Commit 713c3df4 authored by yangguo's avatar yangguo Committed by Commit bot

Add test to check PRNG quality.

Credits go to Erik Corry. Taken from:
https://github.com/dart-lang/fletch/blob/master/src/shared/random_test.cc

R=jkummerow@chromium.org
BUG=v8:4566
LOG=N

Committed: https://crrev.com/1a90af55d1e9d7d84e813dc367d475457c7df1ff
Cr-Commit-Position: refs/heads/master@{#32211}

Committed: https://crrev.com/3d84f05cd77091ea8dde7821973f13f53dbaa730
Cr-Commit-Position: refs/heads/master@{#32238}

Committed: https://crrev.com/eeee7ab050013782704b5f89e49d06a30b3455c4
Cr-Commit-Position: refs/heads/master@{#32246}

Review URL: https://codereview.chromium.org/1467133006

Cr-Commit-Position: refs/heads/master@{#32254}
parent 240571d7
...@@ -51,3 +51,127 @@ TEST(RandomSeedFlagIsUsed) { ...@@ -51,3 +51,127 @@ TEST(RandomSeedFlagIsUsed) {
i->Dispose(); i->Dispose();
} }
} }
// Chi squared for getting m 0s out of n bits.
double ChiSquared(int m, int n) {
double ys_minus_np1 = (m - n / 2.0);
double chi_squared_1 = ys_minus_np1 * ys_minus_np1 * 2.0 / n;
double ys_minus_np2 = ((n - m) - n / 2.0);
double chi_squared_2 = ys_minus_np2 * ys_minus_np2 * 2.0 / n;
return chi_squared_1 + chi_squared_2;
}
// Test for correlations between recent bits from the PRNG, or bits that are
// biased.
void RandomBitCorrelation(int random_bit) {
FLAG_random_seed = 31415926;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
v8::base::RandomNumberGenerator* rng = i_isolate->random_number_generator();
#ifdef DEBUG
const int kHistory = 2;
const int kRepeats = 1000;
#else
const int kHistory = 8;
const int kRepeats = 10000;
#endif
uint32_t history[kHistory];
// The predictor bit is either constant 0 or 1, or one of the bits from the
// history.
for (int predictor_bit = -2; predictor_bit < 32; predictor_bit++) {
// The predicted bit is one of the bits from the PRNG.
for (int ago = 0; ago < kHistory; ago++) {
// We don't want to check whether each bit predicts itself.
if (ago == 0 && predictor_bit == random_bit) continue;
// Enter the new random value into the history
for (int i = ago; i >= 0; i--) {
history[i] = bit_cast<uint32_t>(rng->NextInt());
}
// Find out how many of the bits are the same as the prediction bit.
int m = 0;
for (int i = 0; i < kRepeats; i++) {
v8::HandleScope scope(isolate);
uint32_t random = bit_cast<uint32_t>(rng->NextInt());
for (int j = ago - 1; j >= 0; j--) history[j + 1] = history[j];
history[0] = random;
int predicted;
if (predictor_bit >= 0) {
predicted = (history[ago] >> predictor_bit) & 1;
} else {
predicted = predictor_bit == -2 ? 0 : 1;
}
int bit = (random >> random_bit) & 1;
if (bit == predicted) m++;
}
// Chi squared analysis for k = 2 (2, states: same/not-same) and one
// degree of freedom (k - 1).
double chi_squared = ChiSquared(m, kRepeats);
if (chi_squared > 24) {
int percent = static_cast<int>(m * 100.0 / kRepeats);
if (predictor_bit < 0) {
PrintF("Bit %d is %d %d%% of the time\n", random_bit,
predictor_bit == -2 ? 0 : 1, percent);
} else {
PrintF("Bit %d is the same as bit %d %d ago %d%% of the time\n",
random_bit, predictor_bit, ago, percent);
}
}
// For 1 degree of freedom this corresponds to 1 in a million. We are
// running ~8000 tests, so that would be surprising.
CHECK(chi_squared <= 24);
// If the predictor bit is a fixed 0 or 1 then it makes no sense to
// repeat the test with a different age.
if (predictor_bit < 0) break;
}
}
isolate->Dispose();
}
#define TEST_RANDOM_BIT(BIT) \
TEST(RandomBitCorrelations##BIT) { RandomBitCorrelation(BIT); }
TEST_RANDOM_BIT(0)
TEST_RANDOM_BIT(1)
TEST_RANDOM_BIT(2)
TEST_RANDOM_BIT(3)
TEST_RANDOM_BIT(4)
TEST_RANDOM_BIT(5)
TEST_RANDOM_BIT(6)
TEST_RANDOM_BIT(7)
TEST_RANDOM_BIT(8)
TEST_RANDOM_BIT(9)
TEST_RANDOM_BIT(10)
TEST_RANDOM_BIT(11)
TEST_RANDOM_BIT(12)
TEST_RANDOM_BIT(13)
TEST_RANDOM_BIT(14)
TEST_RANDOM_BIT(15)
TEST_RANDOM_BIT(16)
TEST_RANDOM_BIT(17)
TEST_RANDOM_BIT(18)
TEST_RANDOM_BIT(19)
TEST_RANDOM_BIT(20)
TEST_RANDOM_BIT(21)
TEST_RANDOM_BIT(22)
TEST_RANDOM_BIT(23)
TEST_RANDOM_BIT(24)
TEST_RANDOM_BIT(25)
TEST_RANDOM_BIT(26)
TEST_RANDOM_BIT(27)
TEST_RANDOM_BIT(28)
TEST_RANDOM_BIT(29)
TEST_RANDOM_BIT(30)
TEST_RANDOM_BIT(31)
#undef TEST_RANDOM_BIT
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --random-seed=12
(function() {
var kHistory = 2;
var kRepeats = 100;
var history = new Uint32Array(kHistory);
function random() {
return (Math.random() * Math.pow(2, 32)) >>> 0;
}
function ChiSquared(m, n) {
var ys_minus_np1 = (m - n / 2.0);
var chi_squared_1 = ys_minus_np1 * ys_minus_np1 * 2.0 / n;
var ys_minus_np2 = ((n - m) - n / 2.0);
var chi_squared_2 = ys_minus_np2 * ys_minus_np2 * 2.0 / n;
return chi_squared_1 + chi_squared_2;
}
for (var predictor_bit = -2; predictor_bit < 32; predictor_bit++) {
// The predicted bit is one of the bits from the PRNG.
for (var random_bit = 0; random_bit < 32; random_bit++) {
for (var ago = 0; ago < kHistory; ago++) {
// We don't want to check whether each bit predicts itself.
if (ago == 0 && predictor_bit == random_bit) continue;
// Enter the new random value into the history
for (var i = ago; i >= 0; i--) {
history[i] = random();
}
// Find out how many of the bits are the same as the prediction bit.
var m = 0;
for (var i = 0; i < kRepeats; i++) {
for (var j = ago - 1; j >= 0; j--) history[j + 1] = history[j];
history[0] = random();
var predicted;
if (predictor_bit >= 0) {
predicted = (history[ago] >> predictor_bit) & 1;
} else {
predicted = predictor_bit == -2 ? 0 : 1;
}
var bit = (history[0] >> random_bit) & 1;
if (bit == predicted) m++;
}
// Chi squared analysis for k = 2 (2, states: same/not-same) and one
// degree of freedom (k - 1).
var chi_squared = ChiSquared(m, kRepeats);
if (chi_squared > 24) {
var percent = Math.floor(m * 100.0 / kRepeats);
if (predictor_bit < 0) {
var bit_value = predictor_bit == -2 ? 0 : 1;
print(`Bit ${random_bit} is ${bit_value} ${percent}% of the time`);
} else {
print(`Bit ${random_bit} is the same as bit ${predictor_bit} ` +
`${ago} ago ${percent}% of the time`);
}
}
// For 1 degree of freedom this corresponds to 1 in a million. We are
// running ~8000 tests, so that would be surprising.
assertTrue(chi_squared <= 24);
// If the predictor bit is a fixed 0 or 1 then it makes no sense to
// repeat the test with a different age.
if (predictor_bit < 0) break;
}
}
}
})();
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment