Commit 76d684cc authored by Leszek Swirski's avatar Leszek Swirski Committed by Commit Bot

Reland "[serializer] Change deferring to use forward refs"

This is a reland of 81577a79

The revert was due to an missing dependency in the incremental build,
fixed in https://crrev.com/c/2400987.

Original change's description:
> [serializer] Change deferring to use forward refs
>
> Now that we have forward references, we can replace the body deferring
> mechanism with forward references to the entire pointer.
>
> This ensures that objects are always deserialized with their contents
> (aside from themselves maybe holding forward refs), and as a result we
> can simplify the CanBeDeferred conditions which encode the constraint
> that some objects either need immediately have contents, or cannot be
> deferred because their fields are changed temporarily (e.g. backing
> store refs).
>
> This also means that objects with length fields (e.g. arrays) will
> always have those length fields deserialized when the object is
> deserialized, which was not the case when the body could be deferred.
> This helps us in the plan to make GC possible during deserialization.
>
> Bug: v8:10815
> Change-Id: Ib0e5399b9de6027765691e8cb47410a2ccc15485
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2390643
> Reviewed-by: Jakob Gruber <jgruber@chromium.org>
> Commit-Queue: Leszek Swirski <leszeks@chromium.org>
> Cr-Commit-Position: refs/heads/master@{#69760}

Tbr: jgruber@chromium.org
Bug: v8:10815
Change-Id: I235076a97c5dfa58513e880cc477ac72a28b29e9
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2400992Reviewed-by: 's avatarJakob Gruber <jgruber@chromium.org>
Commit-Queue: Leszek Swirski <leszeks@chromium.org>
Cr-Commit-Position: refs/heads/master@{#69779}
parent c99147c6
......@@ -117,36 +117,8 @@ void Deserializer::DeserializeDeferredObjects() {
DisallowHeapAllocation no_gc;
for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
switch (code) {
case kAlignmentPrefix:
case kAlignmentPrefix + 1:
case kAlignmentPrefix + 2: {
int alignment = code - (SerializerDeserializer::kAlignmentPrefix - 1);
allocator()->SetAlignment(static_cast<AllocationAlignment>(alignment));
break;
}
default: {
SnapshotSpace space = NewObject::Decode(code);
HeapObject object = GetBackReferencedObject(space);
int size = source_.GetInt() << kTaggedSizeLog2;
Address obj_address = object.address();
// Object's map is already initialized, now read the rest.
MaybeObjectSlot start(obj_address + kTaggedSize);
MaybeObjectSlot end(obj_address + size);
bool filled = ReadData(start, end, space, obj_address);
CHECK(filled);
DCHECK(CanBeDeferred(object));
PostProcessNewObject(object, space);
}
}
}
// When the deserialization of maps are deferred, they will be created
// as filler maps, and we postpone the post processing until the maps
// are also deserialized.
for (const auto& pair : fillers_to_post_process_) {
DCHECK(!pair.first.IsFiller());
PostProcessNewObject(pair.first, pair.second);
SnapshotSpace space = NewObject::Decode(code);
ReadObject(space);
}
}
......@@ -192,11 +164,7 @@ HeapObject Deserializer::PostProcessNewObject(HeapObject obj,
DisallowHeapAllocation no_gc;
if ((FLAG_rehash_snapshot && can_rehash_) || deserializing_user_code()) {
if (obj.IsFiller()) {
DCHECK_EQ(fillers_to_post_process_.find(obj),
fillers_to_post_process_.end());
fillers_to_post_process_.insert({obj, space});
} else if (obj.IsString()) {
if (obj.IsString()) {
// Uninitialize hash field as we need to recompute the hash.
String string = String::cast(obj);
string.set_hash_field(String::kEmptyHashField);
......@@ -371,10 +339,8 @@ HeapObject Deserializer::ReadObject() {
MaybeObject object;
// We are reading to a location outside of JS heap, so pass kNew to avoid
// triggering write barriers.
bool filled =
ReadData(FullMaybeObjectSlot(&object), FullMaybeObjectSlot(&object + 1),
SnapshotSpace::kNew, kNullAddress);
CHECK(filled);
ReadData(FullMaybeObjectSlot(&object), FullMaybeObjectSlot(&object + 1),
SnapshotSpace::kNew, kNullAddress);
return object.GetHeapObjectAssumeStrong();
}
......@@ -414,10 +380,8 @@ HeapObject Deserializer::ReadObject(SnapshotSpace space) {
MaybeObjectSlot limit(address + size);
current.store(MaybeObject::FromObject(map));
if (ReadData(current + 1, limit, space, address)) {
// Only post process if object content has not been deferred.
obj = PostProcessNewObject(obj, space);
}
ReadData(current + 1, limit, space, address);
obj = PostProcessNewObject(obj, space);
#ifdef DEBUG
if (obj.IsCode()) {
......@@ -446,8 +410,7 @@ HeapObject Deserializer::ReadMetaMap() {
current.store(MaybeObject(current.address() + kHeapObjectTag));
// Set the instance-type manually, to allow backrefs to read it.
Map::unchecked_cast(obj).set_instance_type(MAP_TYPE);
// The meta map's contents cannot be deferred.
CHECK(ReadData(current + 1, limit, space, address));
ReadData(current + 1, limit, space, address);
return obj;
}
......@@ -459,8 +422,7 @@ void Deserializer::ReadCodeObjectBody(SnapshotSpace space,
// Now we read the rest of code header's fields.
MaybeObjectSlot current(code_object_address + HeapObject::kHeaderSize);
MaybeObjectSlot limit(code_object_address + Code::kDataStart);
bool filled = ReadData(current, limit, space, code_object_address);
CHECK(filled);
ReadData(current, limit, space, code_object_address);
// Now iterate RelocInfos the same way it was done by the serialzier and
// deserialize respective data into RelocInfos.
......@@ -573,7 +535,7 @@ constexpr byte VerifyBytecodeCount(byte bytecode) {
} // namespace
template <typename TSlot>
bool Deserializer::ReadData(TSlot current, TSlot limit,
void Deserializer::ReadData(TSlot current, TSlot limit,
SnapshotSpace source_space,
Address current_object_address) {
// Write barrier support costs around 1% in startup time. In fact there
......@@ -678,18 +640,8 @@ bool Deserializer::ReadData(TSlot current, TSlot limit,
break;
}
case kDeferred: {
// Deferred can only occur right after the heap object's map field.
DCHECK_EQ(current.address(), current_object_address + kTaggedSize);
HeapObject obj = HeapObject::FromAddress(current_object_address);
// If the deferred object is a map, its instance type may be used
// during deserialization. Initialize it with a temporary value.
if (obj.IsMap()) Map::cast(obj).set_instance_type(FILLER_TYPE);
current = limit;
return false;
}
case kRegisterPendingForwardRef: {
DCHECK_NE(current_object_address, kNullAddress);
HeapObject obj = HeapObject::FromAddress(current_object_address);
unresolved_forward_refs_.emplace_back(
obj, current.address() - current_object_address);
......@@ -881,7 +833,6 @@ bool Deserializer::ReadData(TSlot current, TSlot limit,
}
}
CHECK_EQ(limit, current);
return true;
}
Address Deserializer::ReadExternalReferenceCase() {
......
......@@ -135,9 +135,9 @@ class V8_EXPORT_PRIVATE Deserializer : public SerializerDeserializer {
// space id is used for the write barrier. The object_address is the address
// of the object we are writing into, or nullptr if we are not writing into an
// object, i.e. if we are writing a series of tagged values that are not on
// the heap. Return false if the object content has been deferred.
// the heap.
template <typename TSlot>
bool ReadData(TSlot start, TSlot end, SnapshotSpace space,
void ReadData(TSlot start, TSlot end, SnapshotSpace space,
Address object_address);
// A helper function for ReadData, templatized on the bytecode for efficiency.
......@@ -205,11 +205,6 @@ class V8_EXPORT_PRIVATE Deserializer : public SerializerDeserializer {
// TODO(6593): generalize rehashing, and remove this flag.
bool can_rehash_;
std::vector<HeapObject> to_rehash_;
// Store the objects whose maps are deferred and thus initialized as filler
// maps during deserialization, so that they can be processed later when the
// maps become available.
std::unordered_map<HeapObject, SnapshotSpace, Object::Hasher>
fillers_to_post_process_;
#ifdef DEBUG
uint32_t num_api_references_;
......
......@@ -86,12 +86,9 @@ bool ReadOnlySerializer::MustBeDeferred(HeapObject object) {
// be saved without problems.
return false;
}
// Just defer everything except for Map objects until all required roots are
// serialized. Some objects may have special alignment requirements, that may
// not be fulfilled during deserialization until few first root objects are
// serialized. But we must serialize Map objects since deserializer checks
// that these root objects are indeed Maps.
return !object.IsMap();
// Defer objects with special alignment requirements until the filler roots
// are serialized.
return HeapObject::RequiredAlignment(object.map()) != kWordAligned;
}
bool ReadOnlySerializer::SerializeUsingReadOnlyObjectCache(
......
......@@ -30,14 +30,9 @@ void SerializerDeserializer::Iterate(Isolate* isolate, RootVisitor* visitor) {
}
bool SerializerDeserializer::CanBeDeferred(HeapObject o) {
// ArrayBuffer instances are serialized by first re-assigning a index
// to the backing store field, then serializing the object, and then
// storing the actual backing store address again (and the same for the
// ArrayBufferExtension). If serialization of the object itself is deferred,
// the real backing store address is written into the snapshot, which cannot
// be processed when deserializing.
return !o.IsString() && !o.IsScript() && !o.IsJSTypedArray() &&
!o.IsJSArrayBuffer();
// Maps cannot be deferred as objects are expected to have a valid map
// immediately.
return !o.IsMap();
}
void SerializerDeserializer::RestoreExternalReferenceRedirectors(
......
......@@ -72,8 +72,8 @@ class SerializerDeserializer : public RootVisitor {
// clang-format off
#define UNUSED_SERIALIZER_BYTE_CODES(V) \
V(0x06) V(0x07) V(0x0e) V(0x0f) \
/* Free range 0x2b..0x2f */ \
V(0x2b) V(0x2c) V(0x2d) V(0x2e) V(0x2f) \
/* Free range 0x2a..0x2f */ \
V(0x2a) V(0x2b) V(0x2c) V(0x2d) V(0x2e) V(0x2f) \
/* Free range 0x30..0x3f */ \
V(0x30) V(0x31) V(0x32) V(0x33) V(0x34) V(0x35) V(0x36) V(0x37) \
V(0x38) V(0x39) V(0x3a) V(0x3b) V(0x3c) V(0x3d) V(0x3e) V(0x3f) \
......@@ -145,16 +145,14 @@ class SerializerDeserializer : public RootVisitor {
kNop,
// Move to next reserved chunk.
kNextChunk,
// Deferring object content.
kDeferred,
// 3 alignment prefixes 0x17..0x19
kAlignmentPrefix = 0x17,
// 3 alignment prefixes 0x16..0x18
kAlignmentPrefix = 0x16,
// A tag emitted at strategic points in the snapshot to delineate sections.
// If the deserializer does not find these at the expected moments then it
// is an indication that the snapshot and the VM do not fit together.
// Examine the build process for architecture, version or configuration
// mismatches.
kSynchronize = 0x1a,
kSynchronize = 0x19,
// Repeats of variable length.
kVariableRepeat,
// Used for embedder-allocated backing stores for TypedArrays.
......
......@@ -71,6 +71,9 @@ void Serializer::OutputStatistics(const char* name) {
}
void Serializer::SerializeDeferredObjects() {
if (FLAG_trace_serializer) {
PrintF("Serializing deferred objects\n");
}
while (!deferred_objects_.empty()) {
HeapObject obj = deferred_objects_.back();
deferred_objects_.pop_back();
......@@ -165,13 +168,13 @@ bool Serializer::SerializeBackReference(HeapObject obj) {
}
bool Serializer::SerializePendingObject(HeapObject obj) {
auto it = forward_refs_per_pending_object_.find(obj);
if (it == forward_refs_per_pending_object_.end()) {
PendingObjectReference pending_obj =
forward_refs_per_pending_object_.find(obj);
if (pending_obj == forward_refs_per_pending_object_.end()) {
return false;
}
int forward_ref_id = PutPendingForwardReference();
it->second.push_back(forward_ref_id);
PutPendingForwardReferenceTo(pending_obj);
return true;
}
......@@ -271,10 +274,13 @@ void Serializer::PutRepeat(int repeat_count) {
}
}
int Serializer::PutPendingForwardReference() {
void Serializer::PutPendingForwardReferenceTo(
PendingObjectReference reference) {
sink_.Put(kRegisterPendingForwardRef, "RegisterPendingForwardRef");
unresolved_forward_refs_++;
return next_forward_ref_id_++;
// Register the current slot with the pending object.
int forward_ref_id = next_forward_ref_id_++;
reference->second.push_back(forward_ref_id);
}
void Serializer::ResolvePendingForwardReference(int forward_reference_id) {
......@@ -295,9 +301,11 @@ Serializer::PendingObjectReference Serializer::RegisterObjectIsPending(
auto forward_refs_entry_insertion =
forward_refs_per_pending_object_.emplace(obj, std::vector<int>());
// Make sure the above emplace actually added the object, rather than
// overwriting an existing entry.
DCHECK(forward_refs_entry_insertion.second);
// If the above emplace didn't actually add the object, then the object must
// already have been registered pending by deferring. It might not be in the
// deferred objects queue though, since it may be the very object we just
// popped off that queue, so just check that it can be deferred.
DCHECK_IMPLIES(!forward_refs_entry_insertion.second, CanBeDeferred(obj));
// return the iterator into the map as the reference.
return forward_refs_entry_insertion.first;
......@@ -581,6 +589,26 @@ class UnlinkWeakNextScope {
};
void Serializer::ObjectSerializer::Serialize() {
RecursionScope recursion(serializer_);
// Defer objects as "pending" if they cannot be serialized now, or if we
// exceed a certain recursion depth. Some objects cannot be deferred
if ((recursion.ExceedsMaximum() && CanBeDeferred(object_)) ||
serializer_->MustBeDeferred(object_)) {
DCHECK(CanBeDeferred(object_));
if (FLAG_trace_serializer) {
PrintF(" Deferring heap object: ");
object_.ShortPrint();
PrintF("\n");
}
// Deferred objects are considered "pending".
PendingObjectReference pending_obj =
serializer_->RegisterObjectIsPending(object_);
serializer_->PutPendingForwardReferenceTo(pending_obj);
serializer_->QueueDeferredObject(object_);
return;
}
if (FLAG_trace_serializer) {
PrintF(" Encoding heap object: ");
object_.ShortPrint();
......@@ -669,43 +697,27 @@ void Serializer::ObjectSerializer::SerializeObject() {
CHECK_EQ(0, bytes_processed_so_far_);
bytes_processed_so_far_ = kTaggedSize;
RecursionScope recursion(serializer_);
// Objects that are immediately post processed during deserialization
// cannot be deferred, since post processing requires the object content.
if ((recursion.ExceedsMaximum() && CanBeDeferred(object_)) ||
serializer_->MustBeDeferred(object_)) {
serializer_->QueueDeferredObject(object_);
sink_->Put(kDeferred, "Deferring object content");
return;
}
SerializeContent(map, size);
}
void Serializer::ObjectSerializer::SerializeDeferred() {
if (FLAG_trace_serializer) {
PrintF(" Encoding deferred heap object: ");
object_.ShortPrint();
PrintF("\n");
}
int size = object_.Size();
Map map = object_.map();
SerializerReference back_reference =
serializer_->reference_map()->LookupReference(
reinterpret_cast<void*>(object_.ptr()));
DCHECK(back_reference.is_back_reference());
// Serialize the rest of the object.
CHECK_EQ(0, bytes_processed_so_far_);
bytes_processed_so_far_ = kTaggedSize;
serializer_->PutAlignmentPrefix(object_);
sink_->Put(NewObject::Encode(back_reference.space()), "deferred object");
serializer_->PutBackReference(object_, back_reference);
sink_->PutInt(size >> kTaggedSizeLog2, "deferred object size");
if (back_reference.is_valid()) {
if (FLAG_trace_serializer) {
PrintF(" Deferred heap object ");
object_.ShortPrint();
PrintF(" was already serialized\n");
}
return;
}
SerializeContent(map, size);
if (FLAG_trace_serializer) {
PrintF(" Encoding deferred heap object\n");
}
Serialize();
}
void Serializer::ObjectSerializer::SerializeContent(Map map, int size) {
......
......@@ -176,6 +176,9 @@ class Serializer : public SerializerDeserializer {
Isolate* isolate() const { return isolate_; }
protected:
using PendingObjectReference =
std::map<HeapObject, std::vector<int>>::iterator;
class ObjectSerializer;
class RecursionScope {
public:
......@@ -212,7 +215,7 @@ class Serializer : public SerializerDeserializer {
// Emit a marker noting that this slot is a forward reference to the an
// object which has not yet been serialized.
int PutPendingForwardReference();
void PutPendingForwardReferenceTo(PendingObjectReference reference);
// Resolve the given previously registered forward reference to the current
// object.
void ResolvePendingForwardReference(int obj);
......@@ -251,14 +254,11 @@ class Serializer : public SerializerDeserializer {
Code CopyCode(Code code);
void QueueDeferredObject(HeapObject obj) {
DCHECK(reference_map_.LookupReference(reinterpret_cast<void*>(obj.ptr()))
.is_back_reference());
DCHECK(!reference_map_.LookupReference(reinterpret_cast<void*>(obj.ptr()))
.is_valid());
deferred_objects_.push_back(obj);
}
using PendingObjectReference =
std::map<HeapObject, std::vector<int>>::iterator;
// Register that the the given object shouldn't be immediately serialized, but
// will be serialized later and any references to it should be pending forward
// references.
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment