point);
default:
break;
}
return false;
}
} } // namespace v8::internal
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_DTOA_H_
#define V8_DTOA_H_
namespace v8 {
namespace internal {
enum DtoaMode {
// 0.9999999999999999 becomes 0.1
DTOA_SHORTEST,
// Fixed number of digits after the decimal point.
// For instance fixed(0.1, 4) becomes 0.1000
// If the input number is big, the output will be big.
DTOA_FIXED,
// Fixed number of digits (independent of the decimal point).
DTOA_PRECISION
};
// The maximal length of digits a double can have in base 10.
// Note that DoubleToAscii null-terminates its input. So the given buffer should
// be at least kBase10MaximalLength + 1 characters long.
static const int kBase10MaximalLength = 17;
// Converts the given double 'v' to ascii.
// The result should be interpreted as buffer * 10^(point-length).
//
// The output depends on the given mode:
// - SHORTEST: produce the least amount of digits for which the internal
// identity requirement is still satisfied. If the digits are printed
// (together with the correct exponent) then reading this number will give
// 'v' again. The buffer will choose the representation that is closest to
// 'v'. If there are two at the same distance, than the one farther away
// from 0 is chosen (halfway cases - ending with 5 - are rounded up).
// In this mode the 'requested_digits' parameter is ignored.
// - FIXED: produces digits necessary to print a given number with
// 'requested_digits' digits after the decimal point. The produced digits
// might be too short in which case the caller has to fill the gaps with '0's.
// Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
// Halfway cases are rounded towards +/-Infinity (away from 0). The call
// toFixed(0.15, 2) thus returns buffer="2", point=0.
// The returned buffer may contain digits that would be truncated from the
// shortest representation of the input.
// - PRECISION: produces 'requested_digits' where the first digit is not '0'.
// Even though the length of produced digits usually equals
// 'requested_digits', the function is allowed to return fewer digits, in
// which case the caller has to fill the missing digits with '0's.
// Halfway cases are again rounded away from 0.
// 'DoubleToAscii' expects the given buffer to be big enough to hold all digits
// and a terminating null-character.
bool DoubleToAscii(double v, DtoaMode mode, int requested_digits,
Vector<char> buffer, int* sign, int* length, int* point);
} } // namespace v8::internal
#endif // V8_DTOA_H_
......@@ -314,7 +314,7 @@ static void BiggestPowerTen(uint32_t number,
// w's fractional part is therefore 0x567890abcdef.
// Printing w's integral part is easy (simply print 0x1234 in decimal).
// In order to print its fraction we repeatedly multiply the fraction by 10 and
// get each digit. Example the first digit after the comma would be computed by
// get each digit. Example the first digit after the point would be computed by
// (0x567890abcdef * 10) >> 48. -> 3
// The whole thing becomes slightly more complicated because we want to stop
// once we have enough digits. That is, once the digits inside the buffer
......@@ -490,18 +490,11 @@ bool grisu3(double v, Vector<char> buffer, int* length, int* decimal_exponent) {
bool FastDtoa(double v,
Vector<char> buffer,
int* sign,
int* length,
int* point) {
ASSERT(v != 0);
ASSERT(v > 0);
ASSERT(!Double(v).IsSpecial());
if (v < 0) {
v = -v;
*sign = 1;
} else {
*sign = 0;
}
int decimal_exponent;
bool result = grisu3(v, buffer, length, &decimal_exponent);
*point = *length + decimal_exponent;
......
......@@ -36,7 +36,7 @@ namespace internal {
static const int kFastDtoaMaximalLength = 17;
// Provides a decimal representation of v.
// v must not be (positive or negative) zero and it must not be Infinity or NaN.
// v must be a strictly positive finite double.
// Returns true if it succeeds, otherwise the result can not be trusted.
// There will be *length digits inside the buffer followed by a null terminator.
// If the function returns true then
......@@ -50,7 +50,6 @@ static const int kFastDtoaMaximalLength = 17;
// otherwise.
bool FastDtoa(double d,
Vector<char> buffer,
int* sign,
int* length,
int* point);
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <math.h>
#include "v8.h"
#include "double.h"
#include "fixed-dtoa.h"
namespace v8 {
namespace internal {
// Represents a 128bit type. This class should be replaced by a native type on
// platforms that support 128bit integers.
class UInt128 {
public:
UInt128() : high_bits_(0), low_bits_(0) { }
UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
void Multiply(uint32_t multiplicand) {
uint64_t accumulator;
accumulator = (low_bits_ & kMask32) * multiplicand;
uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
accumulator >>= 32;
accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
low_bits_ = (accumulator << 32) + part;
accumulator >>= 32;
accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
part = static_cast<uint32_t>(accumulator & kMask32);
accumulator >>= 32;
accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
high_bits_ = (accumulator << 32) + part;
ASSERT((accumulator >> 32) == 0);
}
void Shift(int shift_amount) {
ASSERT(-64 <= shift_amount && shift_amount <= 64);
if (shift_amount == 0) {
return;
} else if (shift_amount == -64) {
high_bits_ = low_bits_;
low_bits_ = 0;
} else if (shift_amount == 64) {
low_bits_ = high_bits_;
high_bits_ = 0;
} else if (shift_amount <= 0) {
high_bits_ <<= -shift_amount;
high_bits_ += low_bits_ >> (64 + shift_amount);
low_bits_ <<= -shift_amount;
} else {
low_bits_ >>= shift_amount;
low_bits_ += high_bits_ << (64 - shift_amount);
high_bits_ >>= shift_amount;
}
}
// Modifies *this to *this MOD (2^power).
// Returns *this DIV (2^power).
int DivModPowerOf2(int power) {
if (power >= 64) {
int result = static_cast<int>(high_bits_ >> (power - 64));
high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
return result;
} else {
uint64_t part_low = low_bits_ >> power;
uint64_t part_high = high_bits_ << (64 - power);
int result = static_cast<int>(part_low + part_high);
high_bits_ = 0;
low_bits_ -= part_low << power;
return result;
}
}
bool IsZero() const {
return high_bits_ == 0 && low_bits_ == 0;
}
int BitAt(int position) {
if (position >= 64) {
return static_cast<int>(high_bits_ >> (position - 64)) & 1;
} else {
return static_cast<int>(low_bits_ >> position) & 1;
}
}
private:
static const uint64_t kMask32 = 0xFFFFFFFF;
// Value == (high_bits_ << 64) + low_bits_
uint64_t high_bits_;
uint64_t low_bits_;
};
static const int kDoubleSignificandSize = 53; // Includes the hidden bit.
static void FillDigits32FixedLength(uint32_t number, int requested_length,
Vector<char> buffer, int* length) {
for (int i = requested_length - 1; i >= 0; --i) {
buffer[(*length) + i] = '0' + number % 10;
number /= 10;
}
*length += requested_length;
}
static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
int number_length = 0;
// We fill the digits in reverse order and exchange them afterwards.
while (number != 0) {
int digit = number % 10;
number /= 10;
buffer[(*length) + number_length] = '0' + digit;
number_length++;
}
// Exchange the digits.
int i = *length;
int j = *length + number_length - 1;
while (i < j) {
char tmp = buffer[i];
buffer[i] = buffer[j];
buffer[j] = tmp;
i++;
j--;
}
*length += number_length;
}
static void FillDigits64FixedLength(uint64_t number, int requested_length,
Vector<char> buffer, int* length) {
const uint32_t kTen7 = 10000000;
// For efficiency cut the number into 3 uint32_t parts, and print those.
uint32_t part2 = static_cast<uint32_t>(number % kTen7);
number /= kTen7;
uint32_t part1 = static_cast<uint32_t>(number % kTen7);
uint32_t part0 = static_cast<uint32_t>(number / kTen7);
FillDigits32FixedLength(part0, 3, buffer, length);
FillDigits32FixedLength(part1, 7, buffer, length);
FillDigits32FixedLength(part2, 7, buffer, length);
}
static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
const uint32_t kTen7 = 10000000;
// For efficiency cut the number into 3 uint32_t parts, and print those.
uint32_t part2 = static_cast<uint32_t>(number % kTen7);
number /= kTen7;
uint32_t part1 = static_cast<uint32_t>(number % kTen7);
uint32_t part0 = static_cast<uint32_t>(number / kTen7);
if (part0 != 0) {
FillDigits32(part0, buffer, length);
FillDigits32FixedLength(part1, 7, buffer, length);
FillDigits32FixedLength(part2, 7, buffer, length);
} else if (part1 != 0) {
FillDigits32(part1, buffer, length);
FillDigits32FixedLength(part2, 7, buffer, length);
} else {
FillDigits32(part2, buffer, length);
}
}
static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
// An empty buffer represents 0.
if (*length == 0) {
buffer[0] = '1';
*decimal_point = 1;
*length = 1;
return;
}
// Round the last digit until we either have a digit that was not '9' or until
// we reached the first digit.
buffer[(*length) - 1]++;
for (int i = (*length) - 1; i > 0; --i) {
if (buffer[i] != '0' + 10) {
return;
}
buffer[i] = '0';
buffer[i - 1]++;
}
// If the first digit is now '0' + 10, we would need to set it to '0' and add
// a '1' in front. However we reach the first digit only if all following
// digits had been '9' before rounding up. Now all trailing digits are '0' and
// we simply switch the first digit to '1' and update the decimal-point
// (indicating that the point is now one digit to the right).
if (buffer[0] == '0' + 10) {
buffer[0] = '1';
(*decimal_point)++;
}
}
// The given fractionals number represents a fixed-point number with binary
// point at bit (-exponent).
// Preconditions:
// -128 <= exponent <= 0.
// 0 <= fractionals * 2^exponent < 1
// The buffer holds the result.
// The function will round its result. During the rounding-process digits not
// generated by this function might be updated, and the decimal-point variable
// might be updated. If this function generates the digits 99 and the buffer
// already contained "199" (thus yielding a buffer of "19999") then a
// rounding-up will change the contents of the buffer to "20000".
static void FillFractionals(uint64_t fractionals, int exponent,
int fractional_count, Vector<char> buffer,
int* length, int* decimal_point) {
ASSERT(-128 <= exponent && exponent <= 0);
// 'fractionals' is a fixed-point number, with binary point at bit
// (-exponent). Inside the function the non-converted remainder of fractionals
// is a fixed-point number, with binary point at bit 'point'.
if (-exponent <= 64) {
// One 64 bit number is sufficient.
ASSERT(fractionals >> 56 == 0);
int point = -exponent;
for (int i = 0; i < fractional_count; ++i) {
if (fractionals == 0) break;
// Instead of multiplying by 10 we multiply by 5 and adjust the point
// location. This way the fractionals variable will not overflow.
// Invariant at the beginning of the loop: fractionals < 2^point.
// Initially we have: point <= 64 and fractionals < 2^56
// After each iteration the point is decremented by one.
// Note that 5^3 = 125 < 128 = 2^7.
// Therefore three iterations of this loop will not overflow fractionals
// (even without the subtraction at the end of the loop body). At this
// time point will satisfy point <= 61 and therefore fractionals < 2^point
// and any further multiplication of fractionals by 5 will not overflow.
fractionals *= 5;
point--;
int digit = static_cast<int>(fractionals >> point);
buffer[*length] = '0' + digit;
(*length)++;
fractionals -= static_cast<uint64_t>(digit) << point;
}
// If the first bit after the point is set we have to round up.
if (((fractionals >> (point - 1)) & 1) == 1) {
RoundUp(buffer, length, decimal_point);
}
} else { // We need 128 bits.
ASSERT(64 < -exponent && -exponent <= 128);
UInt128 fractionals128 = UInt128(fractionals, 0);
fractionals128.Shift(-exponent - 64);
int point = 128;
for (int i = 0; i < fractional_count; ++i) {
if (fractionals128.IsZero()) break;
// As before: instead of multiplying by 10 we multiply by 5 and adjust the
// point location.
// This multiplication will not overflow for the same reasons as before.
fractionals128.Multiply(5);
point--;
int digit = fractionals128.DivModPowerOf2(point);
buffer[*length] = '0' + digit;
(*length)++;
}
if (fractionals128.BitAt(point - 1) == 1) {
RoundUp(buffer, length, decimal_point);
}
}
}
// Removes leading and trailing zeros.
// If leading zeros are removed then the decimal point position is adjusted.
static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
while (*length > 0 && buffer[(*length) - 1] == '0') {
(*length)--;
}
int first_non_zero = 0;
while (first_non_zero < *length && buffer[first_non_zero] == '0') {
first_non_zero++;
}
if (first_non_zero != 0) {
for (int i = first_non_zero; i < *length; ++i) {
buffer[i - first_non_zero] = buffer[i];
}
*length -= first_non_zero;
*decimal_point -= first_non_zero;
}
}
bool FastFixedDtoa(double v,
int fractional_count,
Vector<char> buffer,
int* length,
int* decimal_point) {
const uint32_t kMaxUInt32 = 0xFFFFFFFF;
uint64_t significand = Double(v).Significand();
int exponent = Double(v).Exponent();
// v = significand * 2^exponent (with significand a 53bit integer).
// If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
// don't know how to compute the representation. 2^73 ~= 9.5*10^21.
// If necessary this limit could probably be increased, but we don't need
// more.
if (exponent > 20) return false;
if (fractional_count > 20) return false;
*length = 0;
// At most kDoubleSignificandSize bits of the significand are non-zero.
// Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
// bits: 0..11*..0xxx..53*..xx
if (exponent + kDoubleSignificandSize > 64) {
// The exponent must be > 11.
//
// We know that v = significand * 2^exponent.
// And the exponent > 11.
// We simplify the task by dividing v by 10^17.
// The quotient delivers the first digits, and the remainder fits into a 64
// bit number.
// Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5); // 5^17
uint64_t divisor = kFive17;
int divisor_power = 17;
uint64_t dividend = significand;
uint32_t quotient;
uint64_t remainder;
// Let v = f * 2^e with f == significand and e == exponent.
// Then need q (quotient) and r (remainder) as follows:
// v = q * 10^17 + r
// f * 2^e = q * 10^17 + r
// f * 2^e = q * 5^17 * 2^17 + r
// If e > 17 then
// f * 2^(e-17) = q * 5^17 + r/2^17
// else
// f = q * 5^17 * 2^(17-e) + r/2^e
if (exponent > divisor_power) {
// We only allow exponents of up to 20 and therefore (17 - e) <= 3
dividend <<= exponent - divisor_power;
quotient = static_cast<uint32_t>(dividend / divisor);
remainder = (dividend % divisor) << divisor_power;
} else {
divisor <<= divisor_power - exponent;
quotient = static_cast<uint32_t>(dividend / divisor);
remainder = (dividend % divisor) << exponent;
}
FillDigits32(quotient, buffer, length);
FillDigits64FixedLength(remainder, divisor_power, buffer, length);
*decimal_point = *length;
} else if (exponent >= 0) {
// 0 <= exponent <= 11
significand <<= exponent;
FillDigits64(significand, buffer, length);
*decimal_point = *length;
} else if (exponent > -kDoubleSignificandSize) {
// We have to cut the number.
uint64_t integrals = significand >> -exponent;
uint64_t fractionals = significand - (integrals << -exponent);
if (integrals > kMaxUInt32) {
FillDigits64(integrals, buffer, length);
} else {
FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
}
*decimal_point = *length;
FillFractionals(fractionals, exponent, fractional_count,
buffer, length, decimal_point);
} else if (exponent < -128) {
// This configuration (with at most 20 digits) means that all digits must be
// 0.
ASSERT(fractional_count <= 20);
buffer[0] = '\0';
*length = 0;
*decimal_point = -fractional_count;
} else {
*decimal_point = 0;
FillFractionals(significand, exponent, fractional_count,
buffer, length, decimal_point);
}
TrimZeros(buffer, length, decimal_point);
buffer[*length] = '\0';
if ((*length) == 0) {
// The string is empty and the decimal_point thus has no importance. Mimick
// Gay's dtoa and and set it to -fractional_count.
*decimal_point = -fractional_count;
}
return true;
}
} } // namespace v8::internal
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_FIXED_DTOA_H_
#define V8_FIXED_DTOA_H_
namespace v8 {
namespace internal {
// Produces digits necessary to print a given number with
// 'fractional_count' digits after the decimal point.
// The buffer must be big enough to hold the result plus one terminating null
// character.
//
// The produced digits might be too short in which case the caller has to fill
// the gaps with '0's.
// Example: FastFixedDtoa(0.001, 5, ...) is allowed to return buffer = "1", and
// decimal_point = -2.
// Halfway cases are rounded towards +/-Infinity (away from 0). The call
// FastFixedDtoa(0.15, 2, ...) thus returns buffer = "2", decimal_point = 0.
// The returned buffer may contain digits that would be truncated from the
// shortest representation of the input.
//
// This method only works for some parameters. If it can't handle the input it
// returns false. The output is null-terminated when the function succeeds.
bool FastFixedDtoa(double v, int fractional_count,
Vector<char> buffer, int* length, int* decimal_point);
} } // namespace v8::internal
#endif // V8_FIXED_DTOA_H_
......@@ -34,6 +34,7 @@ Import('context object_files')
SOURCES = {
'all': [
'gay-fixed.cc',
'gay-shortest.cc',
'test-accessors.cc',
'test-alloc.cc',
......@@ -49,6 +50,7 @@ SOURCES = {
'test-diy-fp.cc',
'test-double.cc',
'test-fast-dtoa.cc',
'test-fixed-dtoa.cc',
'test-flags.cc',
'test-func-name-inference.cc',
'test-hashmap.cc',
......
This source diff could not be displayed because it is too large. You can view the blob instead.
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef GAY_FIXED_H_
#define GAY_FIXED_H_
namespace v8 {
namespace internal {
struct PrecomputedFixed {
double v;
int number_digits;
const char* representation;
int decimal_point;
};
// Returns precomputed values of dtoa. The strings have been generated using
// Gay's dtoa in mode "fixed".
Vector<const PrecomputedFixed> PrecomputedFixedRepresentations();
} } // namespace v8::internal
#endif // GAY_FIXED_H_
......@@ -36,7 +36,7 @@
namespace v8 {
namespace internal {
static const GayShortest kShortestTestNumbers[] = {
static const PrecomputedShortest kShortestTestNumbers[] = {
{1.3252057186783201350530603e-106, "13252057186783201", -105},
{1.6899223998841386493367055e-33, "16899223998841386", -32},
{1.0077972445720390730768089e+138, "1007797244572039", 139},
......@@ -100040,9 +100040,11 @@ static const GayShortest kShortestTestNumbers[] = {
};
Vector<const GayShortest> PrecomputedShortestRepresentations() {
int number_elements = sizeof(kShortestTestNumbers) / sizeof(GayShortest);
return Vector<const GayShortest>(kShortestTestNumbers, number_elements);
Vector<const PrecomputedShortest> PrecomputedShortestRepresentations() {
int number_elements =
sizeof(kShortestTestNumbers) / sizeof(PrecomputedShortest);
return Vector<const PrecomputedShortest>(kShortestTestNumbers,
number_elements);
}
} } // namespace v8::internal
......@@ -31,13 +31,13 @@
namespace v8 {
namespace internal {
struct GayShortest {
struct PrecomputedShortest {
double v;
const char* representation;
int decimal_point;
};
Vector<const GayShortest> PrecomputedShortestRepresentations();
Vector<const PrecomputedShortest> PrecomputedShortestRepresentations();
} } // namespace v8::internal
......
......@@ -18,70 +18,60 @@ static const int kBufferSize = 100;
TEST(FastDtoaVariousDoubles) {
char buffer_container[kBufferSize];
Vector<char> buffer(buffer_container, kBufferSize);
int sign;
int length;
int point;
int status;
double min_double = 5e-324;
status = FastDtoa(min_double, buffer, &sign, &length, &point);
status = FastDtoa(min_double, buffer, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("5", buffer.start());
CHECK_EQ(-323, point);
double max_double = 1.7976931348623157e308;
status = FastDtoa(max_double, buffer, &sign, &length, &point);
status = FastDtoa(max_double, buffer, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("17976931348623157", buffer.start());
CHECK_EQ(309, point);
status = FastDtoa(4294967272.0, buffer, &sign, &length, &point);
status = FastDtoa(4294967272.0, buffer, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("4294967272", buffer.start());
CHECK_EQ(10, point);
status = FastDtoa(4.1855804968213567e298, buffer, &sign, &length, &point);
status = FastDtoa(4.1855804968213567e298, buffer, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("4185580496821357", buffer.start());
CHECK_EQ(299, point);
status = FastDtoa(5.5626846462680035e-309, buffer, &sign, &length, &point);
status = FastDtoa(5.5626846462680035e-309, buffer, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("5562684646268003", buffer.start());
CHECK_EQ(-308, point);
status = FastDtoa(2147483648.0, buffer, &sign, &length, &point);
status = FastDtoa(2147483648.0, buffer, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("2147483648", buffer.start());
CHECK_EQ(10, point);
status = FastDtoa(3.5844466002796428e+298, buffer, &sign, &length, &point);
status = FastDtoa(3.5844466002796428e+298, buffer, &length, &point);
if (status) { // Not all FastDtoa variants manage to compute this number.
CHECK_EQ("35844466002796428", buffer.start());
CHECK_EQ(0, sign);
CHECK_EQ(299, point);
}
uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000);
double v = Double(smallest_normal64).value();
status = FastDtoa(v, buffer, &sign, &length, &point);
status = FastDtoa(v, buffer, &length, &point);
if (status) {
CHECK_EQ(0, sign);
CHECK_EQ("22250738585072014", buffer.start());
CHECK_EQ(-307, point);
}
uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
v = Double(largest_denormal64).value();
status = FastDtoa(v, buffer, &sign, &length, &point);
status = FastDtoa(v, buffer, &length, &point);
if (status) {
CHECK_EQ(0, sign);
CHECK_EQ("2225073858507201", buffer.start());
CHECK_EQ(-307, point);
}
......@@ -92,24 +82,23 @@ TEST(FastDtoaGayShortest) {
char buffer_container[kBufferSize];
Vector<char> buffer(buffer_container, kBufferSize);
bool status;
int sign;
int length;
int point;
int succeeded = 0;
int total = 0;
bool needed_max_length = false;
Vector<const GayShortest> precomputed = PrecomputedShortestRepresentations();
Vector<const PrecomputedShortest> precomputed =
PrecomputedShortestRepresentations();
for (int i = 0; i < precomputed.length(); ++i) {
const GayShortest current_test = precomputed[i];
const PrecomputedShortest current_test = precomputed[i];
total++;
double v = current_test.v;
status = FastDtoa(v, buffer, &sign, &length, &point);
status = FastDtoa(v, buffer, &length, &point);
CHECK_GE(kFastDtoaMaximalLength, length);
if (!status) continue;
if (length == kFastDtoaMaximalLength) needed_max_length = true;
succeeded++;
CHECK_EQ(0, sign); // All precomputed numbers are positive.
CHECK_EQ(current_test.decimal_point, point);
CHECK_EQ(current_test.representation, buffer.start());
}
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "platform.h"
#include "cctest.h"
#include "double.h"
#include "fixed-dtoa.h"
#include "gay-fixed.h"
using namespace v8::internal;
static const int kBufferSize = 500;
TEST(FastFixedVariousDoubles) {
char buffer_container[kBufferSize];
Vector<char> buffer(buffer_container, kBufferSize);
int length;
int point;
CHECK(FastFixedDtoa(1.0, 1, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(1.0, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(1.0, 0, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0xFFFFFFFF, 5, buffer, &length, &point));
CHECK_EQ("4294967295", buffer.start());
CHECK_EQ(10, point);
CHECK(FastFixedDtoa(4294967296.0, 5, buffer, &length, &point));
CHECK_EQ("4294967296", buffer.start());
CHECK_EQ(10, point);
CHECK(FastFixedDtoa(1e21, 5, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
// CHECK_EQ(22, point);
CHECK_EQ(22, point);
CHECK(FastFixedDtoa(999999999999999868928.00, 2, buffer, &length, &point));
CHECK_EQ("999999999999999868928", buffer.start());
CHECK_EQ(21, point);
CHECK(FastFixedDtoa(6.9999999999999989514240000e+21, 5, buffer,
&length, &point));
CHECK_EQ("6999999999999998951424", buffer.start());
CHECK_EQ(22, point);
CHECK(FastFixedDtoa(1.5, 5, buffer, &length, &point));
CHECK_EQ("15", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(1.55, 5, buffer, &length, &point));
CHECK_EQ("155", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(1.55, 1, buffer, &length, &point));
CHECK_EQ("16", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(1.00000001, 15, buffer, &length, &point));
CHECK_EQ("100000001", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.1, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(0, point);
CHECK(FastFixedDtoa(0.01, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-1, point);
CHECK(FastFixedDtoa(0.001, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-2, point);
CHECK(FastFixedDtoa(0.0001, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-3, point);
CHECK(FastFixedDtoa(0.00001, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-4, point);
CHECK(FastFixedDtoa(0.000001, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-5, point);
CHECK(FastFixedDtoa(0.0000001, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-6, point);
CHECK(FastFixedDtoa(0.00000001, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-7, point);
CHECK(FastFixedDtoa(0.000000001, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-8, point);
CHECK(FastFixedDtoa(0.0000000001, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-9, point);
CHECK(FastFixedDtoa(0.00000000001, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-10, point);
CHECK(FastFixedDtoa(0.000000000001, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-11, point);
CHECK(FastFixedDtoa(0.0000000000001, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-12, point);
CHECK(FastFixedDtoa(0.00000000000001, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-13, point);
CHECK(FastFixedDtoa(0.000000000000001, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-14, point);
CHECK(FastFixedDtoa(0.0000000000000001, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-15, point);
CHECK(FastFixedDtoa(0.00000000000000001, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-16, point);
CHECK(FastFixedDtoa(0.000000000000000001, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-17, point);
CHECK(FastFixedDtoa(0.0000000000000000001, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-18, point);
CHECK(FastFixedDtoa(0.00000000000000000001, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-19, point);
CHECK(FastFixedDtoa(0.10000000004, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(0, point);
CHECK(FastFixedDtoa(0.01000000004, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-1, point);
CHECK(FastFixedDtoa(0.00100000004, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-2, point);
CHECK(FastFixedDtoa(0.00010000004, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-3, point);
CHECK(FastFixedDtoa(0.00001000004, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-4, point);
CHECK(FastFixedDtoa(0.00000100004, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-5, point);
CHECK(FastFixedDtoa(0.00000010004, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-6, point);
CHECK(FastFixedDtoa(0.00000001004, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-7, point);
CHECK(FastFixedDtoa(0.00000000104, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-8, point);
CHECK(FastFixedDtoa(0.0000000001000004, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-9, point);
CHECK(FastFixedDtoa(0.0000000000100004, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-10, point);
CHECK(FastFixedDtoa(0.0000000000010004, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-11, point);
CHECK(FastFixedDtoa(0.0000000000001004, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-12, point);
CHECK(FastFixedDtoa(0.0000000000000104, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-13, point);
CHECK(FastFixedDtoa(0.000000000000001000004, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-14, point);
CHECK(FastFixedDtoa(0.000000000000000100004, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-15, point);
CHECK(FastFixedDtoa(0.000000000000000010004, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-16, point);
CHECK(FastFixedDtoa(0.000000000000000001004, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-17, point);
CHECK(FastFixedDtoa(0.000000000000000000104, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-18, point);
CHECK(FastFixedDtoa(0.000000000000000000014, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-19, point);
CHECK(FastFixedDtoa(0.10000000006, 10, buffer, &length, &point));
CHECK_EQ("1000000001", buffer.start());
CHECK_EQ(0, point);
CHECK(FastFixedDtoa(0.01000000006, 10, buffer, &length, &point));
CHECK_EQ("100000001", buffer.start());
CHECK_EQ(-1, point);
CHECK(FastFixedDtoa(0.00100000006, 10, buffer, &length, &point));
CHECK_EQ("10000001", buffer.start());
CHECK_EQ(-2, point);
CHECK(FastFixedDtoa(0.00010000006, 10, buffer, &length, &point));
CHECK_EQ("1000001", buffer.start());
CHECK_EQ(-3, point);
CHECK(FastFixedDtoa(0.00001000006, 10, buffer, &length, &point));
CHECK_EQ("100001", buffer.start());
CHECK_EQ(-4, point);
CHECK(FastFixedDtoa(0.00000100006, 10, buffer, &length, &point));
CHECK_EQ("10001", buffer.start());
CHECK_EQ(-5, point);
CHECK(FastFixedDtoa(0.00000010006, 10, buffer, &length, &point));
CHECK_EQ("1001", buffer.start());
CHECK_EQ(-6, point);
CHECK(FastFixedDtoa(0.00000001006, 10, buffer, &length, &point));
CHECK_EQ("101", buffer.start());
CHECK_EQ(-7, point);
CHECK(FastFixedDtoa(0.00000000106, 10, buffer, &length, &point));
CHECK_EQ("11", buffer.start());
CHECK_EQ(-8, point);
CHECK(FastFixedDtoa(0.0000000001000006, 15, buffer, &length, &point));
CHECK_EQ("100001", buffer.start());
CHECK_EQ(-9, point);
CHECK(FastFixedDtoa(0.0000000000100006, 15, buffer, &length, &point));
CHECK_EQ("10001", buffer.start());
CHECK_EQ(-10, point);
CHECK(FastFixedDtoa(0.0000000000010006, 15, buffer, &length, &point));
CHECK_EQ("1001", buffer.start());
CHECK_EQ(-11, point);
CHECK(FastFixedDtoa(0.0000000000001006, 15, buffer, &length, &point));
CHECK_EQ("101", buffer.start());
CHECK_EQ(-12, point);
CHECK(FastFixedDtoa(0.0000000000000106, 15, buffer, &length, &point));
CHECK_EQ("11", buffer.start());
CHECK_EQ(-13, point);
CHECK(FastFixedDtoa(0.000000000000001000006, 20, buffer, &length, &point));
CHECK_EQ("100001", buffer.start());
CHECK_EQ(-14, point);
CHECK(FastFixedDtoa(0.000000000000000100006, 20, buffer, &length, &point));
CHECK_EQ("10001", buffer.start());
CHECK_EQ(-15, point);
CHECK(FastFixedDtoa(0.000000000000000010006, 20, buffer, &length, &point));
CHECK_EQ("1001", buffer.start());
CHECK_EQ(-16, point);
CHECK(FastFixedDtoa(0.000000000000000001006, 20, buffer, &length, &point));
CHECK_EQ("101", buffer.start());
CHECK_EQ(-17, point);
CHECK(FastFixedDtoa(0.000000000000000000106, 20, buffer, &length, &point));
CHECK_EQ("11", buffer.start());
CHECK_EQ(-18, point);
CHECK(FastFixedDtoa(0.000000000000000000016, 20, buffer, &length, &point));
CHECK_EQ("2", buffer.start());
CHECK_EQ(-19, point);
CHECK(FastFixedDtoa(0.6, 0, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.96, 1, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.996, 2, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.9996, 3, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.99996, 4, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.999996, 5, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.9999996, 6, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.99999996, 7, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.999999996, 8, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.9999999996, 9, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.99999999996, 10, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.999999999996, 11, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.9999999999996, 12, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.99999999999996, 13, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.999999999999996, 14, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.9999999999999996, 15, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(0.00999999999999996, 16, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-1, point);
CHECK(FastFixedDtoa(0.000999999999999996, 17, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-2, point);
CHECK(FastFixedDtoa(0.0000999999999999996, 18, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-3, point);
CHECK(FastFixedDtoa(0.00000999999999999996, 19, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-4, point);
CHECK(FastFixedDtoa(0.000000999999999999996, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-5, point);
CHECK(FastFixedDtoa(323423.234234, 10, buffer, &length, &point));
CHECK_EQ("323423234234", buffer.start());
CHECK_EQ(6, point);
CHECK(FastFixedDtoa(12345678.901234, 4, buffer, &length, &point));
CHECK_EQ("123456789012", buffer.start());
CHECK_EQ(8, point);
CHECK(FastFixedDtoa(98765.432109, 5, buffer, &length, &point));
CHECK_EQ("9876543211", buffer.start());
CHECK_EQ(5, point);
CHECK(FastFixedDtoa(42, 20, buffer, &length, &point));
CHECK_EQ("42", buffer.start());
CHECK_EQ(2, point);
CHECK(FastFixedDtoa(0.5, 0, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(1, point);
CHECK(FastFixedDtoa(1e-23, 10, buffer, &length, &point));
CHECK_EQ("", buffer.start());
CHECK_EQ(-10, point);
CHECK(FastFixedDtoa(1e-123, 2, buffer, &length, &point));
CHECK_EQ("", buffer.start());
CHECK_EQ(-2, point);
CHECK(FastFixedDtoa(1e-123, 0, buffer, &length, &point));
CHECK_EQ("", buffer.start());
CHECK_EQ(0, point);
CHECK(FastFixedDtoa(1e-23, 20, buffer, &length, &point));
CHECK_EQ("", buffer.start());
CHECK_EQ(-20, point);
CHECK(FastFixedDtoa(1e-21, 20, buffer, &length, &point));
CHECK_EQ("", buffer.start());
CHECK_EQ(-20, point);
CHECK(FastFixedDtoa(1e-22, 20, buffer, &length, &point));
CHECK_EQ("", buffer.start());
CHECK_EQ(-20, point);
CHECK(FastFixedDtoa(6e-21, 20, buffer, &length, &point));
CHECK_EQ("1", buffer.start());
CHECK_EQ(-19, point);
CHECK(FastFixedDtoa(9.1193616301674545152000000e+19, 0,
buffer, &length, &point));
CHECK_EQ("91193616301674545152", buffer.start());
CHECK_EQ(20, point);
CHECK(FastFixedDtoa(4.8184662102767651659096515e-04, 19,
buffer, &length, &point));
CHECK_EQ("4818466210276765", buffer.start());
CHECK_EQ(-3, point);
CHECK(FastFixedDtoa(1.9023164229540652612705182e-23, 8,
buffer, &length, &point));
CHECK_EQ("", buffer.start());
CHECK_EQ(-8, point);
CHECK(FastFixedDtoa(1000000000000000128.0, 0,
buffer, &length, &point));
CHECK_EQ("1000000000000000128", buffer.start());
CHECK_EQ(19, point);
}
TEST(FastFixedDtoaGayFixed) {
char buffer_container[kBufferSize];
Vector<char> buffer(buffer_container, kBufferSize);
bool status;
int length;
int point;
Vector<const PrecomputedFixed> precomputed =
PrecomputedFixedRepresentations();
for (int i = 0; i < precomputed.length(); ++i) {
const PrecomputedFixed current_test = precomputed[i];
double v = current_test.v;
int number_digits = current_test.number_digits;
status = FastFixedDtoa(v, number_digits,
buffer, &length, &point);
CHECK(status);
CHECK_EQ(current_test.decimal_point, point);
CHECK_GE(number_digits, length - point);
CHECK_EQ(current_test.representation, buffer.start());
}
}
......@@ -276,6 +276,8 @@
'../../src/disasm.h',
'../../src/disassembler.cc',
'../../src/disassembler.h',
'../../src/dtoa.cc',
'../../src/dtoa.h',
'../../src/dtoa-config.c',
'../../src/diy-fp.cc',
'../../src/diy-fp.h',
......@@ -288,6 +290,8 @@
'../../src/fast-dtoa.cc',
'../../src/fast-dtoa.h',
'../../src/flag-definitions.h',
'../../src/fixed-dtoa.cc',
'../../src/fixed-dtoa.h',
'../../src/flags.cc',
'../../src/flags.h',
'../../src/flow-graph.cc',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment