Move flow graph and helper classes to their own file.

The FlowGraph, FlowGraphBuilder, and flow graph node classes are moved
to src/flow-graph.cc.

Review URL: http://codereview.chromium.org/1253009

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4287 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 94a2a095
......@@ -61,6 +61,7 @@ SOURCES = {
execution.cc
factory.cc
flags.cc
flow-graph.cc
frame-element.cc
frames.cc
full-codegen.cc
......
......@@ -34,6 +34,7 @@
#include "data-flow.h"
#include "debug.h"
#include "fast-codegen.h"
#include "flow-graph.h"
#include "full-codegen.h"
#include "liveedit.h"
#include "oprofile-agent.h"
......
......@@ -28,6 +28,7 @@
#include "v8.h"
#include "data-flow.h"
#include "flow-graph.h"
#include "scopes.h"
namespace v8 {
......@@ -50,561 +51,6 @@ void BitVector::Print() {
#endif
void FlowGraph::AppendInstruction(AstNode* instruction) {
// Add a (non-null) AstNode to the end of the graph fragment.
ASSERT(instruction != NULL);
if (exit()->IsExitNode()) return;
if (!exit()->IsBlockNode()) AppendNode(new BlockNode());
BlockNode::cast(exit())->AddInstruction(instruction);
}
void FlowGraph::AppendNode(Node* node) {
// Add a node to the end of the graph. An empty block is added to
// maintain edge-split form (that no join nodes or exit nodes as
// successors to branch nodes).
ASSERT(node != NULL);
if (exit()->IsExitNode()) return;
if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
AppendNode(new BlockNode());
}
exit()->AddSuccessor(node);
node->AddPredecessor(exit());
exit_ = node;
}
void FlowGraph::AppendGraph(FlowGraph* graph) {
// Add a flow graph fragment to the end of this one. An empty block is
// added to maintain edge-split form (that no join nodes or exit nodes as
// successors to branch nodes).
ASSERT(graph != NULL);
if (exit()->IsExitNode()) return;
Node* node = graph->entry();
if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
AppendNode(new BlockNode());
}
exit()->AddSuccessor(node);
node->AddPredecessor(exit());
exit_ = graph->exit();
}
void FlowGraph::Split(BranchNode* branch,
FlowGraph* left,
FlowGraph* right,
JoinNode* join) {
// Add the branch node, left flowgraph, join node.
AppendNode(branch);
AppendGraph(left);
AppendNode(join);
// Splice in the right flowgraph.
right->AppendNode(join);
branch->AddSuccessor(right->entry());
right->entry()->AddPredecessor(branch);
}
void FlowGraph::Loop(JoinNode* join,
FlowGraph* condition,
BranchNode* branch,
FlowGraph* body) {
// Add the join, condition and branch. Add join's predecessors in
// left-to-right order.
AppendNode(join);
body->AppendNode(join);
AppendGraph(condition);
AppendNode(branch);
// Splice in the body flowgraph.
branch->AddSuccessor(body->entry());
body->entry()->AddPredecessor(branch);
}
void ExitNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
preorder->Add(this);
postorder->Add(this);
}
void BlockNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void BranchNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor0_ != NULL && successor1_ != NULL);
preorder->Add(this);
if (!successor1_->IsMarkedWith(mark)) {
successor1_->MarkWith(mark);
successor1_->Traverse(mark, preorder, postorder);
}
if (!successor0_->IsMarkedWith(mark)) {
successor0_->MarkWith(mark);
successor0_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void JoinNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void FlowGraphBuilder::Build(FunctionLiteral* lit) {
global_exit_ = new ExitNode();
VisitStatements(lit->body());
if (HasStackOverflow()) return;
// The graph can end with a branch node (if the function ended with a
// loop). Maintain edge-split form (no join nodes or exit nodes as
// successors to branch nodes).
if (graph_.exit()->IsBranchNode()) graph_.AppendNode(new BlockNode());
graph_.AppendNode(global_exit_);
// Build preorder and postorder traversal orders. All the nodes in
// the graph have the same mark flag. For the traversal, use that
// flag's negation. Traversal will flip all the flags.
bool mark = graph_.entry()->IsMarkedWith(false);
graph_.entry()->MarkWith(mark);
graph_.entry()->Traverse(mark, &preorder_, &postorder_);
}
// This function peels off one iteration of a for-loop. The return value
// is either a block statement containing the peeled loop or NULL in case
// there is a stack overflow.
static Statement* PeelForLoop(ForStatement* stmt) {
// Mark this for-statement as processed.
stmt->set_peel_this_loop(false);
// Create new block containing the init statement of the for-loop and
// an if-statement containing the peeled iteration and the original
// loop without the init-statement.
Block* block = new Block(NULL, 2, false);
if (stmt->init() != NULL) {
Statement* init = stmt->init();
// The init statement gets the statement position of the for-loop
// to make debugging of peeled loops possible.
init->set_statement_pos(stmt->statement_pos());
block->AddStatement(init);
}
// Copy the condition.
CopyAstVisitor copy_visitor;
Expression* cond_copy = stmt->cond() != NULL
? copy_visitor.DeepCopyExpr(stmt->cond())
: new Literal(Factory::true_value());
if (copy_visitor.HasStackOverflow()) return NULL;
// Construct a block with the peeled body and the rest of the for-loop.
Statement* body_copy = copy_visitor.DeepCopyStmt(stmt->body());
if (copy_visitor.HasStackOverflow()) return NULL;
Statement* next_copy = stmt->next() != NULL
? copy_visitor.DeepCopyStmt(stmt->next())
: new EmptyStatement();
if (copy_visitor.HasStackOverflow()) return NULL;
Block* peeled_body = new Block(NULL, 3, false);
peeled_body->AddStatement(body_copy);
peeled_body->AddStatement(next_copy);
peeled_body->AddStatement(stmt);
// Remove the duplicated init statement from the for-statement.
stmt->set_init(NULL);
// Create new test at the top and add it to the newly created block.
IfStatement* test = new IfStatement(cond_copy,
peeled_body,
new EmptyStatement());
block->AddStatement(test);
return block;
}
void FlowGraphBuilder::VisitStatements(ZoneList<Statement*>* stmts) {
for (int i = 0, len = stmts->length(); i < len; i++) {
stmts->at(i) = ProcessStatement(stmts->at(i));
}
}
Statement* FlowGraphBuilder::ProcessStatement(Statement* stmt) {
if (FLAG_loop_peeling &&
stmt->AsForStatement() != NULL &&
stmt->AsForStatement()->peel_this_loop()) {
Statement* tmp_stmt = PeelForLoop(stmt->AsForStatement());
if (tmp_stmt == NULL) {
SetStackOverflow();
} else {
stmt = tmp_stmt;
}
}
Visit(stmt);
return stmt;
}
void FlowGraphBuilder::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
// Nothing to do.
}
void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) {
Visit(stmt->condition());
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
stmt->set_then_statement(ProcessStatement(stmt->then_statement()));
FlowGraph left = graph_;
graph_ = FlowGraph::Empty();
stmt->set_else_statement(ProcessStatement(stmt->else_statement()));
if (HasStackOverflow()) return;
JoinNode* join = new JoinNode();
original.Split(branch, &left, &graph_, join);
graph_ = original;
}
void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) {
if (stmt->init() != NULL) stmt->set_init(ProcessStatement(stmt->init()));
JoinNode* join = new JoinNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
if (stmt->cond() != NULL) Visit(stmt->cond());
BranchNode* branch = new BranchNode();
FlowGraph condition = graph_;
graph_ = FlowGraph::Empty();
stmt->set_body(ProcessStatement(stmt->body()));
if (stmt->next() != NULL) stmt->set_next(ProcessStatement(stmt->next()));
if (HasStackOverflow()) return;
original.Loop(join, &condition, branch, &graph_);
graph_ = original;
}
void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitConditional(Conditional* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitLiteral(Literal* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
// Left-hand side can be a variable or property (or reference error) but
// not both.
ASSERT(var == NULL || prop == NULL);
if (var != NULL) {
if (expr->is_compound()) Visit(expr->target());
Visit(expr->value());
if (var->IsStackAllocated()) {
// The first definition in the body is numbered n, where n is the
// number of parameters and stack-allocated locals.
expr->set_num(body_definitions_.length() + variable_count_);
body_definitions_.Add(expr);
}
} else if (prop != NULL) {
Visit(prop->obj());
if (!prop->key()->IsPropertyName()) Visit(prop->key());
Visit(expr->value());
}
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitThrow(Throw* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitProperty(Property* expr) {
Visit(expr->obj());
if (!expr->key()->IsPropertyName()) Visit(expr->key());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCall(Call* expr) {
Visit(expr->expression());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
Visit(arguments->at(i));
}
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCallNew(CallNew* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::NOT:
case Token::BIT_NOT:
case Token::DELETE:
case Token::TYPEOF:
case Token::VOID:
SetStackOverflow();
break;
case Token::ADD:
case Token::SUB:
Visit(expr->expression());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) {
Visit(expr->expression());
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (var != NULL && var->IsStackAllocated()) {
// The first definition in the body is numbered n, where n is the number
// of parameters and stack-allocated locals.
expr->set_num(body_definitions_.length() + variable_count_);
body_definitions_.Add(expr);
}
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
switch (expr->op()) {
case Token::COMMA:
case Token::OR:
case Token::AND:
SetStackOverflow();
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SHR:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
case Token::SAR:
Visit(expr->left());
Visit(expr->right());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
switch (expr->op()) {
case Token::EQ:
case Token::NE:
case Token::EQ_STRICT:
case Token::NE_STRICT:
case Token::INSTANCEOF:
case Token::IN:
SetStackOverflow();
break;
case Token::LT:
case Token::GT:
case Token::LTE:
case Token::GTE:
Visit(expr->left());
Visit(expr->right());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) {
SetStackOverflow();
}
void AstLabeler::Label(CompilationInfo* info) {
info_ = info;
VisitStatements(info_->function()->body());
......@@ -1300,803 +746,802 @@ void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) {
}
#ifdef DEBUG
int ReachingDefinitions::IndexFor(Variable* var, int variable_count) {
// Parameters are numbered left-to-right from the beginning of the bit
// set. Stack-allocated locals are allocated right-to-left from the end.
ASSERT(var != NULL && var->IsStackAllocated());
Slot* slot = var->slot();
if (slot->type() == Slot::PARAMETER) {
return slot->index();
} else {
return (variable_count - 1) - slot->index();
}
}
// Print a textual representation of an instruction in a flow graph. Using
// the AstVisitor is overkill because there is no recursion here. It is
// only used for printing in debug mode.
class TextInstructionPrinter: public AstVisitor {
public:
TextInstructionPrinter() : number_(0) {}
int NextNumber() { return number_; }
void AssignNumber(AstNode* node) { node->set_num(number_++); }
void Node::InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark) {
ASSERT(!IsMarkedWith(mark));
rd_.Initialize(definition_count);
MarkWith(mark);
worklist->Insert(this);
}
private:
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
int number_;
DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter);
};
void TextInstructionPrinter::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBlock(Block* stmt) {
PrintF("Block");
}
void BlockNode::InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark) {
ASSERT(!IsMarkedWith(mark));
int instruction_count = instructions_.length();
int variable_count = variables->length();
rd_.Initialize(definition_count);
// The RD_in set for the entry node has a definition for each parameter
// and local.
if (predecessor_ == NULL) {
for (int i = 0; i < variable_count; i++) rd_.rd_in()->Add(i);
}
void TextInstructionPrinter::VisitExpressionStatement(
ExpressionStatement* stmt) {
PrintF("ExpressionStatement");
}
for (int i = 0; i < instruction_count; i++) {
Expression* expr = instructions_[i]->AsExpression();
if (expr == NULL) continue;
Variable* var = expr->AssignedVariable();
if (var == NULL || !var->IsStackAllocated()) continue;
// All definitions of this variable are killed.
BitVector* def_set =
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
rd_.kill()->Union(*def_set);
void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) {
PrintF("EmptyStatement");
}
// All previously generated definitions are not generated.
rd_.gen()->Subtract(*def_set);
// This one is generated.
rd_.gen()->Add(expr->num());
}
void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) {
PrintF("IfStatement");
// Add all blocks except the entry node to the worklist.
if (predecessor_ != NULL) {
MarkWith(mark);
worklist->Insert(this);
}
}
void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) {
void ExitNode::ComputeRDOut(BitVector* result) {
// Should not be the predecessor of any node.
UNREACHABLE();
}
void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
void BlockNode::ComputeRDOut(BitVector* result) {
// All definitions reaching this block ...
*result = *rd_.rd_in();
// ... except those killed by the block ...
result->Subtract(*rd_.kill());
// ... but including those generated by the block.
result->Union(*rd_.gen());
}
void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) {
PrintF("return @%d", stmt->expression()->num());
void BranchNode::ComputeRDOut(BitVector* result) {
// Branch nodes don't kill or generate definitions.
*result = *rd_.rd_in();
}
void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) {
PrintF("WithEnterStatement");
void JoinNode::ComputeRDOut(BitVector* result) {
// Join nodes don't kill or generate definitions.
*result = *rd_.rd_in();
}
void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) {
PrintF("WithExitStatement");
}
void ExitNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
// The exit node has no successors so we can just update in place. New
// RD_in is the union over all predecessors.
int definition_count = rd_.rd_in()->length();
rd_.rd_in()->Clear();
void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
BitVector temp(definition_count);
for (int i = 0, len = predecessors_.length(); i < len; i++) {
// Because ComputeRDOut always overwrites temp and its value is
// always read out before calling ComputeRDOut again, we do not
// have to clear it on each iteration of the loop.
predecessors_[i]->ComputeRDOut(&temp);
rd_.rd_in()->Union(temp);
}
}
void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) {
PrintF("DoWhileStatement");
}
void BlockNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
// The entry block has no predecessor. Its RD_in does not change.
if (predecessor_ == NULL) return;
void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) {
PrintF("WhileStatement");
}
BitVector new_rd_in(rd_.rd_in()->length());
predecessor_->ComputeRDOut(&new_rd_in);
if (rd_.rd_in()->Equals(new_rd_in)) return;
void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) {
PrintF("ForStatement");
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successor to the worklist if not already present.
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
worklist->Insert(successor_);
}
}
void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) {
PrintF("ForInStatement");
}
void BranchNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
BitVector new_rd_in(rd_.rd_in()->length());
predecessor_->ComputeRDOut(&new_rd_in);
if (rd_.rd_in()->Equals(new_rd_in)) return;
void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successors to the worklist if not already present.
if (!successor0_->IsMarkedWith(mark)) {
successor0_->MarkWith(mark);
worklist->Insert(successor0_);
}
if (!successor1_->IsMarkedWith(mark)) {
successor1_->MarkWith(mark);
worklist->Insert(successor1_);
}
}
void TextInstructionPrinter::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void JoinNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
int definition_count = rd_.rd_in()->length();
BitVector new_rd_in(definition_count);
void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) {
PrintF("DebuggerStatement");
}
// New RD_in is the union over all predecessors.
BitVector temp(definition_count);
for (int i = 0, len = predecessors_.length(); i < len; i++) {
predecessors_[i]->ComputeRDOut(&temp);
new_rd_in.Union(temp);
}
if (rd_.rd_in()->Equals(new_rd_in)) return;
void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) {
PrintF("FunctionLiteral");
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successor to the worklist if not already present.
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
worklist->Insert(successor_);
}
}
void TextInstructionPrinter::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
PrintF("SharedFunctionInfoLiteral");
void Node::PropagateReachingDefinitions(List<BitVector*>* variables) {
// Nothing to do.
}
void TextInstructionPrinter::VisitConditional(Conditional* expr) {
PrintF("Conditional");
}
void BlockNode::PropagateReachingDefinitions(List<BitVector*>* variables) {
// Propagate RD_in from the start of the block to all the variable
// references.
int variable_count = variables->length();
BitVector rd = *rd_.rd_in();
for (int i = 0, len = instructions_.length(); i < len; i++) {
Expression* expr = instructions_[i]->AsExpression();
if (expr == NULL) continue;
// Look for a variable reference to record its reaching definitions.
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy == NULL) {
// Not a VariableProxy? Maybe it's a count operation.
CountOperation* count_operation = expr->AsCountOperation();
if (count_operation != NULL) {
proxy = count_operation->expression()->AsVariableProxy();
}
}
if (proxy == NULL) {
// OK, Maybe it's a compound assignment.
Assignment* assignment = expr->AsAssignment();
if (assignment != NULL && assignment->is_compound()) {
proxy = assignment->target()->AsVariableProxy();
}
}
void TextInstructionPrinter::VisitSlot(Slot* expr) {
UNREACHABLE();
}
if (proxy != NULL &&
proxy->var()->IsStackAllocated() &&
!proxy->var()->is_this()) {
// All definitions for this variable.
BitVector* definitions =
variables->at(ReachingDefinitions::IndexFor(proxy->var(),
variable_count));
BitVector* reaching_definitions = new BitVector(*definitions);
// Intersected with all definitions (of any variable) reaching this
// instruction.
reaching_definitions->Intersect(rd);
proxy->set_reaching_definitions(reaching_definitions);
}
// It may instead (or also) be a definition. If so update the running
// value of reaching definitions for the block.
Variable* var = expr->AssignedVariable();
if (var == NULL || !var->IsStackAllocated()) continue;
void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->AsVariable();
if (var != NULL) {
PrintF("%s", *var->name()->ToCString());
if (var->IsStackAllocated() && expr->reaching_definitions() != NULL) {
expr->reaching_definitions()->Print();
}
} else {
ASSERT(expr->AsProperty() != NULL);
VisitProperty(expr->AsProperty());
// All definitions of this variable are killed.
BitVector* def_set =
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
rd.Subtract(*def_set);
// This definition is generated.
rd.Add(expr->num());
}
}
void TextInstructionPrinter::VisitLiteral(Literal* expr) {
expr->handle()->ShortPrint();
}
void ReachingDefinitions::Compute() {
// The definitions in the body plus an implicit definition for each
// variable at function entry.
int definition_count = body_definitions_->length() + variable_count_;
int node_count = postorder_->length();
// Step 1: For each stack-allocated variable, identify the set of all its
// definitions.
List<BitVector*> variables;
for (int i = 0; i < variable_count_; i++) {
// Add the initial definition for each variable.
BitVector* initial = new BitVector(definition_count);
initial->Add(i);
variables.Add(initial);
}
for (int i = 0, len = body_definitions_->length(); i < len; i++) {
// Account for each definition in the body as a definition of the
// defined variable.
Variable* var = body_definitions_->at(i)->AssignedVariable();
variables[IndexFor(var, variable_count_)]->Add(i + variable_count_);
}
void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) {
PrintF("RegExpLiteral");
}
void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) {
PrintF("ObjectLiteral");
}
// Step 2: Compute KILL and GEN for each block node, initialize RD_in for
// all nodes, and mark and add all nodes to the worklist in reverse
// postorder. All nodes should currently have the same mark.
bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current.
WorkList<Node> worklist(node_count);
for (int i = node_count - 1; i >= 0; i--) {
postorder_->at(i)->InitializeReachingDefinitions(definition_count,
&variables,
&worklist,
mark);
}
// Step 3: Until the worklist is empty, remove an item compute and update
// its rd_in based on its predecessor's rd_out. If rd_in has changed, add
// all necessary successors to the worklist.
while (!worklist.is_empty()) {
Node* node = worklist.Remove();
node->MarkWith(!mark);
node->UpdateRDIn(&worklist, mark);
}
void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) {
PrintF("ArrayLiteral");
// Step 4: Based on RD_in for block nodes, propagate reaching definitions
// to all variable uses in the block.
for (int i = 0; i < node_count; i++) {
postorder_->at(i)->PropagateReachingDefinitions(&variables);
}
}
void TextInstructionPrinter::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
PrintF("CatchExtensionObject");
bool TypeAnalyzer::IsPrimitiveDef(int def_num) {
if (def_num < param_count_) return false;
if (def_num < variable_count_) return true;
return body_definitions_->at(def_num - variable_count_)->IsPrimitive();
}
void TextInstructionPrinter::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
void TypeAnalyzer::Compute() {
bool changed;
int count = 0;
if (var == NULL && prop == NULL) {
// Throw reference error.
Visit(expr->target());
return;
}
do {
changed = false;
// Print the left-hand side.
if (var != NULL) {
PrintF("%s", *var->name()->ToCString());
} else if (prop != NULL) {
PrintF("@%d", prop->obj()->num());
if (prop->key()->IsPropertyName()) {
PrintF(".");
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
} else {
PrintF("[@%d]", prop->key()->num());
if (FLAG_print_graph_text) {
PrintF("TypeAnalyzer::Compute - iteration %d\n", count++);
}
}
// Print the operation.
if (expr->is_compound()) {
PrintF(" = ");
// Print the left-hand side again when compound.
if (var != NULL) {
PrintF("@%d", expr->target()->num());
} else {
PrintF("@%d", prop->obj()->num());
if (prop->key()->IsPropertyName()) {
PrintF(".");
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
} else {
PrintF("[@%d]", prop->key()->num());
for (int i = postorder_->length() - 1; i >= 0; --i) {
Node* node = postorder_->at(i);
if (node->IsBlockNode()) {
BlockNode* block = BlockNode::cast(node);
for (int j = 0; j < block->instructions()->length(); j++) {
Expression* expr = block->instructions()->at(j)->AsExpression();
if (expr != NULL) {
// For variable uses: Compute new type from reaching definitions.
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy != NULL && proxy->reaching_definitions() != NULL) {
BitVector* rd = proxy->reaching_definitions();
bool prim_type = true;
// TODO(fsc): A sparse set representation of reaching
// definitions would speed up iterating here.
for (int k = 0; k < rd->length(); k++) {
if (rd->Contains(k) && !IsPrimitiveDef(k)) {
prim_type = false;
break;
}
}
// Reset changed flag if new type information was computed.
if (prim_type != proxy->IsPrimitive()) {
changed = true;
proxy->SetIsPrimitive(prim_type);
}
}
}
}
}
}
// Print the corresponding binary operator.
PrintF(" %s ", Token::String(expr->binary_op()));
} else {
PrintF(" %s ", Token::String(expr->op()));
}
// Print the right-hand side.
PrintF("@%d", expr->value()->num());
if (expr->num() != AstNode::kNoNumber) {
PrintF(" ;; D%d", expr->num());
}
} while (changed);
}
void TextInstructionPrinter::VisitThrow(Throw* expr) {
PrintF("throw @%d", expr->exception()->num());
void Node::MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count) {
}
void TextInstructionPrinter::VisitProperty(Property* expr) {
if (expr->key()->IsPropertyName()) {
PrintF("@%d.", expr->obj()->num());
ASSERT(expr->key()->AsLiteral() != NULL);
expr->key()->AsLiteral()->handle()->Print();
} else {
PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num());
void BlockNode::MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count) {
for (int i = instructions_.length() - 1; i >= 0; i--) {
// Only expressions can appear in the flow graph for now.
Expression* expr = instructions_[i]->AsExpression();
if (expr != NULL && !expr->is_live() &&
(expr->is_loop_condition() || expr->IsCritical())) {
expr->mark_as_live();
expr->ProcessNonLiveChildren(stack, body_definitions, variable_count);
}
}
}
void TextInstructionPrinter::VisitCall(Call* expr) {
PrintF("@%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void MarkLiveCode(ZoneList<Node*>* nodes,
ZoneList<Expression*>* body_definitions,
int variable_count) {
List<AstNode*> stack(20);
// Mark the critical AST nodes as live; mark their dependencies and
// add them to the marking stack.
for (int i = nodes->length() - 1; i >= 0; i--) {
nodes->at(i)->MarkCriticalInstructions(&stack, body_definitions,
variable_count);
}
void TextInstructionPrinter::VisitCallNew(CallNew* expr) {
PrintF("new @%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
// Continue marking dependencies until no more.
while (!stack.is_empty()) {
// Only expressions can appear in the flow graph for now.
Expression* expr = stack.RemoveLast()->AsExpression();
if (expr != NULL) {
expr->ProcessNonLiveChildren(&stack, body_definitions, variable_count);
}
}
PrintF(")");
}
void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) {
PrintF("%s(", *expr->name()->ToCString());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
#ifdef DEBUG
// Print a textual representation of an instruction in a flow graph. Using
// the AstVisitor is overkill because there is no recursion here. It is
// only used for printing in debug mode.
class TextInstructionPrinter: public AstVisitor {
public:
TextInstructionPrinter() : number_(0) {}
int NextNumber() { return number_; }
void AssignNumber(AstNode* node) { node->set_num(number_++); }
void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) {
PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num());
}
private:
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
int number_;
void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) {
if (expr->is_prefix()) {
PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num());
} else {
PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op()));
}
DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter);
};
if (expr->num() != AstNode::kNoNumber) {
PrintF(" ;; D%d", expr->num());
}
void TextInstructionPrinter::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(expr->op() != Token::COMMA);
ASSERT(expr->op() != Token::OR);
ASSERT(expr->op() != Token::AND);
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
void TextInstructionPrinter::VisitBlock(Block* stmt) {
PrintF("Block");
}
void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) {
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
void TextInstructionPrinter::VisitExpressionStatement(
ExpressionStatement* stmt) {
PrintF("ExpressionStatement");
}
void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) {
PrintF("ThisFunction");
void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) {
PrintF("EmptyStatement");
}
static int node_count = 0;
static int instruction_count = 0;
void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) {
PrintF("IfStatement");
}
void Node::AssignNodeNumber() {
set_number(node_count++);
void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void Node::PrintReachingDefinitions() {
if (rd_.rd_in() != NULL) {
ASSERT(rd_.kill() != NULL && rd_.gen() != NULL);
PrintF("RD_in = ");
rd_.rd_in()->Print();
PrintF("\n");
PrintF("RD_kill = ");
rd_.kill()->Print();
PrintF("\n");
PrintF("RD_gen = ");
rd_.gen()->Print();
PrintF("\n");
}
void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void ExitNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Exit\n\n", number());
void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) {
PrintF("return @%d", stmt->expression()->num());
}
void BlockNode::PrintText() {
PrintReachingDefinitions();
// Print the instructions in the block.
PrintF("L%d: Block\n", number());
TextInstructionPrinter printer;
for (int i = 0, len = instructions_.length(); i < len; i++) {
AstNode* instr = instructions_[i];
// Print a star next to dead instructions.
if (instr->AsExpression() != NULL && instr->AsExpression()->is_live()) {
PrintF(" ");
} else {
PrintF("* ");
}
PrintF("%d ", printer.NextNumber());
printer.Visit(instr);
printer.AssignNumber(instr);
PrintF("\n");
}
PrintF("goto L%d\n\n", successor_->number());
void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) {
PrintF("WithEnterStatement");
}
void BranchNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Branch\n", number());
PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number());
void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) {
PrintF("WithExitStatement");
}
void JoinNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Join(", number());
for (int i = 0, len = predecessors_.length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("L%d", predecessors_[i]->number());
}
PrintF(")\ngoto L%d\n\n", successor_->number());
void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void FlowGraph::PrintText(FunctionLiteral* fun, ZoneList<Node*>* postorder) {
PrintF("\n========\n");
PrintF("name = %s\n", *fun->name()->ToCString());
// Number nodes and instructions in reverse postorder.
node_count = 0;
instruction_count = 0;
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->AssignNodeNumber();
}
// Print basic blocks in reverse postorder.
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->PrintText();
}
void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) {
PrintF("DoWhileStatement");
}
#endif // defined(DEBUG)
int ReachingDefinitions::IndexFor(Variable* var, int variable_count) {
// Parameters are numbered left-to-right from the beginning of the bit
// set. Stack-allocated locals are allocated right-to-left from the end.
ASSERT(var != NULL && var->IsStackAllocated());
Slot* slot = var->slot();
if (slot->type() == Slot::PARAMETER) {
return slot->index();
} else {
return (variable_count - 1) - slot->index();
}
void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) {
PrintF("WhileStatement");
}
void Node::InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark) {
ASSERT(!IsMarkedWith(mark));
rd_.Initialize(definition_count);
MarkWith(mark);
worklist->Insert(this);
void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) {
PrintF("ForStatement");
}
void BlockNode::InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark) {
ASSERT(!IsMarkedWith(mark));
int instruction_count = instructions_.length();
int variable_count = variables->length();
rd_.Initialize(definition_count);
// The RD_in set for the entry node has a definition for each parameter
// and local.
if (predecessor_ == NULL) {
for (int i = 0; i < variable_count; i++) rd_.rd_in()->Add(i);
}
for (int i = 0; i < instruction_count; i++) {
Expression* expr = instructions_[i]->AsExpression();
if (expr == NULL) continue;
Variable* var = expr->AssignedVariable();
if (var == NULL || !var->IsStackAllocated()) continue;
// All definitions of this variable are killed.
BitVector* def_set =
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
rd_.kill()->Union(*def_set);
// All previously generated definitions are not generated.
rd_.gen()->Subtract(*def_set);
void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) {
PrintF("ForInStatement");
}
// This one is generated.
rd_.gen()->Add(expr->num());
}
// Add all blocks except the entry node to the worklist.
if (predecessor_ != NULL) {
MarkWith(mark);
worklist->Insert(this);
}
void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void ExitNode::ComputeRDOut(BitVector* result) {
// Should not be the predecessor of any node.
void TextInstructionPrinter::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void BlockNode::ComputeRDOut(BitVector* result) {
// All definitions reaching this block ...
*result = *rd_.rd_in();
// ... except those killed by the block ...
result->Subtract(*rd_.kill());
// ... but including those generated by the block.
result->Union(*rd_.gen());
void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) {
PrintF("DebuggerStatement");
}
void BranchNode::ComputeRDOut(BitVector* result) {
// Branch nodes don't kill or generate definitions.
*result = *rd_.rd_in();
void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) {
PrintF("FunctionLiteral");
}
void JoinNode::ComputeRDOut(BitVector* result) {
// Join nodes don't kill or generate definitions.
*result = *rd_.rd_in();
void TextInstructionPrinter::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
PrintF("SharedFunctionInfoLiteral");
}
void ExitNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
// The exit node has no successors so we can just update in place. New
// RD_in is the union over all predecessors.
int definition_count = rd_.rd_in()->length();
rd_.rd_in()->Clear();
BitVector temp(definition_count);
for (int i = 0, len = predecessors_.length(); i < len; i++) {
// Because ComputeRDOut always overwrites temp and its value is
// always read out before calling ComputeRDOut again, we do not
// have to clear it on each iteration of the loop.
predecessors_[i]->ComputeRDOut(&temp);
rd_.rd_in()->Union(temp);
}
void TextInstructionPrinter::VisitConditional(Conditional* expr) {
PrintF("Conditional");
}
void BlockNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
// The entry block has no predecessor. Its RD_in does not change.
if (predecessor_ == NULL) return;
BitVector new_rd_in(rd_.rd_in()->length());
predecessor_->ComputeRDOut(&new_rd_in);
void TextInstructionPrinter::VisitSlot(Slot* expr) {
UNREACHABLE();
}
if (rd_.rd_in()->Equals(new_rd_in)) return;
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successor to the worklist if not already present.
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
worklist->Insert(successor_);
void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->AsVariable();
if (var != NULL) {
PrintF("%s", *var->name()->ToCString());
if (var->IsStackAllocated() && expr->reaching_definitions() != NULL) {
expr->reaching_definitions()->Print();
}
} else {
ASSERT(expr->AsProperty() != NULL);
VisitProperty(expr->AsProperty());
}
}
void BranchNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
BitVector new_rd_in(rd_.rd_in()->length());
predecessor_->ComputeRDOut(&new_rd_in);
void TextInstructionPrinter::VisitLiteral(Literal* expr) {
expr->handle()->ShortPrint();
}
if (rd_.rd_in()->Equals(new_rd_in)) return;
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successors to the worklist if not already present.
if (!successor0_->IsMarkedWith(mark)) {
successor0_->MarkWith(mark);
worklist->Insert(successor0_);
}
if (!successor1_->IsMarkedWith(mark)) {
successor1_->MarkWith(mark);
worklist->Insert(successor1_);
}
void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) {
PrintF("RegExpLiteral");
}
void JoinNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
int definition_count = rd_.rd_in()->length();
BitVector new_rd_in(definition_count);
// New RD_in is the union over all predecessors.
BitVector temp(definition_count);
for (int i = 0, len = predecessors_.length(); i < len; i++) {
predecessors_[i]->ComputeRDOut(&temp);
new_rd_in.Union(temp);
}
void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) {
PrintF("ObjectLiteral");
}
if (rd_.rd_in()->Equals(new_rd_in)) return;
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successor to the worklist if not already present.
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
worklist->Insert(successor_);
}
void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) {
PrintF("ArrayLiteral");
}
void Node::PropagateReachingDefinitions(List<BitVector*>* variables) {
// Nothing to do.
void TextInstructionPrinter::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
PrintF("CatchExtensionObject");
}
void BlockNode::PropagateReachingDefinitions(List<BitVector*>* variables) {
// Propagate RD_in from the start of the block to all the variable
// references.
int variable_count = variables->length();
BitVector rd = *rd_.rd_in();
for (int i = 0, len = instructions_.length(); i < len; i++) {
Expression* expr = instructions_[i]->AsExpression();
if (expr == NULL) continue;
void TextInstructionPrinter::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
// Look for a variable reference to record its reaching definitions.
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy == NULL) {
// Not a VariableProxy? Maybe it's a count operation.
CountOperation* count_operation = expr->AsCountOperation();
if (count_operation != NULL) {
proxy = count_operation->expression()->AsVariableProxy();
}
}
if (proxy == NULL) {
// OK, Maybe it's a compound assignment.
Assignment* assignment = expr->AsAssignment();
if (assignment != NULL && assignment->is_compound()) {
proxy = assignment->target()->AsVariableProxy();
}
if (var == NULL && prop == NULL) {
// Throw reference error.
Visit(expr->target());
return;
}
// Print the left-hand side.
if (var != NULL) {
PrintF("%s", *var->name()->ToCString());
} else if (prop != NULL) {
PrintF("@%d", prop->obj()->num());
if (prop->key()->IsPropertyName()) {
PrintF(".");
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
} else {
PrintF("[@%d]", prop->key()->num());
}
}
if (proxy != NULL &&
proxy->var()->IsStackAllocated() &&
!proxy->var()->is_this()) {
// All definitions for this variable.
BitVector* definitions =
variables->at(ReachingDefinitions::IndexFor(proxy->var(),
variable_count));
BitVector* reaching_definitions = new BitVector(*definitions);
// Intersected with all definitions (of any variable) reaching this
// instruction.
reaching_definitions->Intersect(rd);
proxy->set_reaching_definitions(reaching_definitions);
// Print the operation.
if (expr->is_compound()) {
PrintF(" = ");
// Print the left-hand side again when compound.
if (var != NULL) {
PrintF("@%d", expr->target()->num());
} else {
PrintF("@%d", prop->obj()->num());
if (prop->key()->IsPropertyName()) {
PrintF(".");
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
} else {
PrintF("[@%d]", prop->key()->num());
}
}
// Print the corresponding binary operator.
PrintF(" %s ", Token::String(expr->binary_op()));
} else {
PrintF(" %s ", Token::String(expr->op()));
}
// It may instead (or also) be a definition. If so update the running
// value of reaching definitions for the block.
Variable* var = expr->AssignedVariable();
if (var == NULL || !var->IsStackAllocated()) continue;
// Print the right-hand side.
PrintF("@%d", expr->value()->num());
// All definitions of this variable are killed.
BitVector* def_set =
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
rd.Subtract(*def_set);
// This definition is generated.
rd.Add(expr->num());
if (expr->num() != AstNode::kNoNumber) {
PrintF(" ;; D%d", expr->num());
}
}
void ReachingDefinitions::Compute() {
// The definitions in the body plus an implicit definition for each
// variable at function entry.
int definition_count = body_definitions_->length() + variable_count_;
int node_count = postorder_->length();
void TextInstructionPrinter::VisitThrow(Throw* expr) {
PrintF("throw @%d", expr->exception()->num());
}
// Step 1: For each stack-allocated variable, identify the set of all its
// definitions.
List<BitVector*> variables;
for (int i = 0; i < variable_count_; i++) {
// Add the initial definition for each variable.
BitVector* initial = new BitVector(definition_count);
initial->Add(i);
variables.Add(initial);
void TextInstructionPrinter::VisitProperty(Property* expr) {
if (expr->key()->IsPropertyName()) {
PrintF("@%d.", expr->obj()->num());
ASSERT(expr->key()->AsLiteral() != NULL);
expr->key()->AsLiteral()->handle()->Print();
} else {
PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num());
}
for (int i = 0, len = body_definitions_->length(); i < len; i++) {
// Account for each definition in the body as a definition of the
// defined variable.
Variable* var = body_definitions_->at(i)->AssignedVariable();
variables[IndexFor(var, variable_count_)]->Add(i + variable_count_);
}
void TextInstructionPrinter::VisitCall(Call* expr) {
PrintF("@%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
// Step 2: Compute KILL and GEN for each block node, initialize RD_in for
// all nodes, and mark and add all nodes to the worklist in reverse
// postorder. All nodes should currently have the same mark.
bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current.
WorkList<Node> worklist(node_count);
for (int i = node_count - 1; i >= 0; i--) {
postorder_->at(i)->InitializeReachingDefinitions(definition_count,
&variables,
&worklist,
mark);
void TextInstructionPrinter::VisitCallNew(CallNew* expr) {
PrintF("new @%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
// Step 3: Until the worklist is empty, remove an item compute and update
// its rd_in based on its predecessor's rd_out. If rd_in has changed, add
// all necessary successors to the worklist.
while (!worklist.is_empty()) {
Node* node = worklist.Remove();
node->MarkWith(!mark);
node->UpdateRDIn(&worklist, mark);
void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) {
PrintF("%s(", *expr->name()->ToCString());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
// Step 4: Based on RD_in for block nodes, propagate reaching definitions
// to all variable uses in the block.
for (int i = 0; i < node_count; i++) {
postorder_->at(i)->PropagateReachingDefinitions(&variables);
void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) {
PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num());
}
void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) {
if (expr->is_prefix()) {
PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num());
} else {
PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op()));
}
if (expr->num() != AstNode::kNoNumber) {
PrintF(" ;; D%d", expr->num());
}
}
bool TypeAnalyzer::IsPrimitiveDef(int def_num) {
if (def_num < param_count_) return false;
if (def_num < variable_count_) return true;
return body_definitions_->at(def_num - variable_count_)->IsPrimitive();
void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(expr->op() != Token::COMMA);
ASSERT(expr->op() != Token::OR);
ASSERT(expr->op() != Token::AND);
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
void TypeAnalyzer::Compute() {
bool changed;
int count = 0;
void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) {
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
do {
changed = false;
if (FLAG_print_graph_text) {
PrintF("TypeAnalyzer::Compute - iteration %d\n", count++);
}
void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) {
PrintF("ThisFunction");
}
for (int i = postorder_->length() - 1; i >= 0; --i) {
Node* node = postorder_->at(i);
if (node->IsBlockNode()) {
BlockNode* block = BlockNode::cast(node);
for (int j = 0; j < block->instructions()->length(); j++) {
Expression* expr = block->instructions()->at(j)->AsExpression();
if (expr != NULL) {
// For variable uses: Compute new type from reaching definitions.
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy != NULL && proxy->reaching_definitions() != NULL) {
BitVector* rd = proxy->reaching_definitions();
bool prim_type = true;
// TODO(fsc): A sparse set representation of reaching
// definitions would speed up iterating here.
for (int k = 0; k < rd->length(); k++) {
if (rd->Contains(k) && !IsPrimitiveDef(k)) {
prim_type = false;
break;
}
}
// Reset changed flag if new type information was computed.
if (prim_type != proxy->IsPrimitive()) {
changed = true;
proxy->SetIsPrimitive(prim_type);
}
}
}
}
}
}
} while (changed);
static int node_count = 0;
static int instruction_count = 0;
void Node::AssignNodeNumber() {
set_number(node_count++);
}
void Node::MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count) {
void Node::PrintReachingDefinitions() {
if (rd_.rd_in() != NULL) {
ASSERT(rd_.kill() != NULL && rd_.gen() != NULL);
PrintF("RD_in = ");
rd_.rd_in()->Print();
PrintF("\n");
PrintF("RD_kill = ");
rd_.kill()->Print();
PrintF("\n");
PrintF("RD_gen = ");
rd_.gen()->Print();
PrintF("\n");
}
}
void BlockNode::MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count) {
for (int i = instructions_.length() - 1; i >= 0; i--) {
// Only expressions can appear in the flow graph for now.
Expression* expr = instructions_[i]->AsExpression();
if (expr != NULL && !expr->is_live() &&
(expr->is_loop_condition() || expr->IsCritical())) {
expr->mark_as_live();
expr->ProcessNonLiveChildren(stack, body_definitions, variable_count);
void ExitNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Exit\n\n", number());
}
void BlockNode::PrintText() {
PrintReachingDefinitions();
// Print the instructions in the block.
PrintF("L%d: Block\n", number());
TextInstructionPrinter printer;
for (int i = 0, len = instructions_.length(); i < len; i++) {
AstNode* instr = instructions_[i];
// Print a star next to dead instructions.
if (instr->AsExpression() != NULL && instr->AsExpression()->is_live()) {
PrintF(" ");
} else {
PrintF("* ");
}
PrintF("%d ", printer.NextNumber());
printer.Visit(instr);
printer.AssignNumber(instr);
PrintF("\n");
}
PrintF("goto L%d\n\n", successor_->number());
}
void MarkLiveCode(ZoneList<Node*>* nodes,
ZoneList<Expression*>* body_definitions,
int variable_count) {
List<AstNode*> stack(20);
void BranchNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Branch\n", number());
PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number());
}
// Mark the critical AST nodes as live; mark their dependencies and
// add them to the marking stack.
for (int i = nodes->length() - 1; i >= 0; i--) {
nodes->at(i)->MarkCriticalInstructions(&stack, body_definitions,
variable_count);
void JoinNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Join(", number());
for (int i = 0, len = predecessors_.length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("L%d", predecessors_[i]->number());
}
PrintF(")\ngoto L%d\n\n", successor_->number());
}
// Continue marking dependencies until no more.
while (!stack.is_empty()) {
// Only expressions can appear in the flow graph for now.
Expression* expr = stack.RemoveLast()->AsExpression();
if (expr != NULL) {
expr->ProcessNonLiveChildren(&stack, body_definitions, variable_count);
}
void FlowGraph::PrintText(FunctionLiteral* fun, ZoneList<Node*>* postorder) {
PrintF("\n========\n");
PrintF("name = %s\n", *fun->name()->ToCString());
// Number nodes and instructions in reverse postorder.
node_count = 0;
instruction_count = 0;
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->AssignNodeNumber();
}
// Print basic blocks in reverse postorder.
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->PrintText();
}
}
#endif // DEBUG
} } // namespace v8::internal
......@@ -37,6 +37,9 @@
namespace v8 {
namespace internal {
// Forward declarations.
class Node;
class BitVector: public ZoneObject {
public:
explicit BitVector(int length)
......@@ -205,344 +208,6 @@ struct ReachingDefinitionsData BASE_EMBEDDED {
};
// Flow-graph nodes.
class Node: public ZoneObject {
public:
Node() : number_(-1), mark_(false) {}
virtual ~Node() {}
virtual bool IsExitNode() { return false; }
virtual bool IsBlockNode() { return false; }
virtual bool IsBranchNode() { return false; }
virtual bool IsJoinNode() { return false; }
virtual void AddPredecessor(Node* predecessor) = 0;
virtual void AddSuccessor(Node* successor) = 0;
bool IsMarkedWith(bool mark) { return mark_ == mark; }
void MarkWith(bool mark) { mark_ = mark; }
// Perform a depth first search and record preorder and postorder
// traversal orders.
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) = 0;
int number() { return number_; }
void set_number(int number) { number_ = number; }
// Functions used by data-flow analyses.
virtual void InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark);
virtual void ComputeRDOut(BitVector* result) = 0;
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark) = 0;
virtual void PropagateReachingDefinitions(List<BitVector*>* variables);
// Functions used by dead-code elimination.
virtual void MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count);
#ifdef DEBUG
void AssignNodeNumber();
void PrintReachingDefinitions();
virtual void PrintText() = 0;
#endif
protected:
ReachingDefinitionsData rd_;
private:
int number_;
bool mark_;
DISALLOW_COPY_AND_ASSIGN(Node);
};
// An exit node has a arbitrarily many predecessors and no successors.
class ExitNode: public Node {
public:
ExitNode() : predecessors_(4) {}
virtual bool IsExitNode() { return true; }
virtual void AddPredecessor(Node* predecessor) {
ASSERT(predecessor != NULL);
predecessors_.Add(predecessor);
}
virtual void AddSuccessor(Node* successor) { UNREACHABLE(); }
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
virtual void ComputeRDOut(BitVector* result);
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
virtual void PrintText();
#endif
private:
ZoneList<Node*> predecessors_;
DISALLOW_COPY_AND_ASSIGN(ExitNode);
};
// Block nodes have a single successor and predecessor and a list of
// instructions.
class BlockNode: public Node {
public:
BlockNode() : predecessor_(NULL), successor_(NULL), instructions_(4) {}
static BlockNode* cast(Node* node) {
ASSERT(node->IsBlockNode());
return reinterpret_cast<BlockNode*>(node);
}
virtual bool IsBlockNode() { return true; }
bool is_empty() { return instructions_.is_empty(); }
ZoneList<AstNode*>* instructions() { return &instructions_; }
virtual void AddPredecessor(Node* predecessor) {
ASSERT(predecessor_ == NULL && predecessor != NULL);
predecessor_ = predecessor;
}
virtual void AddSuccessor(Node* successor) {
ASSERT(successor_ == NULL && successor != NULL);
successor_ = successor;
}
void AddInstruction(AstNode* instruction) {
instructions_.Add(instruction);
}
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
virtual void InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark);
virtual void ComputeRDOut(BitVector* result);
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark);
virtual void PropagateReachingDefinitions(List<BitVector*>* variables);
virtual void MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count);
#ifdef DEBUG
virtual void PrintText();
#endif
private:
Node* predecessor_;
Node* successor_;
ZoneList<AstNode*> instructions_;
DISALLOW_COPY_AND_ASSIGN(BlockNode);
};
// Branch nodes have a single predecessor and a pair of successors.
class BranchNode: public Node {
public:
BranchNode() : predecessor_(NULL), successor0_(NULL), successor1_(NULL) {}
virtual bool IsBranchNode() { return true; }
virtual void AddPredecessor(Node* predecessor) {
ASSERT(predecessor_ == NULL && predecessor != NULL);
predecessor_ = predecessor;
}
virtual void AddSuccessor(Node* successor) {
ASSERT(successor1_ == NULL && successor != NULL);
if (successor0_ == NULL) {
successor0_ = successor;
} else {
successor1_ = successor;
}
}
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
virtual void ComputeRDOut(BitVector* result);
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
virtual void PrintText();
#endif
private:
Node* predecessor_;
Node* successor0_;
Node* successor1_;
DISALLOW_COPY_AND_ASSIGN(BranchNode);
};
// Join nodes have arbitrarily many predecessors and a single successor.
class JoinNode: public Node {
public:
JoinNode() : predecessors_(2), successor_(NULL) {}
static JoinNode* cast(Node* node) {
ASSERT(node->IsJoinNode());
return reinterpret_cast<JoinNode*>(node);
}
virtual bool IsJoinNode() { return true; }
virtual void AddPredecessor(Node* predecessor) {
ASSERT(predecessor != NULL);
predecessors_.Add(predecessor);
}
virtual void AddSuccessor(Node* successor) {
ASSERT(successor_ == NULL && successor != NULL);
successor_ = successor;
}
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
virtual void ComputeRDOut(BitVector* result);
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
virtual void PrintText();
#endif
private:
ZoneList<Node*> predecessors_;
Node* successor_;
DISALLOW_COPY_AND_ASSIGN(JoinNode);
};
// Flow graphs have a single entry and single exit. The empty flowgraph is
// represented by both entry and exit being NULL.
class FlowGraph BASE_EMBEDDED {
public:
static FlowGraph Empty() {
FlowGraph graph;
graph.entry_ = new BlockNode();
graph.exit_ = graph.entry_;
return graph;
}
bool is_empty() const {
return entry_ == exit_ && BlockNode::cast(entry_)->is_empty();
}
Node* entry() const { return entry_; }
Node* exit() const { return exit_; }
// Add a single instruction to the end of this flowgraph.
void AppendInstruction(AstNode* instruction);
// Add a single node to the end of this flow graph.
void AppendNode(Node* node);
// Add a flow graph fragment to the end of this one.
void AppendGraph(FlowGraph* graph);
// Concatenate an if-then-else flow-graph to this one. Control is split
// and merged, so the graph remains single-entry, single-exit.
void Split(BranchNode* branch,
FlowGraph* left,
FlowGraph* right,
JoinNode* merge);
// Concatenate a forward loop (e.g., while or for loop) flow-graph to this
// one. Control is split by the condition and merged back from the back
// edge at end of the body to the beginning of the condition. The single
// (free) exit of the result graph is the right (false) arm of the branch
// node.
void Loop(JoinNode* merge,
FlowGraph* condition,
BranchNode* branch,
FlowGraph* body);
#ifdef DEBUG
void PrintText(FunctionLiteral* fun, ZoneList<Node*>* postorder);
#endif
private:
FlowGraph() : entry_(NULL), exit_(NULL) {}
Node* entry_;
Node* exit_;
};
// Construct a flow graph from a function literal. Build pre- and postorder
// traversal orders as a byproduct.
class FlowGraphBuilder: public AstVisitor {
public:
explicit FlowGraphBuilder(int variable_count)
: graph_(FlowGraph::Empty()),
global_exit_(NULL),
preorder_(4),
postorder_(4),
variable_count_(variable_count),
body_definitions_(4) {
}
void Build(FunctionLiteral* lit);
FlowGraph* graph() { return &graph_; }
ZoneList<Node*>* preorder() { return &preorder_; }
ZoneList<Node*>* postorder() { return &postorder_; }
ZoneList<Expression*>* body_definitions() { return &body_definitions_; }
private:
ExitNode* global_exit() { return global_exit_; }
// Helpers to allow tranforming the ast during flow graph construction.
void VisitStatements(ZoneList<Statement*>* stmts);
Statement* ProcessStatement(Statement* stmt);
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
FlowGraph graph_;
ExitNode* global_exit_;
ZoneList<Node*> preorder_;
ZoneList<Node*> postorder_;
// The flow graph builder collects a list of explicit definitions
// (assignments and count operations) to stack-allocated variables to use
// for reaching definitions analysis. It does not count the implicit
// definition at function entry. AST node numbers in the AST are used to
// refer into this list.
int variable_count_;
ZoneList<Expression*> body_definitions_;
DISALLOW_COPY_AND_ASSIGN(FlowGraphBuilder);
};
// This class is used to number all expressions in the AST according to
// their evaluation order (post-order left-to-right traversal).
class AstLabeler: public AstVisitor {
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "flow-graph.h"
namespace v8 {
namespace internal {
void FlowGraph::AppendInstruction(AstNode* instruction) {
// Add a (non-null) AstNode to the end of the graph fragment.
ASSERT(instruction != NULL);
if (exit()->IsExitNode()) return;
if (!exit()->IsBlockNode()) AppendNode(new BlockNode());
BlockNode::cast(exit())->AddInstruction(instruction);
}
void FlowGraph::AppendNode(Node* node) {
// Add a node to the end of the graph. An empty block is added to
// maintain edge-split form (that no join nodes or exit nodes as
// successors to branch nodes).
ASSERT(node != NULL);
if (exit()->IsExitNode()) return;
if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
AppendNode(new BlockNode());
}
exit()->AddSuccessor(node);
node->AddPredecessor(exit());
exit_ = node;
}
void FlowGraph::AppendGraph(FlowGraph* graph) {
// Add a flow graph fragment to the end of this one. An empty block is
// added to maintain edge-split form (that no join nodes or exit nodes as
// successors to branch nodes).
ASSERT(graph != NULL);
if (exit()->IsExitNode()) return;
Node* node = graph->entry();
if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
AppendNode(new BlockNode());
}
exit()->AddSuccessor(node);
node->AddPredecessor(exit());
exit_ = graph->exit();
}
void FlowGraph::Split(BranchNode* branch,
FlowGraph* left,
FlowGraph* right,
JoinNode* join) {
// Add the branch node, left flowgraph, join node.
AppendNode(branch);
AppendGraph(left);
AppendNode(join);
// Splice in the right flowgraph.
right->AppendNode(join);
branch->AddSuccessor(right->entry());
right->entry()->AddPredecessor(branch);
}
void FlowGraph::Loop(JoinNode* join,
FlowGraph* condition,
BranchNode* branch,
FlowGraph* body) {
// Add the join, condition and branch. Add join's predecessors in
// left-to-right order.
AppendNode(join);
body->AppendNode(join);
AppendGraph(condition);
AppendNode(branch);
// Splice in the body flowgraph.
branch->AddSuccessor(body->entry());
body->entry()->AddPredecessor(branch);
}
void ExitNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
preorder->Add(this);
postorder->Add(this);
}
void BlockNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void BranchNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor0_ != NULL && successor1_ != NULL);
preorder->Add(this);
if (!successor1_->IsMarkedWith(mark)) {
successor1_->MarkWith(mark);
successor1_->Traverse(mark, preorder, postorder);
}
if (!successor0_->IsMarkedWith(mark)) {
successor0_->MarkWith(mark);
successor0_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void JoinNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void FlowGraphBuilder::Build(FunctionLiteral* lit) {
global_exit_ = new ExitNode();
VisitStatements(lit->body());
if (HasStackOverflow()) return;
// The graph can end with a branch node (if the function ended with a
// loop). Maintain edge-split form (no join nodes or exit nodes as
// successors to branch nodes).
if (graph_.exit()->IsBranchNode()) graph_.AppendNode(new BlockNode());
graph_.AppendNode(global_exit_);
// Build preorder and postorder traversal orders. All the nodes in
// the graph have the same mark flag. For the traversal, use that
// flag's negation. Traversal will flip all the flags.
bool mark = graph_.entry()->IsMarkedWith(false);
graph_.entry()->MarkWith(mark);
graph_.entry()->Traverse(mark, &preorder_, &postorder_);
}
// This function peels off one iteration of a for-loop. The return value
// is either a block statement containing the peeled loop or NULL in case
// there is a stack overflow.
static Statement* PeelForLoop(ForStatement* stmt) {
// Mark this for-statement as processed.
stmt->set_peel_this_loop(false);
// Create new block containing the init statement of the for-loop and
// an if-statement containing the peeled iteration and the original
// loop without the init-statement.
Block* block = new Block(NULL, 2, false);
if (stmt->init() != NULL) {
Statement* init = stmt->init();
// The init statement gets the statement position of the for-loop
// to make debugging of peeled loops possible.
init->set_statement_pos(stmt->statement_pos());
block->AddStatement(init);
}
// Copy the condition.
CopyAstVisitor copy_visitor;
Expression* cond_copy = stmt->cond() != NULL
? copy_visitor.DeepCopyExpr(stmt->cond())
: new Literal(Factory::true_value());
if (copy_visitor.HasStackOverflow()) return NULL;
// Construct a block with the peeled body and the rest of the for-loop.
Statement* body_copy = copy_visitor.DeepCopyStmt(stmt->body());
if (copy_visitor.HasStackOverflow()) return NULL;
Statement* next_copy = stmt->next() != NULL
? copy_visitor.DeepCopyStmt(stmt->next())
: new EmptyStatement();
if (copy_visitor.HasStackOverflow()) return NULL;
Block* peeled_body = new Block(NULL, 3, false);
peeled_body->AddStatement(body_copy);
peeled_body->AddStatement(next_copy);
peeled_body->AddStatement(stmt);
// Remove the duplicated init statement from the for-statement.
stmt->set_init(NULL);
// Create new test at the top and add it to the newly created block.
IfStatement* test = new IfStatement(cond_copy,
peeled_body,
new EmptyStatement());
block->AddStatement(test);
return block;
}
void FlowGraphBuilder::VisitStatements(ZoneList<Statement*>* stmts) {
for (int i = 0, len = stmts->length(); i < len; i++) {
stmts->at(i) = ProcessStatement(stmts->at(i));
}
}
Statement* FlowGraphBuilder::ProcessStatement(Statement* stmt) {
if (FLAG_loop_peeling &&
stmt->AsForStatement() != NULL &&
stmt->AsForStatement()->peel_this_loop()) {
Statement* tmp_stmt = PeelForLoop(stmt->AsForStatement());
if (tmp_stmt == NULL) {
SetStackOverflow();
} else {
stmt = tmp_stmt;
}
}
Visit(stmt);
return stmt;
}
void FlowGraphBuilder::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
// Nothing to do.
}
void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) {
Visit(stmt->condition());
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
stmt->set_then_statement(ProcessStatement(stmt->then_statement()));
FlowGraph left = graph_;
graph_ = FlowGraph::Empty();
stmt->set_else_statement(ProcessStatement(stmt->else_statement()));
if (HasStackOverflow()) return;
JoinNode* join = new JoinNode();
original.Split(branch, &left, &graph_, join);
graph_ = original;
}
void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) {
if (stmt->init() != NULL) stmt->set_init(ProcessStatement(stmt->init()));
JoinNode* join = new JoinNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
if (stmt->cond() != NULL) Visit(stmt->cond());
BranchNode* branch = new BranchNode();
FlowGraph condition = graph_;
graph_ = FlowGraph::Empty();
stmt->set_body(ProcessStatement(stmt->body()));
if (stmt->next() != NULL) stmt->set_next(ProcessStatement(stmt->next()));
if (HasStackOverflow()) return;
original.Loop(join, &condition, branch, &graph_);
graph_ = original;
}
void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitConditional(Conditional* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitLiteral(Literal* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
// Left-hand side can be a variable or property (or reference error) but
// not both.
ASSERT(var == NULL || prop == NULL);
if (var != NULL) {
if (expr->is_compound()) Visit(expr->target());
Visit(expr->value());
if (var->IsStackAllocated()) {
// The first definition in the body is numbered n, where n is the
// number of parameters and stack-allocated locals.
expr->set_num(body_definitions_.length() + variable_count_);
body_definitions_.Add(expr);
}
} else if (prop != NULL) {
Visit(prop->obj());
if (!prop->key()->IsPropertyName()) Visit(prop->key());
Visit(expr->value());
}
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitThrow(Throw* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitProperty(Property* expr) {
Visit(expr->obj());
if (!expr->key()->IsPropertyName()) Visit(expr->key());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCall(Call* expr) {
Visit(expr->expression());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
Visit(arguments->at(i));
}
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCallNew(CallNew* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::NOT:
case Token::BIT_NOT:
case Token::DELETE:
case Token::TYPEOF:
case Token::VOID:
SetStackOverflow();
break;
case Token::ADD:
case Token::SUB:
Visit(expr->expression());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) {
Visit(expr->expression());
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (var != NULL && var->IsStackAllocated()) {
// The first definition in the body is numbered n, where n is the number
// of parameters and stack-allocated locals.
expr->set_num(body_definitions_.length() + variable_count_);
body_definitions_.Add(expr);
}
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
switch (expr->op()) {
case Token::COMMA:
case Token::OR:
case Token::AND:
SetStackOverflow();
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SHR:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
case Token::SAR:
Visit(expr->left());
Visit(expr->right());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
switch (expr->op()) {
case Token::EQ:
case Token::NE:
case Token::EQ_STRICT:
case Token::NE_STRICT:
case Token::INSTANCEOF:
case Token::IN:
SetStackOverflow();
break;
case Token::LT:
case Token::GT:
case Token::LTE:
case Token::GTE:
Visit(expr->left());
Visit(expr->right());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) {
SetStackOverflow();
}
} } // namespace v8::internal
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_FLOW_GRAPH_H_
#define V8_FLOW_GRAPH_H_
#include "v8.h"
#include "data-flow.h"
#include "zone.h"
namespace v8 {
namespace internal {
// Flow-graph nodes.
class Node: public ZoneObject {
public:
Node() : number_(-1), mark_(false) {}
virtual ~Node() {}
virtual bool IsExitNode() { return false; }
virtual bool IsBlockNode() { return false; }
virtual bool IsBranchNode() { return false; }
virtual bool IsJoinNode() { return false; }
virtual void AddPredecessor(Node* predecessor) = 0;
virtual void AddSuccessor(Node* successor) = 0;
bool IsMarkedWith(bool mark) { return mark_ == mark; }
void MarkWith(bool mark) { mark_ = mark; }
// Perform a depth first search and record preorder and postorder
// traversal orders.
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) = 0;
int number() { return number_; }
void set_number(int number) { number_ = number; }
// Functions used by data-flow analyses.
virtual void InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark);
virtual void ComputeRDOut(BitVector* result) = 0;
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark) = 0;
virtual void PropagateReachingDefinitions(List<BitVector*>* variables);
// Functions used by dead-code elimination.
virtual void MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count);
#ifdef DEBUG
void AssignNodeNumber();
void PrintReachingDefinitions();
virtual void PrintText() = 0;
#endif
protected:
ReachingDefinitionsData rd_;
private:
int number_;
bool mark_;
DISALLOW_COPY_AND_ASSIGN(Node);
};
// An exit node has a arbitrarily many predecessors and no successors.
class ExitNode: public Node {
public:
ExitNode() : predecessors_(4) {}
virtual bool IsExitNode() { return true; }
virtual void AddPredecessor(Node* predecessor) {
ASSERT(predecessor != NULL);
predecessors_.Add(predecessor);
}
virtual void AddSuccessor(Node* successor) { UNREACHABLE(); }
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
virtual void ComputeRDOut(BitVector* result);
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
virtual void PrintText();
#endif
private:
ZoneList<Node*> predecessors_;
DISALLOW_COPY_AND_ASSIGN(ExitNode);
};
// Block nodes have a single successor and predecessor and a list of
// instructions.
class BlockNode: public Node {
public:
BlockNode() : predecessor_(NULL), successor_(NULL), instructions_(4) {}
static BlockNode* cast(Node* node) {
ASSERT(node->IsBlockNode());
return reinterpret_cast<BlockNode*>(node);
}
virtual bool IsBlockNode() { return true; }
bool is_empty() { return instructions_.is_empty(); }
ZoneList<AstNode*>* instructions() { return &instructions_; }
virtual void AddPredecessor(Node* predecessor) {
ASSERT(predecessor_ == NULL && predecessor != NULL);
predecessor_ = predecessor;
}
virtual void AddSuccessor(Node* successor) {
ASSERT(successor_ == NULL && successor != NULL);
successor_ = successor;
}
void AddInstruction(AstNode* instruction) {
instructions_.Add(instruction);
}
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
virtual void InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark);
virtual void ComputeRDOut(BitVector* result);
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark);
virtual void PropagateReachingDefinitions(List<BitVector*>* variables);
virtual void MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count);
#ifdef DEBUG
virtual void PrintText();
#endif
private:
Node* predecessor_;
Node* successor_;
ZoneList<AstNode*> instructions_;
DISALLOW_COPY_AND_ASSIGN(BlockNode);
};
// Branch nodes have a single predecessor and a pair of successors.
class BranchNode: public Node {
public:
BranchNode() : predecessor_(NULL), successor0_(NULL), successor1_(NULL) {}
virtual bool IsBranchNode() { return true; }
virtual void AddPredecessor(Node* predecessor) {
ASSERT(predecessor_ == NULL && predecessor != NULL);
predecessor_ = predecessor;
}
virtual void AddSuccessor(Node* successor) {
ASSERT(successor1_ == NULL && successor != NULL);
if (successor0_ == NULL) {
successor0_ = successor;
} else {
successor1_ = successor;
}
}
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
virtual void ComputeRDOut(BitVector* result);
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
virtual void PrintText();
#endif
private:
Node* predecessor_;
Node* successor0_;
Node* successor1_;
DISALLOW_COPY_AND_ASSIGN(BranchNode);
};
// Join nodes have arbitrarily many predecessors and a single successor.
class JoinNode: public Node {
public:
JoinNode() : predecessors_(2), successor_(NULL) {}
static JoinNode* cast(Node* node) {
ASSERT(node->IsJoinNode());
return reinterpret_cast<JoinNode*>(node);
}
virtual bool IsJoinNode() { return true; }
virtual void AddPredecessor(Node* predecessor) {
ASSERT(predecessor != NULL);
predecessors_.Add(predecessor);
}
virtual void AddSuccessor(Node* successor) {
ASSERT(successor_ == NULL && successor != NULL);
successor_ = successor;
}
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
virtual void ComputeRDOut(BitVector* result);
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
virtual void PrintText();
#endif
private:
ZoneList<Node*> predecessors_;
Node* successor_;
DISALLOW_COPY_AND_ASSIGN(JoinNode);
};
// Flow graphs have a single entry and single exit. The empty flowgraph is
// represented by both entry and exit being NULL.
class FlowGraph BASE_EMBEDDED {
public:
static FlowGraph Empty() {
FlowGraph graph;
graph.entry_ = new BlockNode();
graph.exit_ = graph.entry_;
return graph;
}
bool is_empty() const {
return entry_ == exit_ && BlockNode::cast(entry_)->is_empty();
}
Node* entry() const { return entry_; }
Node* exit() const { return exit_; }
// Add a single instruction to the end of this flowgraph.
void AppendInstruction(AstNode* instruction);
// Add a single node to the end of this flow graph.
void AppendNode(Node* node);
// Add a flow graph fragment to the end of this one.
void AppendGraph(FlowGraph* graph);
// Concatenate an if-then-else flow-graph to this one. Control is split
// and merged, so the graph remains single-entry, single-exit.
void Split(BranchNode* branch,
FlowGraph* left,
FlowGraph* right,
JoinNode* merge);
// Concatenate a forward loop (e.g., while or for loop) flow-graph to this
// one. Control is split by the condition and merged back from the back
// edge at end of the body to the beginning of the condition. The single
// (free) exit of the result graph is the right (false) arm of the branch
// node.
void Loop(JoinNode* merge,
FlowGraph* condition,
BranchNode* branch,
FlowGraph* body);
#ifdef DEBUG
void PrintText(FunctionLiteral* fun, ZoneList<Node*>* postorder);
#endif
private:
FlowGraph() : entry_(NULL), exit_(NULL) {}
Node* entry_;
Node* exit_;
};
// Construct a flow graph from a function literal. Build pre- and postorder
// traversal orders as a byproduct.
class FlowGraphBuilder: public AstVisitor {
public:
explicit FlowGraphBuilder(int variable_count)
: graph_(FlowGraph::Empty()),
global_exit_(NULL),
preorder_(4),
postorder_(4),
variable_count_(variable_count),
body_definitions_(4) {
}
void Build(FunctionLiteral* lit);
FlowGraph* graph() { return &graph_; }
ZoneList<Node*>* preorder() { return &preorder_; }
ZoneList<Node*>* postorder() { return &postorder_; }
ZoneList<Expression*>* body_definitions() { return &body_definitions_; }
private:
ExitNode* global_exit() { return global_exit_; }
// Helpers to allow tranforming the ast during flow graph construction.
void VisitStatements(ZoneList<Statement*>* stmts);
Statement* ProcessStatement(Statement* stmt);
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
FlowGraph graph_;
ExitNode* global_exit_;
ZoneList<Node*> preorder_;
ZoneList<Node*> postorder_;
// The flow graph builder collects a list of explicit definitions
// (assignments and count operations) to stack-allocated variables to use
// for reaching definitions analysis. It does not count the implicit
// definition at function entry. AST node numbers in the AST are used to
// refer into this list.
int variable_count_;
ZoneList<Expression*> body_definitions_;
DISALLOW_COPY_AND_ASSIGN(FlowGraphBuilder);
};
} } // namespace v8::internal
#endif // V8_FLOW_GRAPH_H_
......@@ -282,6 +282,8 @@
'../../src/flag-definitions.h',
'../../src/flags.cc',
'../../src/flags.h',
'../../src/flow-graph.cc',
'../../src/flow-graph.h',
'../../src/frame-element.cc',
'../../src/frame-element.h',
'../../src/frames-inl.h',
......
......@@ -464,6 +464,14 @@
RelativePath="..\..\src\flags.h"
>
</File>
<File
RelativePath="..\..\src\flow-graph.cc"
>
</File>
<File
RelativePath="..\..\src\flow-graph.h"
>
</File>
<File
RelativePath="..\..\src\frame-element.cc"
>
......
......@@ -448,6 +448,14 @@
RelativePath="..\..\src\flags.h"
>
</File>
<File
RelativePath="..\..\src\flow-graph.cc"
>
</File>
<File
RelativePath="..\..\src\flow-graph.h"
>
</File>
<File
RelativePath="..\..\src\frame-element.cc"
>
......
......@@ -440,6 +440,14 @@
RelativePath="..\..\src\flags.h"
>
</File>
<File
RelativePath="..\..\src\flow-graph.cc"
>
</File>
<File
RelativePath="..\..\src\flow-graph.h"
>
</File>
<File
RelativePath="..\..\src\frame-element.cc"
>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment