Commit 6f17848c authored by yangguo's avatar yangguo Committed by Commit bot

[serializer] split up src/snapshot/serialize.*

R=rossberg@chromium.org, ulan@chromium.org, vogelheim@chromium.org

Review URL: https://codereview.chromium.org/1751863002

Cr-Commit-Position: refs/heads/master@{#34395}
parent 21622dda
......@@ -704,6 +704,7 @@ source_set("v8_base") {
"src/code-stubs-hydrogen.cc",
"src/codegen.cc",
"src/codegen.h",
"src/collector.h",
"src/compilation-cache.cc",
"src/compilation-cache.h",
"src/compilation-dependencies.cc",
......@@ -1282,13 +1283,23 @@ source_set("v8_base") {
"src/signature.h",
"src/simulator.h",
"src/small-pointer-list.h",
"src/snapshot/code-serializer.cc",
"src/snapshot/code-serializer.h",
"src/snapshot/deserializer.cc",
"src/snapshot/deserializer.h",
"src/snapshot/natives.h",
"src/snapshot/natives-common.cc",
"src/snapshot/serialize.cc",
"src/snapshot/serialize.h",
"src/snapshot/partial-serializer.cc",
"src/snapshot/partial-serializer.h",
"src/snapshot/serializer.cc",
"src/snapshot/serializer.h",
"src/snapshot/serializer-common.cc",
"src/snapshot/serializer-common.h",
"src/snapshot/snapshot-common.cc",
"src/snapshot/snapshot-source-sink.cc",
"src/snapshot/snapshot-source-sink.h",
"src/snapshot/startup-serializer.cc",
"src/snapshot/startup-serializer.h",
"src/source-position.h",
"src/splay-tree.h",
"src/splay-tree-inl.h",
......
......@@ -60,7 +60,7 @@
#include "src/register-configuration.h"
#include "src/runtime/runtime.h"
#include "src/simulator.h" // For flushing instruction cache.
#include "src/snapshot/serialize.h"
#include "src/snapshot/serializer-common.h"
#if V8_TARGET_ARCH_IA32
#include "src/ia32/assembler-ia32-inl.h" // NOLINT
......
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COLLECTOR_H_
#define V8_COLLECTOR_H_
#include "src/checks.h"
#include "src/list.h"
#include "src/vector.h"
namespace v8 {
namespace internal {
/*
* A class that collects values into a backing store.
* Specialized versions of the class can allow access to the backing store
* in different ways.
* There is no guarantee that the backing store is contiguous (and, as a
* consequence, no guarantees that consecutively added elements are adjacent
* in memory). The collector may move elements unless it has guaranteed not
* to.
*/
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class Collector {
public:
explicit Collector(int initial_capacity = kMinCapacity)
: index_(0), size_(0) {
current_chunk_ = Vector<T>::New(initial_capacity);
}
virtual ~Collector() {
// Free backing store (in reverse allocation order).
current_chunk_.Dispose();
for (int i = chunks_.length() - 1; i >= 0; i--) {
chunks_.at(i).Dispose();
}
}
// Add a single element.
inline void Add(T value) {
if (index_ >= current_chunk_.length()) {
Grow(1);
}
current_chunk_[index_] = value;
index_++;
size_++;
}
// Add a block of contiguous elements and return a Vector backed by the
// memory area.
// A basic Collector will keep this vector valid as long as the Collector
// is alive.
inline Vector<T> AddBlock(int size, T initial_value) {
DCHECK(size > 0);
if (size > current_chunk_.length() - index_) {
Grow(size);
}
T* position = current_chunk_.start() + index_;
index_ += size;
size_ += size;
for (int i = 0; i < size; i++) {
position[i] = initial_value;
}
return Vector<T>(position, size);
}
// Add a contiguous block of elements and return a vector backed
// by the added block.
// A basic Collector will keep this vector valid as long as the Collector
// is alive.
inline Vector<T> AddBlock(Vector<const T> source) {
if (source.length() > current_chunk_.length() - index_) {
Grow(source.length());
}
T* position = current_chunk_.start() + index_;
index_ += source.length();
size_ += source.length();
for (int i = 0; i < source.length(); i++) {
position[i] = source[i];
}
return Vector<T>(position, source.length());
}
// Write the contents of the collector into the provided vector.
void WriteTo(Vector<T> destination) {
DCHECK(size_ <= destination.length());
int position = 0;
for (int i = 0; i < chunks_.length(); i++) {
Vector<T> chunk = chunks_.at(i);
for (int j = 0; j < chunk.length(); j++) {
destination[position] = chunk[j];
position++;
}
}
for (int i = 0; i < index_; i++) {
destination[position] = current_chunk_[i];
position++;
}
}
// Allocate a single contiguous vector, copy all the collected
// elements to the vector, and return it.
// The caller is responsible for freeing the memory of the returned
// vector (e.g., using Vector::Dispose).
Vector<T> ToVector() {
Vector<T> new_store = Vector<T>::New(size_);
WriteTo(new_store);
return new_store;
}
// Resets the collector to be empty.
virtual void Reset() {
for (int i = chunks_.length() - 1; i >= 0; i--) {
chunks_.at(i).Dispose();
}
chunks_.Rewind(0);
index_ = 0;
size_ = 0;
}
// Total number of elements added to collector so far.
inline int size() { return size_; }
protected:
static const int kMinCapacity = 16;
List<Vector<T> > chunks_;
Vector<T> current_chunk_; // Block of memory currently being written into.
int index_; // Current index in current chunk.
int size_; // Total number of elements in collector.
// Creates a new current chunk, and stores the old chunk in the chunks_ list.
void Grow(int min_capacity) {
DCHECK(growth_factor > 1);
int new_capacity;
int current_length = current_chunk_.length();
if (current_length < kMinCapacity) {
// The collector started out as empty.
new_capacity = min_capacity * growth_factor;
if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
} else {
int growth = current_length * (growth_factor - 1);
if (growth > max_growth) {
growth = max_growth;
}
new_capacity = current_length + growth;
if (new_capacity < min_capacity) {
new_capacity = min_capacity + growth;
}
}
NewChunk(new_capacity);
DCHECK(index_ + min_capacity <= current_chunk_.length());
}
// Before replacing the current chunk, give a subclass the option to move
// some of the current data into the new chunk. The function may update
// the current index_ value to represent data no longer in the current chunk.
// Returns the initial index of the new chunk (after copied data).
virtual void NewChunk(int new_capacity) {
Vector<T> new_chunk = Vector<T>::New(new_capacity);
if (index_ > 0) {
chunks_.Add(current_chunk_.SubVector(0, index_));
} else {
current_chunk_.Dispose();
}
current_chunk_ = new_chunk;
index_ = 0;
}
};
/*
* A collector that allows sequences of values to be guaranteed to
* stay consecutive.
* If the backing store grows while a sequence is active, the current
* sequence might be moved, but after the sequence is ended, it will
* not move again.
* NOTICE: Blocks allocated using Collector::AddBlock(int) can move
* as well, if inside an active sequence where another element is added.
*/
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class SequenceCollector : public Collector<T, growth_factor, max_growth> {
public:
explicit SequenceCollector(int initial_capacity)
: Collector<T, growth_factor, max_growth>(initial_capacity),
sequence_start_(kNoSequence) {}
virtual ~SequenceCollector() {}
void StartSequence() {
DCHECK(sequence_start_ == kNoSequence);
sequence_start_ = this->index_;
}
Vector<T> EndSequence() {
DCHECK(sequence_start_ != kNoSequence);
int sequence_start = sequence_start_;
sequence_start_ = kNoSequence;
if (sequence_start == this->index_) return Vector<T>();
return this->current_chunk_.SubVector(sequence_start, this->index_);
}
// Drops the currently added sequence, and all collected elements in it.
void DropSequence() {
DCHECK(sequence_start_ != kNoSequence);
int sequence_length = this->index_ - sequence_start_;
this->index_ = sequence_start_;
this->size_ -= sequence_length;
sequence_start_ = kNoSequence;
}
virtual void Reset() {
sequence_start_ = kNoSequence;
this->Collector<T, growth_factor, max_growth>::Reset();
}
private:
static const int kNoSequence = -1;
int sequence_start_;
// Move the currently active sequence to the new chunk.
virtual void NewChunk(int new_capacity) {
if (sequence_start_ == kNoSequence) {
// Fall back on default behavior if no sequence has been started.
this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
return;
}
int sequence_length = this->index_ - sequence_start_;
Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
DCHECK(sequence_length < new_chunk.length());
for (int i = 0; i < sequence_length; i++) {
new_chunk[i] = this->current_chunk_[sequence_start_ + i];
}
if (sequence_start_ > 0) {
this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
} else {
this->current_chunk_.Dispose();
}
this->current_chunk_ = new_chunk;
this->index_ = sequence_length;
sequence_start_ = 0;
}
};
} // namespace internal
} // namespace v8
#endif // V8_COLLECTOR_H_
......@@ -31,7 +31,7 @@
#include "src/parsing/scanner-character-streams.h"
#include "src/profiler/cpu-profiler.h"
#include "src/runtime-profiler.h"
#include "src/snapshot/serialize.h"
#include "src/snapshot/code-serializer.h"
#include "src/vm-state-inl.h"
namespace v8 {
......
......@@ -10,7 +10,7 @@
#include "src/deoptimizer.h"
#include "src/disasm.h"
#include "src/macro-assembler.h"
#include "src/snapshot/serialize.h"
#include "src/snapshot/serializer-common.h"
#include "src/string-stream.h"
namespace v8 {
......
......@@ -36,7 +36,7 @@
#include "src/regexp/jsregexp.h"
#include "src/runtime-profiler.h"
#include "src/snapshot/natives.h"
#include "src/snapshot/serialize.h"
#include "src/snapshot/serializer-common.h"
#include "src/snapshot/snapshot.h"
#include "src/tracing/trace-event.h"
#include "src/type-feedback-vector.h"
......@@ -1143,7 +1143,8 @@ bool Heap::ReserveSpace(Reservation* reservations) {
static const int kThreshold = 20;
while (gc_performed && counter++ < kThreshold) {
gc_performed = false;
for (int space = NEW_SPACE; space < Serializer::kNumberOfSpaces; space++) {
for (int space = NEW_SPACE; space < SerializerDeserializer::kNumberOfSpaces;
space++) {
Reservation* reservation = &reservations[space];
DCHECK_LE(1, reservation->length());
if (reservation->at(0).size == 0) continue;
......@@ -1169,7 +1170,7 @@ bool Heap::ReserveSpace(Reservation* reservations) {
Address free_space_address = free_space->address();
CreateFillerObjectAt(free_space_address, size,
ClearRecordedSlots::kNo);
DCHECK(space < Serializer::kNumberOfPreallocatedSpaces);
DCHECK(space < SerializerDeserializer::kNumberOfPreallocatedSpaces);
chunk.start = free_space_address;
chunk.end = free_space_address + size;
} else {
......
......@@ -34,7 +34,8 @@
#include "src/regexp/regexp-stack.h"
#include "src/runtime-profiler.h"
#include "src/simulator.h"
#include "src/snapshot/serialize.h"
#include "src/snapshot/deserializer.h"
#include "src/snapshot/serializer-common.h"
#include "src/v8.h"
#include "src/version.h"
#include "src/vm-state-inl.h"
......@@ -2299,9 +2300,8 @@ bool Isolate::Init(Deserializer* des) {
// the snapshot.
HandleScope scope(this);
Deoptimizer::EnsureCodeForDeoptimizationEntry(
this,
Deoptimizer::LAZY,
kDeoptTableSerializeEntryCount - 1);
this, Deoptimizer::LAZY,
ExternalReferenceTable::kDeoptTableSerializeEntryCount - 1);
}
if (!serializer_enabled()) {
......
......@@ -6,6 +6,7 @@
#define V8_PARSING_PREPARSE_DATA_H_
#include "src/allocation.h"
#include "src/collector.h"
#include "src/hashmap.h"
#include "src/messages.h"
#include "src/parsing/preparse-data-format.h"
......
......@@ -10,13 +10,13 @@
#include "src/allocation.h"
#include "src/base/logging.h"
#include "src/char-predicates.h"
#include "src/collector.h"
#include "src/globals.h"
#include "src/hashmap.h"
#include "src/list.h"
#include "src/parsing/token.h"
#include "src/unicode.h"
#include "src/unicode-decoder.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
......
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/code-serializer.h"
#include "src/code-stubs.h"
#include "src/log.h"
#include "src/macro-assembler.h"
#include "src/profiler/cpu-profiler.h"
#include "src/snapshot/deserializer.h"
#include "src/version.h"
namespace v8 {
namespace internal {
ScriptData* CodeSerializer::Serialize(Isolate* isolate,
Handle<SharedFunctionInfo> info,
Handle<String> source) {
base::ElapsedTimer timer;
if (FLAG_profile_deserialization) timer.Start();
if (FLAG_trace_serializer) {
PrintF("[Serializing from");
Object* script = info->script();
if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
PrintF("]\n");
}
// Serialize code object.
SnapshotByteSink sink(info->code()->CodeSize() * 2);
CodeSerializer cs(isolate, &sink, *source);
DisallowHeapAllocation no_gc;
Object** location = Handle<Object>::cast(info).location();
cs.VisitPointer(location);
cs.SerializeDeferredObjects();
cs.Pad();
SerializedCodeData data(sink.data(), cs);
ScriptData* script_data = data.GetScriptData();
if (FLAG_profile_deserialization) {
double ms = timer.Elapsed().InMillisecondsF();
int length = script_data->length();
PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
}
return script_data;
}
void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) {
int root_index = root_index_map_.Lookup(obj);
if (root_index != RootIndexMap::kInvalidRootIndex) {
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
return;
}
if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
FlushSkip(skip);
if (obj->IsCode()) {
Code* code_object = Code::cast(obj);
switch (code_object->kind()) {
case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet.
case Code::HANDLER: // No handlers patched in yet.
case Code::REGEXP: // No regexp literals initialized yet.
case Code::NUMBER_OF_KINDS: // Pseudo enum value.
CHECK(false);
case Code::BUILTIN:
SerializeBuiltin(code_object->builtin_index(), how_to_code,
where_to_point);
return;
case Code::STUB:
SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
return;
#define IC_KIND_CASE(KIND) case Code::KIND:
IC_KIND_LIST(IC_KIND_CASE)
#undef IC_KIND_CASE
SerializeIC(code_object, how_to_code, where_to_point);
return;
case Code::FUNCTION:
DCHECK(code_object->has_reloc_info_for_serialization());
SerializeGeneric(code_object, how_to_code, where_to_point);
return;
case Code::WASM_FUNCTION:
UNREACHABLE();
}
UNREACHABLE();
}
// Past this point we should not see any (context-specific) maps anymore.
CHECK(!obj->IsMap());
// There should be no references to the global object embedded.
CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject());
// There should be no hash table embedded. They would require rehashing.
CHECK(!obj->IsHashTable());
// We expect no instantiated function objects or contexts.
CHECK(!obj->IsJSFunction() && !obj->IsContext());
SerializeGeneric(obj, how_to_code, where_to_point);
}
void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
HowToCode how_to_code,
WhereToPoint where_to_point) {
// Object has not yet been serialized. Serialize it here.
ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
where_to_point);
serializer.Serialize();
}
void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
WhereToPoint where_to_point) {
DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
(how_to_code == kPlain && where_to_point == kInnerPointer) ||
(how_to_code == kFromCode && where_to_point == kInnerPointer));
DCHECK_LT(builtin_index, Builtins::builtin_count);
DCHECK_LE(0, builtin_index);
if (FLAG_trace_serializer) {
PrintF(" Encoding builtin: %s\n",
isolate()->builtins()->name(builtin_index));
}
sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
sink_->PutInt(builtin_index, "builtin_index");
}
void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
WhereToPoint where_to_point) {
DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
(how_to_code == kPlain && where_to_point == kInnerPointer) ||
(how_to_code == kFromCode && where_to_point == kInnerPointer));
DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
if (FLAG_trace_serializer) {
PrintF(" Encoding code stub %s as %d\n",
CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index);
}
sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
sink_->PutInt(index, "CodeStub key");
}
void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
WhereToPoint where_to_point) {
// The IC may be implemented as a stub.
uint32_t stub_key = ic->stub_key();
if (stub_key != CodeStub::NoCacheKey()) {
if (FLAG_trace_serializer) {
PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
}
SerializeCodeStub(stub_key, how_to_code, where_to_point);
return;
}
// The IC may be implemented as builtin. Only real builtins have an
// actual builtin_index value attached (otherwise it's just garbage).
// Compare to make sure we are really dealing with a builtin.
int builtin_index = ic->builtin_index();
if (builtin_index < Builtins::builtin_count) {
Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
Code* builtin = isolate()->builtins()->builtin(name);
if (builtin == ic) {
if (FLAG_trace_serializer) {
PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
}
DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
ic->kind() == Code::KEYED_STORE_IC);
SerializeBuiltin(builtin_index, how_to_code, where_to_point);
return;
}
}
// The IC may also just be a piece of code kept in the non_monomorphic_cache.
// In that case, just serialize as a normal code object.
if (FLAG_trace_serializer) {
PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
}
DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
SerializeGeneric(ic, how_to_code, where_to_point);
}
int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
// TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
int index = 0;
while (index < stub_keys_.length()) {
if (stub_keys_[index] == stub_key) return index;
index++;
}
stub_keys_.Add(stub_key);
return index;
}
MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
base::ElapsedTimer timer;
if (FLAG_profile_deserialization) timer.Start();
HandleScope scope(isolate);
base::SmartPointer<SerializedCodeData> scd(
SerializedCodeData::FromCachedData(isolate, cached_data, *source));
if (scd.is_empty()) {
if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
DCHECK(cached_data->rejected());
return MaybeHandle<SharedFunctionInfo>();
}
// Prepare and register list of attached objects.
Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
code_stub_keys.length() + kCodeStubsBaseIndex);
attached_objects[kSourceObjectIndex] = source;
for (int i = 0; i < code_stub_keys.length(); i++) {
attached_objects[i + kCodeStubsBaseIndex] =
CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
}
Deserializer deserializer(scd.get());
deserializer.SetAttachedObjects(attached_objects);
// Deserialize.
Handle<SharedFunctionInfo> result;
if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
// Deserializing may fail if the reservations cannot be fulfilled.
if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
return MaybeHandle<SharedFunctionInfo>();
}
if (FLAG_profile_deserialization) {
double ms = timer.Elapsed().InMillisecondsF();
int length = cached_data->length();
PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
}
result->set_deserialized(true);
if (isolate->logger()->is_logging_code_events() ||
isolate->cpu_profiler()->is_profiling()) {
String* name = isolate->heap()->empty_string();
if (result->script()->IsScript()) {
Script* script = Script::cast(result->script());
if (script->name()->IsString()) name = String::cast(script->name());
}
isolate->logger()->CodeCreateEvent(
Logger::SCRIPT_TAG, result->abstract_code(), *result, NULL, name);
}
return scope.CloseAndEscape(result);
}
class Checksum {
public:
explicit Checksum(Vector<const byte> payload) {
#ifdef MEMORY_SANITIZER
// Computing the checksum includes padding bytes for objects like strings.
// Mark every object as initialized in the code serializer.
MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length());
#endif // MEMORY_SANITIZER
// Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
uintptr_t a = 1;
uintptr_t b = 0;
const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
DCHECK(IsAligned(payload.length(), kIntptrSize));
const uintptr_t* end = cur + payload.length() / kIntptrSize;
while (cur < end) {
// Unsigned overflow expected and intended.
a += *cur++;
b += a;
}
#if V8_HOST_ARCH_64_BIT
a ^= a >> 32;
b ^= b >> 32;
#endif // V8_HOST_ARCH_64_BIT
a_ = static_cast<uint32_t>(a);
b_ = static_cast<uint32_t>(b);
}
bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
uint32_t a() const { return a_; }
uint32_t b() const { return b_; }
private:
uint32_t a_;
uint32_t b_;
DISALLOW_COPY_AND_ASSIGN(Checksum);
};
SerializedCodeData::SerializedCodeData(const List<byte>& payload,
const CodeSerializer& cs) {
DisallowHeapAllocation no_gc;
const List<uint32_t>* stub_keys = cs.stub_keys();
List<Reservation> reservations;
cs.EncodeReservations(&reservations);
// Calculate sizes.
int reservation_size = reservations.length() * kInt32Size;
int num_stub_keys = stub_keys->length();
int stub_keys_size = stub_keys->length() * kInt32Size;
int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
int size = padded_payload_offset + payload.length();
// Allocate backing store and create result data.
AllocateData(size);
// Set header values.
SetMagicNumber(cs.isolate());
SetHeaderValue(kVersionHashOffset, Version::Hash());
SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
SetHeaderValue(kCpuFeaturesOffset,
static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
SetHeaderValue(kFlagHashOffset, FlagList::Hash());
SetHeaderValue(kNumReservationsOffset, reservations.length());
SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
SetHeaderValue(kPayloadLengthOffset, payload.length());
Checksum checksum(payload.ToConstVector());
SetHeaderValue(kChecksum1Offset, checksum.a());
SetHeaderValue(kChecksum2Offset, checksum.b());
// Copy reservation chunk sizes.
CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
reservation_size);
// Copy code stub keys.
CopyBytes(data_ + kHeaderSize + reservation_size,
reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
// Copy serialized data.
CopyBytes(data_ + padded_payload_offset, payload.begin(),
static_cast<size_t>(payload.length()));
}
SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
Isolate* isolate, String* source) const {
uint32_t magic_number = GetMagicNumber();
if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
uint32_t c1 = GetHeaderValue(kChecksum1Offset);
uint32_t c2 = GetHeaderValue(kChecksum2Offset);
if (version_hash != Version::Hash()) return VERSION_MISMATCH;
if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
return CPU_FEATURES_MISMATCH;
}
if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
return CHECK_SUCCESS;
}
uint32_t SerializedCodeData::SourceHash(String* source) const {
return source->length();
}
// Return ScriptData object and relinquish ownership over it to the caller.
ScriptData* SerializedCodeData::GetScriptData() {
DCHECK(owns_data_);
ScriptData* result = new ScriptData(data_, size_);
result->AcquireDataOwnership();
owns_data_ = false;
data_ = NULL;
return result;
}
Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
const {
return Vector<const Reservation>(
reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
GetHeaderValue(kNumReservationsOffset));
}
Vector<const byte> SerializedCodeData::Payload() const {
int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
const byte* payload = data_ + padded_payload_offset;
DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
int length = GetHeaderValue(kPayloadLengthOffset);
DCHECK_EQ(data_ + size_, payload + length);
return Vector<const byte>(payload, length);
}
Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
const byte* start = data_ + kHeaderSize + reservations_size;
return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
GetHeaderValue(kNumCodeStubKeysOffset));
}
SerializedCodeData::SerializedCodeData(ScriptData* data)
: SerializedData(const_cast<byte*>(data->data()), data->length()) {}
SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
ScriptData* cached_data,
String* source) {
DisallowHeapAllocation no_gc;
SerializedCodeData* scd = new SerializedCodeData(cached_data);
SanityCheckResult r = scd->SanityCheck(isolate, source);
if (r == CHECK_SUCCESS) return scd;
cached_data->Reject();
source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
delete scd;
return NULL;
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_SNAPSHOT_CODE_SERIALIZER_H_
#define V8_SNAPSHOT_CODE_SERIALIZER_H_
#include "src/parsing/preparse-data.h"
#include "src/snapshot/serializer.h"
namespace v8 {
namespace internal {
class CodeSerializer : public Serializer {
public:
static ScriptData* Serialize(Isolate* isolate,
Handle<SharedFunctionInfo> info,
Handle<String> source);
MUST_USE_RESULT static MaybeHandle<SharedFunctionInfo> Deserialize(
Isolate* isolate, ScriptData* cached_data, Handle<String> source);
static const int kSourceObjectIndex = 0;
STATIC_ASSERT(kSourceObjectReference == kSourceObjectIndex);
static const int kCodeStubsBaseIndex = 1;
String* source() const {
DCHECK(!AllowHeapAllocation::IsAllowed());
return source_;
}
const List<uint32_t>* stub_keys() const { return &stub_keys_; }
private:
CodeSerializer(Isolate* isolate, SnapshotByteSink* sink, String* source)
: Serializer(isolate, sink), source_(source) {
back_reference_map_.AddSourceString(source);
}
~CodeSerializer() override { OutputStatistics("CodeSerializer"); }
void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) override;
void SerializeBuiltin(int builtin_index, HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeIC(Code* ic, HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeGeneric(HeapObject* heap_object, HowToCode how_to_code,
WhereToPoint where_to_point);
int AddCodeStubKey(uint32_t stub_key);
DisallowHeapAllocation no_gc_;
String* source_;
List<uint32_t> stub_keys_;
DISALLOW_COPY_AND_ASSIGN(CodeSerializer);
};
// Wrapper around ScriptData to provide code-serializer-specific functionality.
class SerializedCodeData : public SerializedData {
public:
// Used when consuming.
static SerializedCodeData* FromCachedData(Isolate* isolate,
ScriptData* cached_data,
String* source);
// Used when producing.
SerializedCodeData(const List<byte>& payload, const CodeSerializer& cs);
// Return ScriptData object and relinquish ownership over it to the caller.
ScriptData* GetScriptData();
Vector<const Reservation> Reservations() const;
Vector<const byte> Payload() const;
Vector<const uint32_t> CodeStubKeys() const;
private:
explicit SerializedCodeData(ScriptData* data);
enum SanityCheckResult {
CHECK_SUCCESS = 0,
MAGIC_NUMBER_MISMATCH = 1,
VERSION_MISMATCH = 2,
SOURCE_MISMATCH = 3,
CPU_FEATURES_MISMATCH = 4,
FLAGS_MISMATCH = 5,
CHECKSUM_MISMATCH = 6
};
SanityCheckResult SanityCheck(Isolate* isolate, String* source) const;
uint32_t SourceHash(String* source) const;
// The data header consists of uint32_t-sized entries:
// [0] magic number and external reference count
// [1] version hash
// [2] source hash
// [3] cpu features
// [4] flag hash
// [5] number of code stub keys
// [6] number of reservation size entries
// [7] payload length
// [8] payload checksum part 1
// [9] payload checksum part 2
// ... reservations
// ... code stub keys
// ... serialized payload
static const int kVersionHashOffset = kMagicNumberOffset + kInt32Size;
static const int kSourceHashOffset = kVersionHashOffset + kInt32Size;
static const int kCpuFeaturesOffset = kSourceHashOffset + kInt32Size;
static const int kFlagHashOffset = kCpuFeaturesOffset + kInt32Size;
static const int kNumReservationsOffset = kFlagHashOffset + kInt32Size;
static const int kNumCodeStubKeysOffset = kNumReservationsOffset + kInt32Size;
static const int kPayloadLengthOffset = kNumCodeStubKeysOffset + kInt32Size;
static const int kChecksum1Offset = kPayloadLengthOffset + kInt32Size;
static const int kChecksum2Offset = kChecksum1Offset + kInt32Size;
static const int kHeaderSize = kChecksum2Offset + kInt32Size;
};
} // namespace internal
} // namespace v8
#endif // V8_SNAPSHOT_CODE_SERIALIZER_H_
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Copyright 2016 the V8 project authors. All rights reserved.
#include "src/snapshot/serialize.h"
#include "src/snapshot/deserializer.h"
#include "src/accessors.h"
#include "src/api.h"
#include "src/base/platform/platform.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/deoptimizer.h"
#include "src/execution.h"
#include "src/global-handles.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/objects.h"
#include "src/parsing/parser.h"
#include "src/profiler/cpu-profiler.h"
#include "src/runtime/runtime.h"
#include "src/heap/heap.h"
#include "src/isolate.h"
#include "src/macro-assembler.h"
#include "src/snapshot/natives.h"
#include "src/snapshot/snapshot.h"
#include "src/snapshot/snapshot-source-sink.h"
#include "src/v8.h"
#include "src/v8threads.h"
#include "src/version.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Coding of external references.
ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
ExternalReferenceTable* external_reference_table =
isolate->external_reference_table();
if (external_reference_table == NULL) {
external_reference_table = new ExternalReferenceTable(isolate);
isolate->set_external_reference_table(external_reference_table);
}
return external_reference_table;
}
ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
// Miscellaneous
Add(ExternalReference::roots_array_start(isolate).address(),
"Heap::roots_array_start()");
Add(ExternalReference::address_of_stack_limit(isolate).address(),
"StackGuard::address_of_jslimit()");
Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
"StackGuard::address_of_real_jslimit()");
Add(ExternalReference::new_space_start(isolate).address(),
"Heap::NewSpaceStart()");
Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
"Heap::NewSpaceAllocationLimitAddress()");
Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
"Heap::NewSpaceAllocationTopAddress()");
Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
"mod_two_doubles");
// Keyed lookup cache.
Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
"KeyedLookupCache::keys()");
Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
"KeyedLookupCache::field_offsets()");
Add(ExternalReference::handle_scope_next_address(isolate).address(),
"HandleScope::next");
Add(ExternalReference::handle_scope_limit_address(isolate).address(),
"HandleScope::limit");
Add(ExternalReference::handle_scope_level_address(isolate).address(),
"HandleScope::level");
Add(ExternalReference::new_deoptimizer_function(isolate).address(),
"Deoptimizer::New()");
Add(ExternalReference::compute_output_frames_function(isolate).address(),
"Deoptimizer::ComputeOutputFrames()");
Add(ExternalReference::address_of_min_int().address(),
"LDoubleConstant::min_int");
Add(ExternalReference::address_of_one_half().address(),
"LDoubleConstant::one_half");
Add(ExternalReference::isolate_address(isolate).address(), "isolate");
Add(ExternalReference::interpreter_dispatch_table_address(isolate).address(),
"Interpreter::dispatch_table_address");
Add(ExternalReference::address_of_negative_infinity().address(),
"LDoubleConstant::negative_infinity");
Add(ExternalReference::power_double_double_function(isolate).address(),
"power_double_double_function");
Add(ExternalReference::power_double_int_function(isolate).address(),
"power_double_int_function");
Add(ExternalReference::math_log_double_function(isolate).address(),
"std::log");
Add(ExternalReference::store_buffer_top(isolate).address(),
"store_buffer_top");
Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
Add(ExternalReference::get_date_field_function(isolate).address(),
"JSDate::GetField");
Add(ExternalReference::date_cache_stamp(isolate).address(),
"date_cache_stamp");
Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
"address_of_pending_message_obj");
Add(ExternalReference::get_make_code_young_function(isolate).address(),
"Code::MakeCodeYoung");
Add(ExternalReference::cpu_features().address(), "cpu_features");
Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
"Heap::OldSpaceAllocationTopAddress");
Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
"Heap::OldSpaceAllocationLimitAddress");
Add(ExternalReference::allocation_sites_list_address(isolate).address(),
"Heap::allocation_sites_list_address()");
Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
"Code::MarkCodeAsExecuted");
Add(ExternalReference::is_profiling_address(isolate).address(),
"CpuProfiler::is_profiling");
Add(ExternalReference::scheduled_exception_address(isolate).address(),
"Isolate::scheduled_exception");
Add(ExternalReference::invoke_function_callback(isolate).address(),
"InvokeFunctionCallback");
Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
"InvokeAccessorGetterCallback");
Add(ExternalReference::f32_trunc_wrapper_function(isolate).address(),
"f32_trunc_wrapper");
Add(ExternalReference::f32_floor_wrapper_function(isolate).address(),
"f32_floor_wrapper");
Add(ExternalReference::f32_ceil_wrapper_function(isolate).address(),
"f32_ceil_wrapper");
Add(ExternalReference::f32_nearest_int_wrapper_function(isolate).address(),
"f32_nearest_int_wrapper");
Add(ExternalReference::f64_trunc_wrapper_function(isolate).address(),
"f64_trunc_wrapper");
Add(ExternalReference::f64_floor_wrapper_function(isolate).address(),
"f64_floor_wrapper");
Add(ExternalReference::f64_ceil_wrapper_function(isolate).address(),
"f64_ceil_wrapper");
Add(ExternalReference::f64_nearest_int_wrapper_function(isolate).address(),
"f64_nearest_int_wrapper");
Add(ExternalReference::log_enter_external_function(isolate).address(),
"Logger::EnterExternal");
Add(ExternalReference::log_leave_external_function(isolate).address(),
"Logger::LeaveExternal");
Add(ExternalReference::address_of_minus_one_half().address(),
"double_constants.minus_one_half");
Add(ExternalReference::stress_deopt_count(isolate).address(),
"Isolate::stress_deopt_count_address()");
Add(ExternalReference::virtual_handler_register(isolate).address(),
"Isolate::virtual_handler_register()");
Add(ExternalReference::virtual_slot_register(isolate).address(),
"Isolate::virtual_slot_register()");
Add(ExternalReference::runtime_function_table_address(isolate).address(),
"Runtime::runtime_function_table_address()");
// Debug addresses
Add(ExternalReference::debug_after_break_target_address(isolate).address(),
"Debug::after_break_target_address()");
Add(ExternalReference::debug_is_active_address(isolate).address(),
"Debug::is_active_address()");
Add(ExternalReference::debug_step_in_enabled_address(isolate).address(),
"Debug::step_in_enabled_address()");
#ifndef V8_INTERPRETED_REGEXP
Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
"NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
"RegExpMacroAssembler*::CheckStackGuardState()");
Add(ExternalReference::re_grow_stack(isolate).address(),
"NativeRegExpMacroAssembler::GrowStack()");
Add(ExternalReference::re_word_character_map().address(),
"NativeRegExpMacroAssembler::word_character_map");
Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
"RegExpStack::limit_address()");
Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
.address(),
"RegExpStack::memory_address()");
Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
"RegExpStack::memory_size()");
Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
"OffsetsVector::static_offsets_vector");
#endif // V8_INTERPRETED_REGEXP
// The following populates all of the different type of external references
// into the ExternalReferenceTable.
//
// NOTE: This function was originally 100k of code. It has since been
// rewritten to be mostly table driven, as the callback macro style tends to
// very easily cause code bloat. Please be careful in the future when adding
// new references.
struct RefTableEntry {
uint16_t id;
const char* name;
};
static const RefTableEntry c_builtins[] = {
#define DEF_ENTRY_C(name, ignored) \
{ Builtins::c_##name, "Builtins::" #name } \
,
BUILTIN_LIST_C(DEF_ENTRY_C)
#undef DEF_ENTRY_C
};
for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
isolate);
Add(ref.address(), c_builtins[i].name);
}
static const RefTableEntry builtins[] = {
#define DEF_ENTRY_C(name, ignored) \
{ Builtins::k##name, "Builtins::" #name } \
,
#define DEF_ENTRY_A(name, i1, i2, i3) \
{ Builtins::k##name, "Builtins::" #name } \
,
BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
#undef DEF_ENTRY_C
#undef DEF_ENTRY_A
};
for (unsigned i = 0; i < arraysize(builtins); ++i) {
ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
Add(ref.address(), builtins[i].name);
}
static const RefTableEntry runtime_functions[] = {
#define RUNTIME_ENTRY(name, i1, i2) \
{ Runtime::k##name, "Runtime::" #name } \
,
FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
#undef RUNTIME_ENTRY
};
for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
ExternalReference ref(
static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
Add(ref.address(), runtime_functions[i].name);
}
// Stat counters
struct StatsRefTableEntry {
StatsCounter* (Counters::*counter)();
const char* name;
};
static const StatsRefTableEntry stats_ref_table[] = {
#define COUNTER_ENTRY(name, caption) \
{ &Counters::name, "Counters::" #name } \
,
STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
#undef COUNTER_ENTRY
};
Counters* counters = isolate->counters();
for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
// To make sure the indices are not dependent on whether counters are
// enabled, use a dummy address as filler.
Address address = NotAvailable();
StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
if (counter->Enabled()) {
address = reinterpret_cast<Address>(counter->GetInternalPointer());
}
Add(address, stats_ref_table[i].name);
}
// Top addresses
static const char* address_names[] = {
#define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
#undef BUILD_NAME_LITERAL
};
for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
address_names[i]);
}
// Accessors
struct AccessorRefTable {
Address address;
const char* name;
};
static const AccessorRefTable accessors[] = {
#define ACCESSOR_INFO_DECLARATION(name) \
{ FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
,
ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
#undef ACCESSOR_INFO_DECLARATION
#define ACCESSOR_SETTER_DECLARATION(name) \
{ FUNCTION_ADDR(&Accessors::name), "Accessors::" #name } \
,
ACCESSOR_SETTER_LIST(ACCESSOR_SETTER_DECLARATION)
#undef ACCESSOR_INFO_DECLARATION
};
for (unsigned i = 0; i < arraysize(accessors); ++i) {
Add(accessors[i].address, accessors[i].name);
}
StubCache* stub_cache = isolate->stub_cache();
// Stub cache tables
Add(stub_cache->key_reference(StubCache::kPrimary).address(),
"StubCache::primary_->key");
Add(stub_cache->value_reference(StubCache::kPrimary).address(),
"StubCache::primary_->value");
Add(stub_cache->map_reference(StubCache::kPrimary).address(),
"StubCache::primary_->map");
Add(stub_cache->key_reference(StubCache::kSecondary).address(),
"StubCache::secondary_->key");
Add(stub_cache->value_reference(StubCache::kSecondary).address(),
"StubCache::secondary_->value");
Add(stub_cache->map_reference(StubCache::kSecondary).address(),
"StubCache::secondary_->map");
// Runtime entries
Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
"HandleScope::DeleteExtensions");
Add(ExternalReference::incremental_marking_record_write_function(isolate)
.address(),
"IncrementalMarking::RecordWrite");
Add(ExternalReference::incremental_marking_record_write_code_entry_function(
isolate)
.address(),
"IncrementalMarking::RecordWriteOfCodeEntryFromCode");
Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
"StoreBuffer::StoreBufferOverflow");
// Add a small set of deopt entry addresses to encoder without generating the
// deopt table code, which isn't possible at deserialization time.
HandleScope scope(isolate);
for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
Address address = Deoptimizer::GetDeoptimizationEntry(
isolate,
entry,
Deoptimizer::LAZY,
Deoptimizer::CALCULATE_ENTRY_ADDRESS);
Add(address, "lazy_deopt");
}
}
ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
map_ = isolate->external_reference_map();
if (map_ != NULL) return;
map_ = new HashMap(HashMap::PointersMatch);
ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
for (int i = 0; i < table->size(); ++i) {
Address addr = table->address(i);
if (addr == ExternalReferenceTable::NotAvailable()) continue;
// We expect no duplicate external references entries in the table.
DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
}
isolate->set_external_reference_map(map_);
}
uint32_t ExternalReferenceEncoder::Encode(Address address) const {
DCHECK_NOT_NULL(address);
HashMap::Entry* entry =
const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
DCHECK_NOT_NULL(entry);
return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
}
const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
Address address) const {
HashMap::Entry* entry =
const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
if (entry == NULL) return "<unknown>";
uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
return ExternalReferenceTable::instance(isolate)->name(i);
}
class CodeAddressMap: public CodeEventLogger {
public:
explicit CodeAddressMap(Isolate* isolate)
: isolate_(isolate) {
isolate->logger()->addCodeEventListener(this);
}
~CodeAddressMap() override {
isolate_->logger()->removeCodeEventListener(this);
}
void CodeMoveEvent(AbstractCode* from, Address to) override {
address_to_name_map_.Move(from->address(), to);
}
void CodeDisableOptEvent(AbstractCode* code,
SharedFunctionInfo* shared) override {}
const char* Lookup(Address address) {
return address_to_name_map_.Lookup(address);
}
private:
class NameMap {
public:
NameMap() : impl_(HashMap::PointersMatch) {}
~NameMap() {
for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
DeleteArray(static_cast<const char*>(p->value));
}
}
void Insert(Address code_address, const char* name, int name_size) {
HashMap::Entry* entry = FindOrCreateEntry(code_address);
if (entry->value == NULL) {
entry->value = CopyName(name, name_size);
}
}
const char* Lookup(Address code_address) {
HashMap::Entry* entry = FindEntry(code_address);
return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
}
void Remove(Address code_address) {
HashMap::Entry* entry = FindEntry(code_address);
if (entry != NULL) {
DeleteArray(static_cast<char*>(entry->value));
RemoveEntry(entry);
}
}
void Move(Address from, Address to) {
if (from == to) return;
HashMap::Entry* from_entry = FindEntry(from);
DCHECK(from_entry != NULL);
void* value = from_entry->value;
RemoveEntry(from_entry);
HashMap::Entry* to_entry = FindOrCreateEntry(to);
DCHECK(to_entry->value == NULL);
to_entry->value = value;
}
private:
static char* CopyName(const char* name, int name_size) {
char* result = NewArray<char>(name_size + 1);
for (int i = 0; i < name_size; ++i) {
char c = name[i];
if (c == '\0') c = ' ';
result[i] = c;
}
result[name_size] = '\0';
return result;
}
HashMap::Entry* FindOrCreateEntry(Address code_address) {
return impl_.LookupOrInsert(code_address,
ComputePointerHash(code_address));
}
HashMap::Entry* FindEntry(Address code_address) {
return impl_.Lookup(code_address, ComputePointerHash(code_address));
}
void RemoveEntry(HashMap::Entry* entry) {
impl_.Remove(entry->key, entry->hash);
}
HashMap impl_;
DISALLOW_COPY_AND_ASSIGN(NameMap);
};
void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*,
const char* name, int length) override {
address_to_name_map_.Insert(code->address(), name, length);
}
NameMap address_to_name_map_;
Isolate* isolate_;
};
void Deserializer::DecodeReservation(
Vector<const SerializedData::Reservation> res) {
DCHECK_EQ(0, reservations_[NEW_SPACE].length());
......@@ -493,7 +25,6 @@ void Deserializer::DecodeReservation(
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
}
void Deserializer::FlushICacheForNewIsolate() {
DCHECK(!deserializing_user_code_);
// The entire isolate is newly deserialized. Simply flush all code pages.
......@@ -505,7 +36,6 @@ void Deserializer::FlushICacheForNewIsolate() {
}
}
void Deserializer::FlushICacheForNewCodeObjects() {
DCHECK(deserializing_user_code_);
for (Code* code : new_code_objects_) {
......@@ -514,7 +44,6 @@ void Deserializer::FlushICacheForNewCodeObjects() {
}
}
bool Deserializer::ReserveSpace() {
#ifdef DEBUG
for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
......@@ -528,7 +57,6 @@ bool Deserializer::ReserveSpace() {
return true;
}
void Deserializer::Initialize(Isolate* isolate) {
DCHECK_NULL(isolate_);
DCHECK_NOT_NULL(isolate);
......@@ -539,7 +67,6 @@ void Deserializer::Initialize(Isolate* isolate) {
SerializedData::ComputeMagicNumber(external_reference_table_));
}
void Deserializer::Deserialize(Isolate* isolate) {
Initialize(isolate);
if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
......@@ -576,7 +103,6 @@ void Deserializer::Deserialize(Isolate* isolate) {
LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
}
MaybeHandle<Object> Deserializer::DeserializePartial(
Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
Initialize(isolate);
......@@ -605,7 +131,6 @@ MaybeHandle<Object> Deserializer::DeserializePartial(
return Handle<Object>(root, isolate);
}
MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
Isolate* isolate) {
Initialize(isolate);
......@@ -628,14 +153,12 @@ MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
}
}
Deserializer::~Deserializer() {
// TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
// DCHECK(source_.AtEOF());
attached_objects_.Dispose();
}
// This is called on the roots. It is the driver of the deserialization
// process. It is also called on the body of each function.
void Deserializer::VisitPointers(Object** start, Object** end) {
......@@ -675,7 +198,6 @@ void Deserializer::DeserializeDeferredObjects() {
}
}
// Used to insert a deserialized internalized string into the string table.
class StringTableInsertionKey : public HashTableKey {
public:
......@@ -708,7 +230,6 @@ class StringTableInsertionKey : public HashTableKey {
DisallowHeapAllocation no_gc;
};
HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
if (deserializing_user_code()) {
if (obj->IsString()) {
......@@ -761,7 +282,6 @@ HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
return obj;
}
void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
StringTable::EnsureCapacityForDeserialization(
isolate, new_internalized_strings_.length());
......@@ -782,7 +302,6 @@ void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
}
}
HeapObject* Deserializer::GetBackReferencedObject(int space) {
HeapObject* obj;
BackReference back_reference(source_.GetInt());
......@@ -811,7 +330,6 @@ HeapObject* Deserializer::GetBackReferencedObject(int space) {
return obj;
}
// This routine writes the new object into the pointer provided and then
// returns true if the new object was in young space and false otherwise.
// The reason for this strange interface is that otherwise the object is
......@@ -864,7 +382,6 @@ void Deserializer::ReadObject(int space_number, Object** write_back) {
#endif // DEBUG
}
// We know the space requirements before deserialization and can
// pre-allocate that reserved space. During deserialization, all we need
// to do is to bump up the pointer for each space in the reserved
......@@ -900,7 +417,6 @@ Address Deserializer::Allocate(int space_index, int size) {
}
}
Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
Object** current) {
DCHECK(!isolate_->heap()->deserialization_complete());
......@@ -911,7 +427,6 @@ Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
return current;
}
bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
Address current_object_address) {
Isolate* const isolate = isolate_;
......@@ -1035,16 +550,16 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
CASE_STATEMENT(where, how, within, LO_SPACE) \
CASE_BODY(where, how, within, kAnyOldSpace)
#define FOUR_CASES(byte_code) \
case byte_code: \
case byte_code + 1: \
case byte_code + 2: \
#define FOUR_CASES(byte_code) \
case byte_code: \
case byte_code + 1: \
case byte_code + 2: \
case byte_code + 3:
#define SIXTEEN_CASES(byte_code) \
FOUR_CASES(byte_code) \
FOUR_CASES(byte_code + 4) \
FOUR_CASES(byte_code + 8) \
#define SIXTEEN_CASES(byte_code) \
FOUR_CASES(byte_code) \
FOUR_CASES(byte_code + 4) \
FOUR_CASES(byte_code + 8) \
FOUR_CASES(byte_code + 12)
#define SINGLE_CASE(where, how, within, space) \
......@@ -1291,1584 +806,5 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
CHECK_EQ(limit, current);
return true;
}
Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
: isolate_(isolate),
sink_(sink),
external_reference_encoder_(isolate),
root_index_map_(isolate),
recursion_depth_(0),
code_address_map_(NULL),
large_objects_total_size_(0),
seen_large_objects_index_(0) {
// The serializer is meant to be used only to generate initial heap images
// from a context in which there is only one isolate.
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
pending_chunk_[i] = 0;
max_chunk_size_[i] = static_cast<uint32_t>(
MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
}
#ifdef OBJECT_PRINT
if (FLAG_serialization_statistics) {
instance_type_count_ = NewArray<int>(kInstanceTypes);
instance_type_size_ = NewArray<size_t>(kInstanceTypes);
for (int i = 0; i < kInstanceTypes; i++) {
instance_type_count_[i] = 0;
instance_type_size_[i] = 0;
}
} else {
instance_type_count_ = NULL;
instance_type_size_ = NULL;
}
#endif // OBJECT_PRINT
}
Serializer::~Serializer() {
if (code_address_map_ != NULL) delete code_address_map_;
#ifdef OBJECT_PRINT
if (instance_type_count_ != NULL) {
DeleteArray(instance_type_count_);
DeleteArray(instance_type_size_);
}
#endif // OBJECT_PRINT
}
#ifdef OBJECT_PRINT
void Serializer::CountInstanceType(Map* map, int size) {
int instance_type = map->instance_type();
instance_type_count_[instance_type]++;
instance_type_size_[instance_type] += size;
}
#endif // OBJECT_PRINT
void Serializer::OutputStatistics(const char* name) {
if (!FLAG_serialization_statistics) return;
PrintF("%s:\n", name);
PrintF(" Spaces (bytes):\n");
for (int space = 0; space < kNumberOfSpaces; space++) {
PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
}
PrintF("\n");
for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
size_t s = pending_chunk_[space];
for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
PrintF("%16" V8_PTR_PREFIX "d", s);
}
PrintF("%16d\n", large_objects_total_size_);
#ifdef OBJECT_PRINT
PrintF(" Instance types (count and bytes):\n");
#define PRINT_INSTANCE_TYPE(Name) \
if (instance_type_count_[Name]) { \
PrintF("%10d %10" V8_PTR_PREFIX "d %s\n", instance_type_count_[Name], \
instance_type_size_[Name], #Name); \
}
INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
#undef PRINT_INSTANCE_TYPE
PrintF("\n");
#endif // OBJECT_PRINT
}
class Serializer::ObjectSerializer : public ObjectVisitor {
public:
ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink,
HowToCode how_to_code, WhereToPoint where_to_point)
: serializer_(serializer),
object_(HeapObject::cast(o)),
sink_(sink),
reference_representation_(how_to_code + where_to_point),
bytes_processed_so_far_(0),
is_code_object_(o->IsCode()),
code_has_been_output_(false) {}
void Serialize();
void SerializeDeferred();
void VisitPointers(Object** start, Object** end) override;
void VisitEmbeddedPointer(RelocInfo* target) override;
void VisitExternalReference(Address* p) override;
void VisitExternalReference(RelocInfo* rinfo) override;
void VisitInternalReference(RelocInfo* rinfo) override;
void VisitCodeTarget(RelocInfo* target) override;
void VisitCodeEntry(Address entry_address) override;
void VisitCell(RelocInfo* rinfo) override;
void VisitRuntimeEntry(RelocInfo* reloc) override;
// Used for seralizing the external strings that hold the natives source.
void VisitExternalOneByteString(
v8::String::ExternalOneByteStringResource** resource) override;
// We can't serialize a heap with external two byte strings.
void VisitExternalTwoByteString(
v8::String::ExternalStringResource** resource) override {
UNREACHABLE();
}
private:
void SerializePrologue(AllocationSpace space, int size, Map* map);
bool SerializeExternalNativeSourceString(
int builtin_count,
v8::String::ExternalOneByteStringResource** resource_pointer,
FixedArray* source_cache, int resource_index);
enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
// This function outputs or skips the raw data between the last pointer and
// up to the current position. It optionally can just return the number of
// bytes to skip instead of performing a skip instruction, in case the skip
// can be merged into the next instruction.
int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);
// External strings are serialized in a way to resemble sequential strings.
void SerializeExternalString();
Address PrepareCode();
Serializer* serializer_;
HeapObject* object_;
SnapshotByteSink* sink_;
int reference_representation_;
int bytes_processed_so_far_;
bool is_code_object_;
bool code_has_been_output_;
};
void Serializer::SerializeDeferredObjects() {
while (deferred_objects_.length() > 0) {
HeapObject* obj = deferred_objects_.RemoveLast();
ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
obj_serializer.SerializeDeferred();
}
sink_->Put(kSynchronize, "Finished with deferred objects");
}
void StartupSerializer::SerializeStrongReferences() {
Isolate* isolate = this->isolate();
// No active threads.
CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
// No active or weak handles.
CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
// We don't support serializing installed extensions.
CHECK(!isolate->has_installed_extensions());
isolate->heap()->IterateSmiRoots(this);
isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
}
void StartupSerializer::VisitPointers(Object** start, Object** end) {
for (Object** current = start; current < end; current++) {
if (start == isolate()->heap()->roots_array_start()) {
root_index_wave_front_ =
Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
}
if (ShouldBeSkipped(current)) {
sink_->Put(kSkip, "Skip");
sink_->PutInt(kPointerSize, "SkipOneWord");
} else if ((*current)->IsSmi()) {
sink_->Put(kOnePointerRawData, "Smi");
for (int i = 0; i < kPointerSize; i++) {
sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
}
} else {
SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
}
}
}
void PartialSerializer::Serialize(Object** o) {
if ((*o)->IsContext()) {
Context* context = Context::cast(*o);
global_object_ = context->global_object();
back_reference_map()->AddGlobalProxy(context->global_proxy());
// The bootstrap snapshot has a code-stub context. When serializing the
// partial snapshot, it is chained into the weak context list on the isolate
// and it's next context pointer may point to the code-stub context. Clear
// it before serializing, it will get re-added to the context list
// explicitly when it's loaded.
if (context->IsNativeContext()) {
context->set(Context::NEXT_CONTEXT_LINK,
isolate_->heap()->undefined_value());
DCHECK(!context->global_object()->IsUndefined());
}
}
VisitPointer(o);
SerializeDeferredObjects();
Pad();
}
bool Serializer::ShouldBeSkipped(Object** current) {
Object** roots = isolate()->heap()->roots_array_start();
return current == &roots[Heap::kStoreBufferTopRootIndex]
|| current == &roots[Heap::kStackLimitRootIndex]
|| current == &roots[Heap::kRealStackLimitRootIndex];
}
void Serializer::VisitPointers(Object** start, Object** end) {
for (Object** current = start; current < end; current++) {
if ((*current)->IsSmi()) {
sink_->Put(kOnePointerRawData, "Smi");
for (int i = 0; i < kPointerSize; i++) {
sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
}
} else {
SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
}
}
}
void Serializer::EncodeReservations(
List<SerializedData::Reservation>* out) const {
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
for (int j = 0; j < completed_chunks_[i].length(); j++) {
out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
}
if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
out->Add(SerializedData::Reservation(pending_chunk_[i]));
}
out->last().mark_as_last();
}
out->Add(SerializedData::Reservation(large_objects_total_size_));
out->last().mark_as_last();
}
// This ensures that the partial snapshot cache keeps things alive during GC and
// tracks their movement. When it is called during serialization of the startup
// snapshot nothing happens. When the partial (context) snapshot is created,
// this array is populated with the pointers that the partial snapshot will
// need. As that happens we emit serialized objects to the startup snapshot
// that correspond to the elements of this cache array. On deserialization we
// therefore need to visit the cache array. This fills it up with pointers to
// deserialized objects.
void SerializerDeserializer::Iterate(Isolate* isolate,
ObjectVisitor* visitor) {
if (isolate->serializer_enabled()) return;
List<Object*>* cache = isolate->partial_snapshot_cache();
for (int i = 0;; ++i) {
// Extend the array ready to get a value when deserializing.
if (cache->length() <= i) cache->Add(Smi::FromInt(0));
visitor->VisitPointer(&cache->at(i));
// Sentinel is the undefined object, which is a root so it will not normally
// be found in the cache.
if (cache->at(i)->IsUndefined()) break;
}
}
bool SerializerDeserializer::CanBeDeferred(HeapObject* o) {
return !o->IsString() && !o->IsScript();
}
int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
Isolate* isolate = this->isolate();
List<Object*>* cache = isolate->partial_snapshot_cache();
int new_index = cache->length();
int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
if (index == PartialCacheIndexMap::kInvalidIndex) {
// We didn't find the object in the cache. So we add it to the cache and
// then visit the pointer so that it becomes part of the startup snapshot
// and we can refer to it from the partial snapshot.
cache->Add(heap_object);
startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
// We don't recurse from the startup snapshot generator into the partial
// snapshot generator.
return new_index;
}
return index;
}
bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) {
// Scripts should be referred only through shared function infos. We can't
// allow them to be part of the partial snapshot because they contain a
// unique ID, and deserializing several partial snapshots containing script
// would cause dupes.
DCHECK(!o->IsScript());
return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() ||
o->IsCode() || o->IsScopeInfo() || o->IsAccessorInfo() ||
o->map() ==
startup_serializer_->isolate()->heap()->fixed_cow_array_map();
}
#ifdef DEBUG
bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
DCHECK(reference.is_valid());
DCHECK(!reference.is_source());
DCHECK(!reference.is_global_proxy());
AllocationSpace space = reference.space();
int chunk_index = reference.chunk_index();
if (space == LO_SPACE) {
return chunk_index == 0 &&
reference.large_object_index() < seen_large_objects_index_;
} else if (chunk_index == completed_chunks_[space].length()) {
return reference.chunk_offset() < pending_chunk_[space];
} else {
return chunk_index < completed_chunks_[space].length() &&
reference.chunk_offset() < completed_chunks_[space][chunk_index];
}
}
#endif // DEBUG
bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) {
if (how_to_code == kPlain && where_to_point == kStartOfObject) {
// Encode a reference to a hot object by its index in the working set.
int index = hot_objects_.Find(obj);
if (index != HotObjectsList::kNotFound) {
DCHECK(index >= 0 && index < kNumberOfHotObjects);
if (FLAG_trace_serializer) {
PrintF(" Encoding hot object %d:", index);
obj->ShortPrint();
PrintF("\n");
}
if (skip != 0) {
sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
sink_->PutInt(skip, "HotObjectSkipDistance");
} else {
sink_->Put(kHotObject + index, "HotObject");
}
return true;
}
}
BackReference back_reference = back_reference_map_.Lookup(obj);
if (back_reference.is_valid()) {
// Encode the location of an already deserialized object in order to write
// its location into a later object. We can encode the location as an
// offset fromthe start of the deserialized objects or as an offset
// backwards from thecurrent allocation pointer.
if (back_reference.is_source()) {
FlushSkip(skip);
if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
} else if (back_reference.is_global_proxy()) {
FlushSkip(skip);
if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
} else {
if (FLAG_trace_serializer) {
PrintF(" Encoding back reference to: ");
obj->ShortPrint();
PrintF("\n");
}
PutAlignmentPrefix(obj);
AllocationSpace space = back_reference.space();
if (skip == 0) {
sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
} else {
sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
"BackRefWithSkip");
sink_->PutInt(skip, "BackRefSkipDistance");
}
PutBackReference(obj, back_reference);
}
return true;
}
return false;
}
StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
: Serializer(isolate, sink),
root_index_wave_front_(0),
serializing_builtins_(false) {
// Clear the cache of objects used by the partial snapshot. After the
// strong roots have been serialized we can create a partial snapshot
// which will repopulate the cache with objects needed by that partial
// snapshot.
isolate->partial_snapshot_cache()->Clear();
InitializeCodeAddressMap();
}
void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) {
DCHECK(!obj->IsJSFunction());
if (obj->IsCode()) {
Code* code = Code::cast(obj);
// If the function code is compiled (either as native code or bytecode),
// replace it with lazy-compile builtin. Only exception is when we are
// serializing the canonical interpreter-entry-trampoline builtin.
if (code->kind() == Code::FUNCTION ||
(!serializing_builtins_ && code->is_interpreter_entry_trampoline())) {
obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
}
} else if (obj->IsBytecodeArray()) {
obj = isolate()->heap()->undefined_value();
}
int root_index = root_index_map_.Lookup(obj);
bool is_immortal_immovable_root = false;
// We can only encode roots as such if it has already been serialized.
// That applies to root indices below the wave front.
if (root_index != RootIndexMap::kInvalidRootIndex) {
if (root_index < root_index_wave_front_) {
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
return;
} else {
is_immortal_immovable_root = Heap::RootIsImmortalImmovable(root_index);
}
}
if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
FlushSkip(skip);
// Object has not yet been serialized. Serialize it here.
ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
where_to_point);
object_serializer.Serialize();
if (is_immortal_immovable_root) {
// Make sure that the immortal immovable root has been included in the first
// chunk of its reserved space , so that it is deserialized onto the first
// page of its space and stays immortal immovable.
BackReference ref = back_reference_map_.Lookup(obj);
CHECK(ref.is_valid() && ref.chunk_index() == 0);
}
}
void StartupSerializer::SerializeWeakReferencesAndDeferred() {
// This phase comes right after the serialization (of the snapshot).
// After we have done the partial serialization the partial snapshot cache
// will contain some references needed to decode the partial snapshot. We
// add one entry with 'undefined' which is the sentinel that the deserializer
// uses to know it is done deserializing the array.
Object* undefined = isolate()->heap()->undefined_value();
VisitPointer(&undefined);
isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
SerializeDeferredObjects();
Pad();
}
void StartupSerializer::Synchronize(VisitorSynchronization::SyncTag tag) {
// We expect the builtins tag after builtins have been serialized.
DCHECK(!serializing_builtins_ || tag == VisitorSynchronization::kBuiltins);
serializing_builtins_ = (tag == VisitorSynchronization::kHandleScope);
sink_->Put(kSynchronize, "Synchronize");
}
void Serializer::PutRoot(int root_index,
HeapObject* object,
SerializerDeserializer::HowToCode how_to_code,
SerializerDeserializer::WhereToPoint where_to_point,
int skip) {
if (FLAG_trace_serializer) {
PrintF(" Encoding root %d:", root_index);
object->ShortPrint();
PrintF("\n");
}
if (how_to_code == kPlain && where_to_point == kStartOfObject &&
root_index < kNumberOfRootArrayConstants &&
!isolate()->heap()->InNewSpace(object)) {
if (skip == 0) {
sink_->Put(kRootArrayConstants + root_index, "RootConstant");
} else {
sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
sink_->PutInt(skip, "SkipInPutRoot");
}
} else {
FlushSkip(skip);
sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
sink_->PutInt(root_index, "root_index");
}
}
void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
DCHECK(BackReferenceIsAlreadyAllocated(reference));
sink_->PutInt(reference.reference(), "BackRefValue");
hot_objects_.Add(object);
}
int Serializer::PutAlignmentPrefix(HeapObject* object) {
AllocationAlignment alignment = object->RequiredAlignment();
if (alignment != kWordAligned) {
DCHECK(1 <= alignment && alignment <= 3);
byte prefix = (kAlignmentPrefix - 1) + alignment;
sink_->Put(prefix, "Alignment");
return Heap::GetMaximumFillToAlign(alignment);
}
return 0;
}
void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) {
if (obj->IsMap()) {
// The code-caches link to context-specific code objects, which
// the startup and context serializes cannot currently handle.
DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
}
// Replace typed arrays by undefined.
if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
int root_index = root_index_map_.Lookup(obj);
if (root_index != RootIndexMap::kInvalidRootIndex) {
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
return;
}
if (ShouldBeInThePartialSnapshotCache(obj)) {
FlushSkip(skip);
int cache_index = PartialSnapshotCacheIndex(obj);
sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
"PartialSnapshotCache");
sink_->PutInt(cache_index, "partial_snapshot_cache_index");
return;
}
// Pointers from the partial snapshot to the objects in the startup snapshot
// should go through the root array or through the partial snapshot cache.
// If this is not the case you may have to add something to the root array.
DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
// All the internalized strings that the partial snapshot needs should be
// either in the root table or in the partial snapshot cache.
DCHECK(!obj->IsInternalizedString());
if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
FlushSkip(skip);
// Clear literal boilerplates.
if (obj->IsJSFunction()) {
FixedArray* literals = JSFunction::cast(obj)->literals();
for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
}
// Object has not yet been serialized. Serialize it here.
ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
serializer.Serialize();
}
void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
int size, Map* map) {
if (serializer_->code_address_map_) {
const char* code_name =
serializer_->code_address_map_->Lookup(object_->address());
LOG(serializer_->isolate_,
CodeNameEvent(object_->address(), sink_->Position(), code_name));
LOG(serializer_->isolate_,
SnapshotPositionEvent(object_->address(), sink_->Position()));
}
BackReference back_reference;
if (space == LO_SPACE) {
sink_->Put(kNewObject + reference_representation_ + space,
"NewLargeObject");
sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
if (object_->IsCode()) {
sink_->Put(EXECUTABLE, "executable large object");
} else {
sink_->Put(NOT_EXECUTABLE, "not executable large object");
}
back_reference = serializer_->AllocateLargeObject(size);
} else {
int fill = serializer_->PutAlignmentPrefix(object_);
back_reference = serializer_->Allocate(space, size + fill);
sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
}
#ifdef OBJECT_PRINT
if (FLAG_serialization_statistics) {
serializer_->CountInstanceType(map, size);
}
#endif // OBJECT_PRINT
// Mark this object as already serialized.
serializer_->back_reference_map()->Add(object_, back_reference);
// Serialize the map (first word of the object).
serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
}
void Serializer::ObjectSerializer::SerializeExternalString() {
// Instead of serializing this as an external string, we serialize
// an imaginary sequential string with the same content.
Isolate* isolate = serializer_->isolate();
DCHECK(object_->IsExternalString());
DCHECK(object_->map() != isolate->heap()->native_source_string_map());
ExternalString* string = ExternalString::cast(object_);
int length = string->length();
Map* map;
int content_size;
int allocation_size;
const byte* resource;
// Find the map and size for the imaginary sequential string.
bool internalized = object_->IsInternalizedString();
if (object_->IsExternalOneByteString()) {
map = internalized ? isolate->heap()->one_byte_internalized_string_map()
: isolate->heap()->one_byte_string_map();
allocation_size = SeqOneByteString::SizeFor(length);
content_size = length * kCharSize;
resource = reinterpret_cast<const byte*>(
ExternalOneByteString::cast(string)->resource()->data());
} else {
map = internalized ? isolate->heap()->internalized_string_map()
: isolate->heap()->string_map();
allocation_size = SeqTwoByteString::SizeFor(length);
content_size = length * kShortSize;
resource = reinterpret_cast<const byte*>(
ExternalTwoByteString::cast(string)->resource()->data());
}
AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
? LO_SPACE
: OLD_SPACE;
SerializePrologue(space, allocation_size, map);
// Output the rest of the imaginary string.
int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
// Output raw data header. Do not bother with common raw length cases here.
sink_->Put(kVariableRawData, "RawDataForString");
sink_->PutInt(bytes_to_output, "length");
// Serialize string header (except for map).
Address string_start = string->address();
for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
sink_->PutSection(string_start[i], "StringHeader");
}
// Serialize string content.
sink_->PutRaw(resource, content_size, "StringContent");
// Since the allocation size is rounded up to object alignment, there
// maybe left-over bytes that need to be padded.
int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
sink_->Put(kSkip, "SkipAfterString");
sink_->PutInt(bytes_to_output, "SkipDistance");
}
// Clear and later restore the next link in the weak cell or allocation site.
// TODO(all): replace this with proper iteration of weak slots in serializer.
class UnlinkWeakNextScope {
public:
explicit UnlinkWeakNextScope(HeapObject* object) : object_(nullptr) {
if (object->IsWeakCell()) {
object_ = object;
next_ = WeakCell::cast(object)->next();
WeakCell::cast(object)->clear_next(object->GetHeap()->the_hole_value());
} else if (object->IsAllocationSite()) {
object_ = object;
next_ = AllocationSite::cast(object)->weak_next();
AllocationSite::cast(object)
->set_weak_next(object->GetHeap()->undefined_value());
}
}
~UnlinkWeakNextScope() {
if (object_ != nullptr) {
if (object_->IsWeakCell()) {
WeakCell::cast(object_)->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
} else {
AllocationSite::cast(object_)
->set_weak_next(next_, UPDATE_WEAK_WRITE_BARRIER);
}
}
}
private:
HeapObject* object_;
Object* next_;
DisallowHeapAllocation no_gc_;
};
void Serializer::ObjectSerializer::Serialize() {
if (FLAG_trace_serializer) {
PrintF(" Encoding heap object: ");
object_->ShortPrint();
PrintF("\n");
}
// We cannot serialize typed array objects correctly.
DCHECK(!object_->IsJSTypedArray());
// We don't expect fillers.
DCHECK(!object_->IsFiller());
if (object_->IsScript()) {
// Clear cached line ends.
Object* undefined = serializer_->isolate()->heap()->undefined_value();
Script::cast(object_)->set_line_ends(undefined);
}
if (object_->IsExternalString()) {
Heap* heap = serializer_->isolate()->heap();
if (object_->map() != heap->native_source_string_map()) {
// Usually we cannot recreate resources for external strings. To work
// around this, external strings are serialized to look like ordinary
// sequential strings.
// The exception are native source code strings, since we can recreate
// their resources. In that case we fall through and leave it to
// VisitExternalOneByteString further down.
SerializeExternalString();
return;
}
}
int size = object_->Size();
Map* map = object_->map();
AllocationSpace space =
MemoryChunk::FromAddress(object_->address())->owner()->identity();
SerializePrologue(space, size, map);
// Serialize the rest of the object.
CHECK_EQ(0, bytes_processed_so_far_);
bytes_processed_so_far_ = kPointerSize;
RecursionScope recursion(serializer_);
// Objects that are immediately post processed during deserialization
// cannot be deferred, since post processing requires the object content.
if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
serializer_->QueueDeferredObject(object_);
sink_->Put(kDeferred, "Deferring object content");
return;
}
UnlinkWeakNextScope unlink_weak_next(object_);
object_->IterateBody(map->instance_type(), size, this);
OutputRawData(object_->address() + size);
}
void Serializer::ObjectSerializer::SerializeDeferred() {
if (FLAG_trace_serializer) {
PrintF(" Encoding deferred heap object: ");
object_->ShortPrint();
PrintF("\n");
}
int size = object_->Size();
Map* map = object_->map();
BackReference reference = serializer_->back_reference_map()->Lookup(object_);
// Serialize the rest of the object.
CHECK_EQ(0, bytes_processed_so_far_);
bytes_processed_so_far_ = kPointerSize;
serializer_->PutAlignmentPrefix(object_);
sink_->Put(kNewObject + reference.space(), "deferred object");
serializer_->PutBackReference(object_, reference);
sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
UnlinkWeakNextScope unlink_weak_next(object_);
object_->IterateBody(map->instance_type(), size, this);
OutputRawData(object_->address() + size);
}
void Serializer::ObjectSerializer::VisitPointers(Object** start,
Object** end) {
Object** current = start;
while (current < end) {
while (current < end && (*current)->IsSmi()) current++;
if (current < end) OutputRawData(reinterpret_cast<Address>(current));
while (current < end && !(*current)->IsSmi()) {
HeapObject* current_contents = HeapObject::cast(*current);
int root_index = serializer_->root_index_map()->Lookup(current_contents);
// Repeats are not subject to the write barrier so we can only use
// immortal immovable root members. They are never in new space.
if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
Heap::RootIsImmortalImmovable(root_index) &&
current_contents == current[-1]) {
DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
int repeat_count = 1;
while (&current[repeat_count] < end - 1 &&
current[repeat_count] == current_contents) {
repeat_count++;
}
current += repeat_count;
bytes_processed_so_far_ += repeat_count * kPointerSize;
if (repeat_count > kNumberOfFixedRepeat) {
sink_->Put(kVariableRepeat, "VariableRepeat");
sink_->PutInt(repeat_count, "repeat count");
} else {
sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
}
} else {
serializer_->SerializeObject(
current_contents, kPlain, kStartOfObject, 0);
bytes_processed_so_far_ += kPointerSize;
current++;
}
}
}
}
void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
Object* object = rinfo->target_object();
serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
kStartOfObject, skip);
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
int skip = OutputRawData(reinterpret_cast<Address>(p),
kCanReturnSkipInsteadOfSkipping);
sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
sink_->PutInt(skip, "SkipB4ExternalRef");
Address target = *p;
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
bytes_processed_so_far_ += kPointerSize;
}
void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
sink_->PutInt(skip, "SkipB4ExternalRef");
Address target = rinfo->target_external_reference();
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
// We can only reference to internal references of code that has been output.
DCHECK(is_code_object_ && code_has_been_output_);
// We do not use skip from last patched pc to find the pc to patch, since
// target_address_address may not return addresses in ascending order when
// used for internal references. External references may be stored at the
// end of the code in the constant pool, whereas internal references are
// inline. That would cause the skip to be negative. Instead, we store the
// offset from code entry.
Address entry = Code::cast(object_)->entry();
intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
intptr_t target_offset = rinfo->target_internal_reference() - entry;
DCHECK(0 <= pc_offset &&
pc_offset <= Code::cast(object_)->instruction_size());
DCHECK(0 <= target_offset &&
target_offset <= Code::cast(object_)->instruction_size());
sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
? kInternalReference
: kInternalReferenceEncoded,
"InternalRef");
sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
}
void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
sink_->PutInt(skip, "SkipB4ExternalRef");
Address target = rinfo->target_address();
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
bytes_processed_so_far_ += kPointerSize;
}
void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
Cell* object = Cell::cast(rinfo->target_cell());
serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
bytes_processed_so_far_ += kPointerSize;
}
bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
int builtin_count,
v8::String::ExternalOneByteStringResource** resource_pointer,
FixedArray* source_cache, int resource_index) {
for (int i = 0; i < builtin_count; i++) {
Object* source = source_cache->get(i);
if (!source->IsUndefined()) {
ExternalOneByteString* string = ExternalOneByteString::cast(source);
typedef v8::String::ExternalOneByteStringResource Resource;
const Resource* resource = string->resource();
if (resource == *resource_pointer) {
sink_->Put(resource_index, "NativesStringResource");
sink_->PutSection(i, "NativesStringResourceEnd");
bytes_processed_so_far_ += sizeof(resource);
return true;
}
}
}
return false;
}
void Serializer::ObjectSerializer::VisitExternalOneByteString(
v8::String::ExternalOneByteStringResource** resource_pointer) {
Address references_start = reinterpret_cast<Address>(resource_pointer);
OutputRawData(references_start);
if (SerializeExternalNativeSourceString(
Natives::GetBuiltinsCount(), resource_pointer,
Natives::GetSourceCache(serializer_->isolate()->heap()),
kNativesStringResource)) {
return;
}
if (SerializeExternalNativeSourceString(
ExtraNatives::GetBuiltinsCount(), resource_pointer,
ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
kExtraNativesStringResource)) {
return;
}
// One of the strings in the natives cache should match the resource. We
// don't expect any other kinds of external strings here.
UNREACHABLE();
}
Address Serializer::ObjectSerializer::PrepareCode() {
// To make snapshots reproducible, we make a copy of the code object
// and wipe all pointers in the copy, which we then serialize.
Code* original = Code::cast(object_);
Code* code = serializer_->CopyCode(original);
// Code age headers are not serializable.
code->MakeYoung(serializer_->isolate());
int mode_mask = RelocInfo::kCodeTargetMask |
RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
RelocInfo* rinfo = it.rinfo();
rinfo->WipeOut();
}
// We need to wipe out the header fields *after* wiping out the
// relocations, because some of these fields are needed for the latter.
code->WipeOutHeader();
return code->address();
}
int Serializer::ObjectSerializer::OutputRawData(
Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
Address object_start = object_->address();
int base = bytes_processed_so_far_;
int up_to_offset = static_cast<int>(up_to - object_start);
int to_skip = up_to_offset - bytes_processed_so_far_;
int bytes_to_output = to_skip;
bytes_processed_so_far_ += to_skip;
// This assert will fail if the reloc info gives us the target_address_address
// locations in a non-ascending order. Luckily that doesn't happen.
DCHECK(to_skip >= 0);
bool outputting_code = false;
if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
// Output the code all at once and fix later.
bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
outputting_code = true;
code_has_been_output_ = true;
}
if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
if (!outputting_code && bytes_to_output == to_skip &&
IsAligned(bytes_to_output, kPointerAlignment) &&
bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
int size_in_words = bytes_to_output >> kPointerSizeLog2;
sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
to_skip = 0; // This instruction includes skip.
} else {
// We always end up here if we are outputting the code of a code object.
sink_->Put(kVariableRawData, "VariableRawData");
sink_->PutInt(bytes_to_output, "length");
}
if (is_code_object_) object_start = PrepareCode();
const char* description = is_code_object_ ? "Code" : "Byte";
sink_->PutRaw(object_start + base, bytes_to_output, description);
}
if (to_skip != 0 && return_skip == kIgnoringReturn) {
sink_->Put(kSkip, "Skip");
sink_->PutInt(to_skip, "SkipDistance");
to_skip = 0;
}
return to_skip;
}
BackReference Serializer::AllocateLargeObject(int size) {
// Large objects are allocated one-by-one when deserializing. We do not
// have to keep track of multiple chunks.
large_objects_total_size_ += size;
return BackReference::LargeObjectReference(seen_large_objects_index_++);
}
BackReference Serializer::Allocate(AllocationSpace space, int size) {
DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
uint32_t new_chunk_size = pending_chunk_[space] + size;
if (new_chunk_size > max_chunk_size(space)) {
// The new chunk size would not fit onto a single page. Complete the
// current chunk and start a new one.
sink_->Put(kNextChunk, "NextChunk");
sink_->Put(space, "NextChunkSpace");
completed_chunks_[space].Add(pending_chunk_[space]);
DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
pending_chunk_[space] = 0;
new_chunk_size = size;
}
uint32_t offset = pending_chunk_[space];
pending_chunk_[space] = new_chunk_size;
return BackReference::Reference(space, completed_chunks_[space].length(),
offset);
}
void Serializer::Pad() {
// The non-branching GetInt will read up to 3 bytes too far, so we need
// to pad the snapshot to make sure we don't read over the end.
for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
sink_->Put(kNop, "Padding");
}
// Pad up to pointer size for checksum.
while (!IsAligned(sink_->Position(), kPointerAlignment)) {
sink_->Put(kNop, "Padding");
}
}
void Serializer::InitializeCodeAddressMap() {
isolate_->InitializeLoggingAndCounters();
code_address_map_ = new CodeAddressMap(isolate_);
}
Code* Serializer::CopyCode(Code* code) {
code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
int size = code->CodeSize();
code_buffer_.AddAll(Vector<byte>(code->address(), size));
return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
}
ScriptData* CodeSerializer::Serialize(Isolate* isolate,
Handle<SharedFunctionInfo> info,
Handle<String> source) {
base::ElapsedTimer timer;
if (FLAG_profile_deserialization) timer.Start();
if (FLAG_trace_serializer) {
PrintF("[Serializing from");
Object* script = info->script();
if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
PrintF("]\n");
}
// Serialize code object.
SnapshotByteSink sink(info->code()->CodeSize() * 2);
CodeSerializer cs(isolate, &sink, *source);
DisallowHeapAllocation no_gc;
Object** location = Handle<Object>::cast(info).location();
cs.VisitPointer(location);
cs.SerializeDeferredObjects();
cs.Pad();
SerializedCodeData data(sink.data(), cs);
ScriptData* script_data = data.GetScriptData();
if (FLAG_profile_deserialization) {
double ms = timer.Elapsed().InMillisecondsF();
int length = script_data->length();
PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
}
return script_data;
}
void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) {
int root_index = root_index_map_.Lookup(obj);
if (root_index != RootIndexMap::kInvalidRootIndex) {
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
return;
}
if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
FlushSkip(skip);
if (obj->IsCode()) {
Code* code_object = Code::cast(obj);
switch (code_object->kind()) {
case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet.
case Code::HANDLER: // No handlers patched in yet.
case Code::REGEXP: // No regexp literals initialized yet.
case Code::NUMBER_OF_KINDS: // Pseudo enum value.
CHECK(false);
case Code::BUILTIN:
SerializeBuiltin(code_object->builtin_index(), how_to_code,
where_to_point);
return;
case Code::STUB:
SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
return;
#define IC_KIND_CASE(KIND) case Code::KIND:
IC_KIND_LIST(IC_KIND_CASE)
#undef IC_KIND_CASE
SerializeIC(code_object, how_to_code, where_to_point);
return;
case Code::FUNCTION:
DCHECK(code_object->has_reloc_info_for_serialization());
SerializeGeneric(code_object, how_to_code, where_to_point);
return;
case Code::WASM_FUNCTION:
UNREACHABLE();
}
UNREACHABLE();
}
// Past this point we should not see any (context-specific) maps anymore.
CHECK(!obj->IsMap());
// There should be no references to the global object embedded.
CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject());
// There should be no hash table embedded. They would require rehashing.
CHECK(!obj->IsHashTable());
// We expect no instantiated function objects or contexts.
CHECK(!obj->IsJSFunction() && !obj->IsContext());
SerializeGeneric(obj, how_to_code, where_to_point);
}
void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
HowToCode how_to_code,
WhereToPoint where_to_point) {
// Object has not yet been serialized. Serialize it here.
ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
where_to_point);
serializer.Serialize();
}
void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
WhereToPoint where_to_point) {
DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
(how_to_code == kPlain && where_to_point == kInnerPointer) ||
(how_to_code == kFromCode && where_to_point == kInnerPointer));
DCHECK_LT(builtin_index, Builtins::builtin_count);
DCHECK_LE(0, builtin_index);
if (FLAG_trace_serializer) {
PrintF(" Encoding builtin: %s\n",
isolate()->builtins()->name(builtin_index));
}
sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
sink_->PutInt(builtin_index, "builtin_index");
}
void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
WhereToPoint where_to_point) {
DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
(how_to_code == kPlain && where_to_point == kInnerPointer) ||
(how_to_code == kFromCode && where_to_point == kInnerPointer));
DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
if (FLAG_trace_serializer) {
PrintF(" Encoding code stub %s as %d\n",
CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index);
}
sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
sink_->PutInt(index, "CodeStub key");
}
void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
WhereToPoint where_to_point) {
// The IC may be implemented as a stub.
uint32_t stub_key = ic->stub_key();
if (stub_key != CodeStub::NoCacheKey()) {
if (FLAG_trace_serializer) {
PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
}
SerializeCodeStub(stub_key, how_to_code, where_to_point);
return;
}
// The IC may be implemented as builtin. Only real builtins have an
// actual builtin_index value attached (otherwise it's just garbage).
// Compare to make sure we are really dealing with a builtin.
int builtin_index = ic->builtin_index();
if (builtin_index < Builtins::builtin_count) {
Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
Code* builtin = isolate()->builtins()->builtin(name);
if (builtin == ic) {
if (FLAG_trace_serializer) {
PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
}
DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
ic->kind() == Code::KEYED_STORE_IC);
SerializeBuiltin(builtin_index, how_to_code, where_to_point);
return;
}
}
// The IC may also just be a piece of code kept in the non_monomorphic_cache.
// In that case, just serialize as a normal code object.
if (FLAG_trace_serializer) {
PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
}
DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
SerializeGeneric(ic, how_to_code, where_to_point);
}
int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
// TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
int index = 0;
while (index < stub_keys_.length()) {
if (stub_keys_[index] == stub_key) return index;
index++;
}
stub_keys_.Add(stub_key);
return index;
}
MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
base::ElapsedTimer timer;
if (FLAG_profile_deserialization) timer.Start();
HandleScope scope(isolate);
base::SmartPointer<SerializedCodeData> scd(
SerializedCodeData::FromCachedData(isolate, cached_data, *source));
if (scd.is_empty()) {
if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
DCHECK(cached_data->rejected());
return MaybeHandle<SharedFunctionInfo>();
}
// Prepare and register list of attached objects.
Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
code_stub_keys.length() + kCodeStubsBaseIndex);
attached_objects[kSourceObjectIndex] = source;
for (int i = 0; i < code_stub_keys.length(); i++) {
attached_objects[i + kCodeStubsBaseIndex] =
CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
}
Deserializer deserializer(scd.get());
deserializer.SetAttachedObjects(attached_objects);
// Deserialize.
Handle<SharedFunctionInfo> result;
if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
// Deserializing may fail if the reservations cannot be fulfilled.
if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
return MaybeHandle<SharedFunctionInfo>();
}
if (FLAG_profile_deserialization) {
double ms = timer.Elapsed().InMillisecondsF();
int length = cached_data->length();
PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
}
result->set_deserialized(true);
if (isolate->logger()->is_logging_code_events() ||
isolate->cpu_profiler()->is_profiling()) {
String* name = isolate->heap()->empty_string();
if (result->script()->IsScript()) {
Script* script = Script::cast(result->script());
if (script->name()->IsString()) name = String::cast(script->name());
}
isolate->logger()->CodeCreateEvent(
Logger::SCRIPT_TAG, result->abstract_code(), *result, NULL, name);
}
return scope.CloseAndEscape(result);
}
void SerializedData::AllocateData(int size) {
DCHECK(!owns_data_);
data_ = NewArray<byte>(size);
size_ = size;
owns_data_ = true;
DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
}
SnapshotData::SnapshotData(const Serializer& ser) {
DisallowHeapAllocation no_gc;
List<Reservation> reservations;
ser.EncodeReservations(&reservations);
const List<byte>& payload = ser.sink()->data();
// Calculate sizes.
int reservation_size = reservations.length() * kInt32Size;
int size = kHeaderSize + reservation_size + payload.length();
// Allocate backing store and create result data.
AllocateData(size);
// Set header values.
SetMagicNumber(ser.isolate());
SetHeaderValue(kCheckSumOffset, Version::Hash());
SetHeaderValue(kNumReservationsOffset, reservations.length());
SetHeaderValue(kPayloadLengthOffset, payload.length());
// Copy reservation chunk sizes.
CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
reservation_size);
// Copy serialized data.
CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
static_cast<size_t>(payload.length()));
}
bool SnapshotData::IsSane() {
return GetHeaderValue(kCheckSumOffset) == Version::Hash();
}
Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
return Vector<const Reservation>(
reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
GetHeaderValue(kNumReservationsOffset));
}
Vector<const byte> SnapshotData::Payload() const {
int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
const byte* payload = data_ + kHeaderSize + reservations_size;
int length = GetHeaderValue(kPayloadLengthOffset);
DCHECK_EQ(data_ + size_, payload + length);
return Vector<const byte>(payload, length);
}
class Checksum {
public:
explicit Checksum(Vector<const byte> payload) {
#ifdef MEMORY_SANITIZER
// Computing the checksum includes padding bytes for objects like strings.
// Mark every object as initialized in the code serializer.
MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length());
#endif // MEMORY_SANITIZER
// Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
uintptr_t a = 1;
uintptr_t b = 0;
const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
DCHECK(IsAligned(payload.length(), kIntptrSize));
const uintptr_t* end = cur + payload.length() / kIntptrSize;
while (cur < end) {
// Unsigned overflow expected and intended.
a += *cur++;
b += a;
}
#if V8_HOST_ARCH_64_BIT
a ^= a >> 32;
b ^= b >> 32;
#endif // V8_HOST_ARCH_64_BIT
a_ = static_cast<uint32_t>(a);
b_ = static_cast<uint32_t>(b);
}
bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
uint32_t a() const { return a_; }
uint32_t b() const { return b_; }
private:
uint32_t a_;
uint32_t b_;
DISALLOW_COPY_AND_ASSIGN(Checksum);
};
SerializedCodeData::SerializedCodeData(const List<byte>& payload,
const CodeSerializer& cs) {
DisallowHeapAllocation no_gc;
const List<uint32_t>* stub_keys = cs.stub_keys();
List<Reservation> reservations;
cs.EncodeReservations(&reservations);
// Calculate sizes.
int reservation_size = reservations.length() * kInt32Size;
int num_stub_keys = stub_keys->length();
int stub_keys_size = stub_keys->length() * kInt32Size;
int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
int size = padded_payload_offset + payload.length();
// Allocate backing store and create result data.
AllocateData(size);
// Set header values.
SetMagicNumber(cs.isolate());
SetHeaderValue(kVersionHashOffset, Version::Hash());
SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
SetHeaderValue(kCpuFeaturesOffset,
static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
SetHeaderValue(kFlagHashOffset, FlagList::Hash());
SetHeaderValue(kNumReservationsOffset, reservations.length());
SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
SetHeaderValue(kPayloadLengthOffset, payload.length());
Checksum checksum(payload.ToConstVector());
SetHeaderValue(kChecksum1Offset, checksum.a());
SetHeaderValue(kChecksum2Offset, checksum.b());
// Copy reservation chunk sizes.
CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
reservation_size);
// Copy code stub keys.
CopyBytes(data_ + kHeaderSize + reservation_size,
reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
// Copy serialized data.
CopyBytes(data_ + padded_payload_offset, payload.begin(),
static_cast<size_t>(payload.length()));
}
SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
Isolate* isolate, String* source) const {
uint32_t magic_number = GetMagicNumber();
if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
uint32_t c1 = GetHeaderValue(kChecksum1Offset);
uint32_t c2 = GetHeaderValue(kChecksum2Offset);
if (version_hash != Version::Hash()) return VERSION_MISMATCH;
if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
return CPU_FEATURES_MISMATCH;
}
if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
return CHECK_SUCCESS;
}
uint32_t SerializedCodeData::SourceHash(String* source) const {
return source->length();
}
// Return ScriptData object and relinquish ownership over it to the caller.
ScriptData* SerializedCodeData::GetScriptData() {
DCHECK(owns_data_);
ScriptData* result = new ScriptData(data_, size_);
result->AcquireDataOwnership();
owns_data_ = false;
data_ = NULL;
return result;
}
Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
const {
return Vector<const Reservation>(
reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
GetHeaderValue(kNumReservationsOffset));
}
Vector<const byte> SerializedCodeData::Payload() const {
int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
const byte* payload = data_ + padded_payload_offset;
DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
int length = GetHeaderValue(kPayloadLengthOffset);
DCHECK_EQ(data_ + size_, payload + length);
return Vector<const byte>(payload, length);
}
Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
const byte* start = data_ + kHeaderSize + reservations_size;
return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
GetHeaderValue(kNumCodeStubKeysOffset));
}
SerializedCodeData::SerializedCodeData(ScriptData* data)
: SerializedData(const_cast<byte*>(data->data()), data->length()) {}
SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
ScriptData* cached_data,
String* source) {
DisallowHeapAllocation no_gc;
SerializedCodeData* scd = new SerializedCodeData(cached_data);
SanityCheckResult r = scd->SanityCheck(isolate, source);
if (r == CHECK_SUCCESS) return scd;
cached_data->Reject();
source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
delete scd;
return NULL;
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_SNAPSHOT_DESERIALIZER_H_
#define V8_SNAPSHOT_DESERIALIZER_H_
#include "src/heap/heap.h"
#include "src/objects.h"
#include "src/snapshot/serializer-common.h"
#include "src/snapshot/snapshot-source-sink.h"
namespace v8 {
namespace internal {
class Heap;
// A Deserializer reads a snapshot and reconstructs the Object graph it defines.
class Deserializer : public SerializerDeserializer {
public:
// Create a deserializer from a snapshot byte source.
template <class Data>
explicit Deserializer(Data* data)
: isolate_(NULL),
source_(data->Payload()),
magic_number_(data->GetMagicNumber()),
external_reference_table_(NULL),
deserialized_large_objects_(0),
deserializing_user_code_(false),
next_alignment_(kWordAligned) {
DecodeReservation(data->Reservations());
}
~Deserializer() override;
// Deserialize the snapshot into an empty heap.
void Deserialize(Isolate* isolate);
// Deserialize a single object and the objects reachable from it.
MaybeHandle<Object> DeserializePartial(Isolate* isolate,
Handle<JSGlobalProxy> global_proxy);
// Deserialize a shared function info. Fail gracefully.
MaybeHandle<SharedFunctionInfo> DeserializeCode(Isolate* isolate);
// Pass a vector of externally-provided objects referenced by the snapshot.
// The ownership to its backing store is handed over as well.
void SetAttachedObjects(Vector<Handle<Object> > attached_objects) {
attached_objects_ = attached_objects;
}
private:
void VisitPointers(Object** start, Object** end) override;
void Synchronize(VisitorSynchronization::SyncTag tag) override;
void VisitRuntimeEntry(RelocInfo* rinfo) override { UNREACHABLE(); }
void Initialize(Isolate* isolate);
bool deserializing_user_code() { return deserializing_user_code_; }
void DecodeReservation(Vector<const SerializedData::Reservation> res);
bool ReserveSpace();
void UnalignedCopy(Object** dest, Object** src) {
memcpy(dest, src, sizeof(*src));
}
void SetAlignment(byte data) {
DCHECK_EQ(kWordAligned, next_alignment_);
int alignment = data - (kAlignmentPrefix - 1);
DCHECK_LE(kWordAligned, alignment);
DCHECK_LE(alignment, kSimd128Unaligned);
next_alignment_ = static_cast<AllocationAlignment>(alignment);
}
void DeserializeDeferredObjects();
void FlushICacheForNewIsolate();
void FlushICacheForNewCodeObjects();
void CommitPostProcessedObjects(Isolate* isolate);
// Fills in some heap data in an area from start to end (non-inclusive). The
// space id is used for the write barrier. The object_address is the address
// of the object we are writing into, or NULL if we are not writing into an
// object, i.e. if we are writing a series of tagged values that are not on
// the heap. Return false if the object content has been deferred.
bool ReadData(Object** start, Object** end, int space,
Address object_address);
void ReadObject(int space_number, Object** write_back);
Address Allocate(int space_index, int size);
// Special handling for serialized code like hooking up internalized strings.
HeapObject* PostProcessNewObject(HeapObject* obj, int space);
// This returns the address of an object that has been described in the
// snapshot by chunk index and offset.
HeapObject* GetBackReferencedObject(int space);
Object** CopyInNativesSource(Vector<const char> source_vector,
Object** current);
// Cached current isolate.
Isolate* isolate_;
// Objects from the attached object descriptions in the serialized user code.
Vector<Handle<Object> > attached_objects_;
SnapshotByteSource source_;
uint32_t magic_number_;
// The address of the next object that will be allocated in each space.
// Each space has a number of chunks reserved by the GC, with each chunk
// fitting into a page. Deserialized objects are allocated into the
// current chunk of the target space by bumping up high water mark.
Heap::Reservation reservations_[kNumberOfSpaces];
uint32_t current_chunk_[kNumberOfPreallocatedSpaces];
Address high_water_[kNumberOfPreallocatedSpaces];
ExternalReferenceTable* external_reference_table_;
List<HeapObject*> deserialized_large_objects_;
List<Code*> new_code_objects_;
List<Handle<String> > new_internalized_strings_;
List<Handle<Script> > new_scripts_;
bool deserializing_user_code_;
AllocationAlignment next_alignment_;
DISALLOW_COPY_AND_ASSIGN(Deserializer);
};
} // namespace internal
} // namespace v8
#endif // V8_SNAPSHOT_DESERIALIZER_H_
......@@ -12,8 +12,8 @@
#include "src/flags.h"
#include "src/list.h"
#include "src/snapshot/natives.h"
#include "src/snapshot/serialize.h"
#include "src/snapshot/partial-serializer.h"
#include "src/snapshot/startup-serializer.h"
using namespace v8;
......
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/partial-serializer.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
PartialSerializer::PartialSerializer(Isolate* isolate,
Serializer* startup_snapshot_serializer,
SnapshotByteSink* sink)
: Serializer(isolate, sink),
startup_serializer_(startup_snapshot_serializer),
global_object_(NULL) {
InitializeCodeAddressMap();
}
PartialSerializer::~PartialSerializer() {
OutputStatistics("PartialSerializer");
}
void PartialSerializer::Serialize(Object** o) {
if ((*o)->IsContext()) {
Context* context = Context::cast(*o);
global_object_ = context->global_object();
back_reference_map()->AddGlobalProxy(context->global_proxy());
// The bootstrap snapshot has a code-stub context. When serializing the
// partial snapshot, it is chained into the weak context list on the isolate
// and it's next context pointer may point to the code-stub context. Clear
// it before serializing, it will get re-added to the context list
// explicitly when it's loaded.
if (context->IsNativeContext()) {
context->set(Context::NEXT_CONTEXT_LINK,
isolate_->heap()->undefined_value());
DCHECK(!context->global_object()->IsUndefined());
}
}
VisitPointer(o);
SerializeDeferredObjects();
Pad();
}
void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) {
if (obj->IsMap()) {
// The code-caches link to context-specific code objects, which
// the startup and context serializes cannot currently handle.
DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
}
// Replace typed arrays by undefined.
if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
int root_index = root_index_map_.Lookup(obj);
if (root_index != RootIndexMap::kInvalidRootIndex) {
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
return;
}
if (ShouldBeInThePartialSnapshotCache(obj)) {
FlushSkip(skip);
int cache_index = PartialSnapshotCacheIndex(obj);
sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
"PartialSnapshotCache");
sink_->PutInt(cache_index, "partial_snapshot_cache_index");
return;
}
// Pointers from the partial snapshot to the objects in the startup snapshot
// should go through the root array or through the partial snapshot cache.
// If this is not the case you may have to add something to the root array.
DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
// All the internalized strings that the partial snapshot needs should be
// either in the root table or in the partial snapshot cache.
DCHECK(!obj->IsInternalizedString());
if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
FlushSkip(skip);
// Clear literal boilerplates.
if (obj->IsJSFunction()) {
FixedArray* literals = JSFunction::cast(obj)->literals();
for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
}
// Object has not yet been serialized. Serialize it here.
ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
serializer.Serialize();
}
int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
Isolate* isolate = this->isolate();
List<Object*>* cache = isolate->partial_snapshot_cache();
int new_index = cache->length();
int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
if (index == PartialCacheIndexMap::kInvalidIndex) {
// We didn't find the object in the cache. So we add it to the cache and
// then visit the pointer so that it becomes part of the startup snapshot
// and we can refer to it from the partial snapshot.
cache->Add(heap_object);
startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
// We don't recurse from the startup snapshot generator into the partial
// snapshot generator.
return new_index;
}
return index;
}
bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) {
// Scripts should be referred only through shared function infos. We can't
// allow them to be part of the partial snapshot because they contain a
// unique ID, and deserializing several partial snapshots containing script
// would cause dupes.
DCHECK(!o->IsScript());
return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() ||
o->IsCode() || o->IsScopeInfo() || o->IsAccessorInfo() ||
o->map() ==
startup_serializer_->isolate()->heap()->fixed_cow_array_map();
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_SNAPSHOT_PARTIAL_SERIALIZER_H_
#define V8_SNAPSHOT_PARTIAL_SERIALIZER_H_
#include "src/address-map.h"
#include "src/snapshot/serializer.h"
namespace v8 {
namespace internal {
class PartialSerializer : public Serializer {
public:
PartialSerializer(Isolate* isolate, Serializer* startup_snapshot_serializer,
SnapshotByteSink* sink);
~PartialSerializer() override;
// Serialize the objects reachable from a single object pointer.
void Serialize(Object** o);
private:
class PartialCacheIndexMap : public AddressMapBase {
public:
PartialCacheIndexMap() : map_(HashMap::PointersMatch) {}
static const int kInvalidIndex = -1;
// Lookup object in the map. Return its index if found, or create
// a new entry with new_index as value, and return kInvalidIndex.
int LookupOrInsert(HeapObject* obj, int new_index) {
HashMap::Entry* entry = LookupEntry(&map_, obj, false);
if (entry != NULL) return GetValue(entry);
SetValue(LookupEntry(&map_, obj, true), static_cast<uint32_t>(new_index));
return kInvalidIndex;
}
private:
HashMap map_;
DISALLOW_COPY_AND_ASSIGN(PartialCacheIndexMap);
};
void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) override;
int PartialSnapshotCacheIndex(HeapObject* o);
bool ShouldBeInThePartialSnapshotCache(HeapObject* o);
Serializer* startup_serializer_;
Object* global_object_;
PartialCacheIndexMap partial_cache_index_map_;
DISALLOW_COPY_AND_ASSIGN(PartialSerializer);
};
} // namespace internal
} // namespace v8
#endif // V8_SNAPSHOT_PARTIAL_SERIALIZER_H_
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/serializer-common.h"
#include "src/accessors.h"
#include "src/assembler.h"
#include "src/counters.h"
#include "src/deoptimizer.h"
#include "src/ic/stub-cache.h"
#include "src/list-inl.h"
namespace v8 {
namespace internal {
ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
ExternalReferenceTable* external_reference_table =
isolate->external_reference_table();
if (external_reference_table == NULL) {
external_reference_table = new ExternalReferenceTable(isolate);
isolate->set_external_reference_table(external_reference_table);
}
return external_reference_table;
}
ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
// Miscellaneous
Add(ExternalReference::roots_array_start(isolate).address(),
"Heap::roots_array_start()");
Add(ExternalReference::address_of_stack_limit(isolate).address(),
"StackGuard::address_of_jslimit()");
Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
"StackGuard::address_of_real_jslimit()");
Add(ExternalReference::new_space_start(isolate).address(),
"Heap::NewSpaceStart()");
Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
"Heap::NewSpaceAllocationLimitAddress()");
Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
"Heap::NewSpaceAllocationTopAddress()");
Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
"mod_two_doubles");
// Keyed lookup cache.
Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
"KeyedLookupCache::keys()");
Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
"KeyedLookupCache::field_offsets()");
Add(ExternalReference::handle_scope_next_address(isolate).address(),
"HandleScope::next");
Add(ExternalReference::handle_scope_limit_address(isolate).address(),
"HandleScope::limit");
Add(ExternalReference::handle_scope_level_address(isolate).address(),
"HandleScope::level");
Add(ExternalReference::new_deoptimizer_function(isolate).address(),
"Deoptimizer::New()");
Add(ExternalReference::compute_output_frames_function(isolate).address(),
"Deoptimizer::ComputeOutputFrames()");
Add(ExternalReference::address_of_min_int().address(),
"LDoubleConstant::min_int");
Add(ExternalReference::address_of_one_half().address(),
"LDoubleConstant::one_half");
Add(ExternalReference::isolate_address(isolate).address(), "isolate");
Add(ExternalReference::interpreter_dispatch_table_address(isolate).address(),
"Interpreter::dispatch_table_address");
Add(ExternalReference::address_of_negative_infinity().address(),
"LDoubleConstant::negative_infinity");
Add(ExternalReference::power_double_double_function(isolate).address(),
"power_double_double_function");
Add(ExternalReference::power_double_int_function(isolate).address(),
"power_double_int_function");
Add(ExternalReference::math_log_double_function(isolate).address(),
"std::log");
Add(ExternalReference::store_buffer_top(isolate).address(),
"store_buffer_top");
Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
Add(ExternalReference::get_date_field_function(isolate).address(),
"JSDate::GetField");
Add(ExternalReference::date_cache_stamp(isolate).address(),
"date_cache_stamp");
Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
"address_of_pending_message_obj");
Add(ExternalReference::get_make_code_young_function(isolate).address(),
"Code::MakeCodeYoung");
Add(ExternalReference::cpu_features().address(), "cpu_features");
Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
"Heap::OldSpaceAllocationTopAddress");
Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
"Heap::OldSpaceAllocationLimitAddress");
Add(ExternalReference::allocation_sites_list_address(isolate).address(),
"Heap::allocation_sites_list_address()");
Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
"Code::MarkCodeAsExecuted");
Add(ExternalReference::is_profiling_address(isolate).address(),
"CpuProfiler::is_profiling");
Add(ExternalReference::scheduled_exception_address(isolate).address(),
"Isolate::scheduled_exception");
Add(ExternalReference::invoke_function_callback(isolate).address(),
"InvokeFunctionCallback");
Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
"InvokeAccessorGetterCallback");
Add(ExternalReference::f32_trunc_wrapper_function(isolate).address(),
"f32_trunc_wrapper");
Add(ExternalReference::f32_floor_wrapper_function(isolate).address(),
"f32_floor_wrapper");
Add(ExternalReference::f32_ceil_wrapper_function(isolate).address(),
"f32_ceil_wrapper");
Add(ExternalReference::f32_nearest_int_wrapper_function(isolate).address(),
"f32_nearest_int_wrapper");
Add(ExternalReference::f64_trunc_wrapper_function(isolate).address(),
"f64_trunc_wrapper");
Add(ExternalReference::f64_floor_wrapper_function(isolate).address(),
"f64_floor_wrapper");
Add(ExternalReference::f64_ceil_wrapper_function(isolate).address(),
"f64_ceil_wrapper");
Add(ExternalReference::f64_nearest_int_wrapper_function(isolate).address(),
"f64_nearest_int_wrapper");
Add(ExternalReference::log_enter_external_function(isolate).address(),
"Logger::EnterExternal");
Add(ExternalReference::log_leave_external_function(isolate).address(),
"Logger::LeaveExternal");
Add(ExternalReference::address_of_minus_one_half().address(),
"double_constants.minus_one_half");
Add(ExternalReference::stress_deopt_count(isolate).address(),
"Isolate::stress_deopt_count_address()");
Add(ExternalReference::virtual_handler_register(isolate).address(),
"Isolate::virtual_handler_register()");
Add(ExternalReference::virtual_slot_register(isolate).address(),
"Isolate::virtual_slot_register()");
Add(ExternalReference::runtime_function_table_address(isolate).address(),
"Runtime::runtime_function_table_address()");
// Debug addresses
Add(ExternalReference::debug_after_break_target_address(isolate).address(),
"Debug::after_break_target_address()");
Add(ExternalReference::debug_is_active_address(isolate).address(),
"Debug::is_active_address()");
Add(ExternalReference::debug_step_in_enabled_address(isolate).address(),
"Debug::step_in_enabled_address()");
#ifndef V8_INTERPRETED_REGEXP
Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
"NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
"RegExpMacroAssembler*::CheckStackGuardState()");
Add(ExternalReference::re_grow_stack(isolate).address(),
"NativeRegExpMacroAssembler::GrowStack()");
Add(ExternalReference::re_word_character_map().address(),
"NativeRegExpMacroAssembler::word_character_map");
Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
"RegExpStack::limit_address()");
Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
.address(),
"RegExpStack::memory_address()");
Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
"RegExpStack::memory_size()");
Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
"OffsetsVector::static_offsets_vector");
#endif // V8_INTERPRETED_REGEXP
// The following populates all of the different type of external references
// into the ExternalReferenceTable.
//
// NOTE: This function was originally 100k of code. It has since been
// rewritten to be mostly table driven, as the callback macro style tends to
// very easily cause code bloat. Please be careful in the future when adding
// new references.
struct RefTableEntry {
uint16_t id;
const char* name;
};
static const RefTableEntry c_builtins[] = {
#define DEF_ENTRY_C(name, ignored) {Builtins::c_##name, "Builtins::" #name},
BUILTIN_LIST_C(DEF_ENTRY_C)
#undef DEF_ENTRY_C
};
for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
isolate);
Add(ref.address(), c_builtins[i].name);
}
static const RefTableEntry builtins[] = {
#define DEF_ENTRY_C(name, ignored) {Builtins::k##name, "Builtins::" #name},
#define DEF_ENTRY_A(name, i1, i2, i3) {Builtins::k##name, "Builtins::" #name},
BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
#undef DEF_ENTRY_C
#undef DEF_ENTRY_A
};
for (unsigned i = 0; i < arraysize(builtins); ++i) {
ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
Add(ref.address(), builtins[i].name);
}
static const RefTableEntry runtime_functions[] = {
#define RUNTIME_ENTRY(name, i1, i2) {Runtime::k##name, "Runtime::" #name},
FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
#undef RUNTIME_ENTRY
};
for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
ExternalReference ref(
static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
Add(ref.address(), runtime_functions[i].name);
}
// Stat counters
struct StatsRefTableEntry {
StatsCounter* (Counters::*counter)();
const char* name;
};
static const StatsRefTableEntry stats_ref_table[] = {
#define COUNTER_ENTRY(name, caption) {&Counters::name, "Counters::" #name},
STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
#undef COUNTER_ENTRY
};
Counters* counters = isolate->counters();
for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
// To make sure the indices are not dependent on whether counters are
// enabled, use a dummy address as filler.
Address address = NotAvailable();
StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
if (counter->Enabled()) {
address = reinterpret_cast<Address>(counter->GetInternalPointer());
}
Add(address, stats_ref_table[i].name);
}
// Top addresses
static const char* address_names[] = {
#define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
#undef BUILD_NAME_LITERAL
};
for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
address_names[i]);
}
// Accessors
struct AccessorRefTable {
Address address;
const char* name;
};
static const AccessorRefTable accessors[] = {
#define ACCESSOR_INFO_DECLARATION(name) \
{FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter"},
ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
#undef ACCESSOR_INFO_DECLARATION
#define ACCESSOR_SETTER_DECLARATION(name) \
{FUNCTION_ADDR(&Accessors::name), "Accessors::" #name},
ACCESSOR_SETTER_LIST(ACCESSOR_SETTER_DECLARATION)
#undef ACCESSOR_INFO_DECLARATION
};
for (unsigned i = 0; i < arraysize(accessors); ++i) {
Add(accessors[i].address, accessors[i].name);
}
StubCache* stub_cache = isolate->stub_cache();
// Stub cache tables
Add(stub_cache->key_reference(StubCache::kPrimary).address(),
"StubCache::primary_->key");
Add(stub_cache->value_reference(StubCache::kPrimary).address(),
"StubCache::primary_->value");
Add(stub_cache->map_reference(StubCache::kPrimary).address(),
"StubCache::primary_->map");
Add(stub_cache->key_reference(StubCache::kSecondary).address(),
"StubCache::secondary_->key");
Add(stub_cache->value_reference(StubCache::kSecondary).address(),
"StubCache::secondary_->value");
Add(stub_cache->map_reference(StubCache::kSecondary).address(),
"StubCache::secondary_->map");
// Runtime entries
Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
"HandleScope::DeleteExtensions");
Add(ExternalReference::incremental_marking_record_write_function(isolate)
.address(),
"IncrementalMarking::RecordWrite");
Add(ExternalReference::incremental_marking_record_write_code_entry_function(
isolate)
.address(),
"IncrementalMarking::RecordWriteOfCodeEntryFromCode");
Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
"StoreBuffer::StoreBufferOverflow");
// Add a small set of deopt entry addresses to encoder without generating the
// deopt table code, which isn't possible at deserialization time.
HandleScope scope(isolate);
for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
Address address = Deoptimizer::GetDeoptimizationEntry(
isolate, entry, Deoptimizer::LAZY,
Deoptimizer::CALCULATE_ENTRY_ADDRESS);
Add(address, "lazy_deopt");
}
}
ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
map_ = isolate->external_reference_map();
if (map_ != NULL) return;
map_ = new HashMap(HashMap::PointersMatch);
ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
for (int i = 0; i < table->size(); ++i) {
Address addr = table->address(i);
if (addr == ExternalReferenceTable::NotAvailable()) continue;
// We expect no duplicate external references entries in the table.
DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
}
isolate->set_external_reference_map(map_);
}
uint32_t ExternalReferenceEncoder::Encode(Address address) const {
DCHECK_NOT_NULL(address);
HashMap::Entry* entry =
const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
DCHECK_NOT_NULL(entry);
return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
}
const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
Address address) const {
HashMap::Entry* entry =
const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
if (entry == NULL) return "<unknown>";
uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
return ExternalReferenceTable::instance(isolate)->name(i);
}
void SerializedData::AllocateData(int size) {
DCHECK(!owns_data_);
data_ = NewArray<byte>(size);
size_ = size;
owns_data_ = true;
DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
}
// This ensures that the partial snapshot cache keeps things alive during GC and
// tracks their movement. When it is called during serialization of the startup
// snapshot nothing happens. When the partial (context) snapshot is created,
// this array is populated with the pointers that the partial snapshot will
// need. As that happens we emit serialized objects to the startup snapshot
// that correspond to the elements of this cache array. On deserialization we
// therefore need to visit the cache array. This fills it up with pointers to
// deserialized objects.
void SerializerDeserializer::Iterate(Isolate* isolate, ObjectVisitor* visitor) {
if (isolate->serializer_enabled()) return;
List<Object*>* cache = isolate->partial_snapshot_cache();
for (int i = 0;; ++i) {
// Extend the array ready to get a value when deserializing.
if (cache->length() <= i) cache->Add(Smi::FromInt(0));
visitor->VisitPointer(&cache->at(i));
// Sentinel is the undefined object, which is a root so it will not normally
// be found in the cache.
if (cache->at(i)->IsUndefined()) break;
}
}
bool SerializerDeserializer::CanBeDeferred(HeapObject* o) {
return !o->IsString() && !o->IsScript();
}
} // namespace internal
} // namespace v8
// Copyright 2012 the V8 project authors. All rights reserved.
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_SNAPSHOT_SERIALIZE_H_
#define V8_SNAPSHOT_SERIALIZE_H_
#ifndef V8_SNAPSHOT_SERIALIZER_COMMON_H_
#define V8_SNAPSHOT_SERIALIZER_COMMON_H_
#include "src/address-map.h"
#include "src/heap/heap.h"
#include "src/objects.h"
#include "src/snapshot/snapshot-source-sink.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
class Isolate;
class ScriptData;
static const int kDeoptTableSerializeEntryCount = 64;
// ExternalReferenceTable is a helper class that defines the relationship
// between external references and their encodings. It is used to build
......@@ -31,6 +26,8 @@ class ExternalReferenceTable {
inline static Address NotAvailable() { return NULL; }
static const int kDeoptTableSerializeEntryCount = 64;
private:
struct ExternalReferenceEntry {
Address address;
......@@ -49,7 +46,6 @@ class ExternalReferenceTable {
DISALLOW_COPY_AND_ASSIGN(ExternalReferenceTable);
};
class ExternalReferenceEncoder {
public:
explicit ExternalReferenceEncoder(Isolate* isolate);
......@@ -69,29 +65,6 @@ class ExternalReferenceEncoder {
DISALLOW_COPY_AND_ASSIGN(ExternalReferenceEncoder);
};
class PartialCacheIndexMap : public AddressMapBase {
public:
PartialCacheIndexMap() : map_(HashMap::PointersMatch) {}
static const int kInvalidIndex = -1;
// Lookup object in the map. Return its index if found, or create
// a new entry with new_index as value, and return kInvalidIndex.
int LookupOrInsert(HeapObject* obj, int new_index) {
HashMap::Entry* entry = LookupEntry(&map_, obj, false);
if (entry != NULL) return GetValue(entry);
SetValue(LookupEntry(&map_, obj, true), static_cast<uint32_t>(new_index));
return kInvalidIndex;
}
private:
HashMap map_;
DISALLOW_COPY_AND_ASSIGN(PartialCacheIndexMap);
};
class HotObjectsList {
public:
HotObjectsList() : index_(0) {
......@@ -128,11 +101,10 @@ class HotObjectsList {
DISALLOW_COPY_AND_ASSIGN(HotObjectsList);
};
// The Serializer/Deserializer class is a common superclass for Serializer and
// Deserializer which is used to store common constants and methods used by
// both.
class SerializerDeserializer: public ObjectVisitor {
class SerializerDeserializer : public ObjectVisitor {
public:
static void Iterate(Isolate* isolate, ObjectVisitor* visitor);
......@@ -281,7 +253,6 @@ class SerializerDeserializer: public ObjectVisitor {
HotObjectsList hot_objects_;
};
class SerializedData {
public:
class Reservation {
......@@ -345,472 +316,7 @@ class SerializedData {
bool owns_data_;
};
// A Deserializer reads a snapshot and reconstructs the Object graph it defines.
class Deserializer: public SerializerDeserializer {
public:
// Create a deserializer from a snapshot byte source.
template <class Data>
explicit Deserializer(Data* data)
: isolate_(NULL),
source_(data->Payload()),
magic_number_(data->GetMagicNumber()),
external_reference_table_(NULL),
deserialized_large_objects_(0),
deserializing_user_code_(false),
next_alignment_(kWordAligned) {
DecodeReservation(data->Reservations());
}
~Deserializer() override;
// Deserialize the snapshot into an empty heap.
void Deserialize(Isolate* isolate);
// Deserialize a single object and the objects reachable from it.
MaybeHandle<Object> DeserializePartial(Isolate* isolate,
Handle<JSGlobalProxy> global_proxy);
// Deserialize a shared function info. Fail gracefully.
MaybeHandle<SharedFunctionInfo> DeserializeCode(Isolate* isolate);
// Pass a vector of externally-provided objects referenced by the snapshot.
// The ownership to its backing store is handed over as well.
void SetAttachedObjects(Vector<Handle<Object> > attached_objects) {
attached_objects_ = attached_objects;
}
private:
void VisitPointers(Object** start, Object** end) override;
void Synchronize(VisitorSynchronization::SyncTag tag) override;
void VisitRuntimeEntry(RelocInfo* rinfo) override { UNREACHABLE(); }
void Initialize(Isolate* isolate);
bool deserializing_user_code() { return deserializing_user_code_; }
void DecodeReservation(Vector<const SerializedData::Reservation> res);
bool ReserveSpace();
void UnalignedCopy(Object** dest, Object** src) {
memcpy(dest, src, sizeof(*src));
}
void SetAlignment(byte data) {
DCHECK_EQ(kWordAligned, next_alignment_);
int alignment = data - (kAlignmentPrefix - 1);
DCHECK_LE(kWordAligned, alignment);
DCHECK_LE(alignment, kSimd128Unaligned);
next_alignment_ = static_cast<AllocationAlignment>(alignment);
}
void DeserializeDeferredObjects();
void FlushICacheForNewIsolate();
void FlushICacheForNewCodeObjects();
void CommitPostProcessedObjects(Isolate* isolate);
// Fills in some heap data in an area from start to end (non-inclusive). The
// space id is used for the write barrier. The object_address is the address
// of the object we are writing into, or NULL if we are not writing into an
// object, i.e. if we are writing a series of tagged values that are not on
// the heap. Return false if the object content has been deferred.
bool ReadData(Object** start, Object** end, int space,
Address object_address);
void ReadObject(int space_number, Object** write_back);
Address Allocate(int space_index, int size);
// Special handling for serialized code like hooking up internalized strings.
HeapObject* PostProcessNewObject(HeapObject* obj, int space);
// This returns the address of an object that has been described in the
// snapshot by chunk index and offset.
HeapObject* GetBackReferencedObject(int space);
Object** CopyInNativesSource(Vector<const char> source_vector,
Object** current);
// Cached current isolate.
Isolate* isolate_;
// Objects from the attached object descriptions in the serialized user code.
Vector<Handle<Object> > attached_objects_;
SnapshotByteSource source_;
uint32_t magic_number_;
// The address of the next object that will be allocated in each space.
// Each space has a number of chunks reserved by the GC, with each chunk
// fitting into a page. Deserialized objects are allocated into the
// current chunk of the target space by bumping up high water mark.
Heap::Reservation reservations_[kNumberOfSpaces];
uint32_t current_chunk_[kNumberOfPreallocatedSpaces];
Address high_water_[kNumberOfPreallocatedSpaces];
ExternalReferenceTable* external_reference_table_;
List<HeapObject*> deserialized_large_objects_;
List<Code*> new_code_objects_;
List<Handle<String> > new_internalized_strings_;
List<Handle<Script> > new_scripts_;
bool deserializing_user_code_;
AllocationAlignment next_alignment_;
DISALLOW_COPY_AND_ASSIGN(Deserializer);
};
class CodeAddressMap;
// There can be only one serializer per V8 process.
class Serializer : public SerializerDeserializer {
public:
Serializer(Isolate* isolate, SnapshotByteSink* sink);
~Serializer() override;
void EncodeReservations(List<SerializedData::Reservation>* out) const;
void SerializeDeferredObjects();
Isolate* isolate() const { return isolate_; }
BackReferenceMap* back_reference_map() { return &back_reference_map_; }
RootIndexMap* root_index_map() { return &root_index_map_; }
#ifdef OBJECT_PRINT
void CountInstanceType(Map* map, int size);
#endif // OBJECT_PRINT
protected:
class ObjectSerializer;
class RecursionScope {
public:
explicit RecursionScope(Serializer* serializer) : serializer_(serializer) {
serializer_->recursion_depth_++;
}
~RecursionScope() { serializer_->recursion_depth_--; }
bool ExceedsMaximum() {
return serializer_->recursion_depth_ >= kMaxRecursionDepth;
}
private:
static const int kMaxRecursionDepth = 32;
Serializer* serializer_;
};
virtual void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) = 0;
void PutRoot(int index, HeapObject* object, HowToCode how, WhereToPoint where,
int skip);
void PutBackReference(HeapObject* object, BackReference reference);
// Emit alignment prefix if necessary, return required padding space in bytes.
int PutAlignmentPrefix(HeapObject* object);
// Returns true if the object was successfully serialized.
bool SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip);
inline void FlushSkip(int skip) {
if (skip != 0) {
sink_->Put(kSkip, "SkipFromSerializeObject");
sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
}
}
bool BackReferenceIsAlreadyAllocated(BackReference back_reference);
// This will return the space for an object.
BackReference AllocateLargeObject(int size);
BackReference Allocate(AllocationSpace space, int size);
int EncodeExternalReference(Address addr) {
return external_reference_encoder_.Encode(addr);
}
// GetInt reads 4 bytes at once, requiring padding at the end.
void Pad();
// Some roots should not be serialized, because their actual value depends on
// absolute addresses and they are reset after deserialization, anyway.
bool ShouldBeSkipped(Object** current);
// We may not need the code address map for logging for every instance
// of the serializer. Initialize it on demand.
void InitializeCodeAddressMap();
Code* CopyCode(Code* code);
inline uint32_t max_chunk_size(int space) const {
DCHECK_LE(0, space);
DCHECK_LT(space, kNumberOfSpaces);
return max_chunk_size_[space];
}
SnapshotByteSink* sink() const { return sink_; }
void QueueDeferredObject(HeapObject* obj) {
DCHECK(back_reference_map_.Lookup(obj).is_valid());
deferred_objects_.Add(obj);
}
void OutputStatistics(const char* name);
Isolate* isolate_;
SnapshotByteSink* sink_;
ExternalReferenceEncoder external_reference_encoder_;
BackReferenceMap back_reference_map_;
RootIndexMap root_index_map_;
int recursion_depth_;
friend class Deserializer;
friend class ObjectSerializer;
friend class RecursionScope;
friend class SnapshotData;
private:
void VisitPointers(Object** start, Object** end) override;
CodeAddressMap* code_address_map_;
// Objects from the same space are put into chunks for bulk-allocation
// when deserializing. We have to make sure that each chunk fits into a
// page. So we track the chunk size in pending_chunk_ of a space, but
// when it exceeds a page, we complete the current chunk and start a new one.
uint32_t pending_chunk_[kNumberOfPreallocatedSpaces];
List<uint32_t> completed_chunks_[kNumberOfPreallocatedSpaces];
uint32_t max_chunk_size_[kNumberOfPreallocatedSpaces];
// We map serialized large objects to indexes for back-referencing.
uint32_t large_objects_total_size_;
uint32_t seen_large_objects_index_;
List<byte> code_buffer_;
// To handle stack overflow.
List<HeapObject*> deferred_objects_;
#ifdef OBJECT_PRINT
static const int kInstanceTypes = 256;
int* instance_type_count_;
size_t* instance_type_size_;
#endif // OBJECT_PRINT
DISALLOW_COPY_AND_ASSIGN(Serializer);
};
class PartialSerializer : public Serializer {
public:
PartialSerializer(Isolate* isolate, Serializer* startup_snapshot_serializer,
SnapshotByteSink* sink)
: Serializer(isolate, sink),
startup_serializer_(startup_snapshot_serializer),
global_object_(NULL) {
InitializeCodeAddressMap();
}
~PartialSerializer() override { OutputStatistics("PartialSerializer"); }
// Serialize the objects reachable from a single object pointer.
void Serialize(Object** o);
private:
void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) override;
int PartialSnapshotCacheIndex(HeapObject* o);
bool ShouldBeInThePartialSnapshotCache(HeapObject* o);
Serializer* startup_serializer_;
Object* global_object_;
PartialCacheIndexMap partial_cache_index_map_;
DISALLOW_COPY_AND_ASSIGN(PartialSerializer);
};
class StartupSerializer : public Serializer {
public:
StartupSerializer(Isolate* isolate, SnapshotByteSink* sink);
~StartupSerializer() override { OutputStatistics("StartupSerializer"); }
// Serialize the current state of the heap. The order is:
// 1) Strong references.
// 2) Partial snapshot cache.
// 3) Weak references (e.g. the string table).
void SerializeStrongReferences();
void SerializeWeakReferencesAndDeferred();
private:
// The StartupSerializer has to serialize the root array, which is slightly
// different.
void VisitPointers(Object** start, Object** end) override;
void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) override;
void Synchronize(VisitorSynchronization::SyncTag tag) override;
intptr_t root_index_wave_front_;
bool serializing_builtins_;
DISALLOW_COPY_AND_ASSIGN(StartupSerializer);
};
class CodeSerializer : public Serializer {
public:
static ScriptData* Serialize(Isolate* isolate,
Handle<SharedFunctionInfo> info,
Handle<String> source);
MUST_USE_RESULT static MaybeHandle<SharedFunctionInfo> Deserialize(
Isolate* isolate, ScriptData* cached_data, Handle<String> source);
static const int kSourceObjectIndex = 0;
STATIC_ASSERT(kSourceObjectReference == kSourceObjectIndex);
static const int kCodeStubsBaseIndex = 1;
String* source() const {
DCHECK(!AllowHeapAllocation::IsAllowed());
return source_;
}
const List<uint32_t>* stub_keys() const { return &stub_keys_; }
private:
CodeSerializer(Isolate* isolate, SnapshotByteSink* sink, String* source)
: Serializer(isolate, sink), source_(source) {
back_reference_map_.AddSourceString(source);
}
~CodeSerializer() override { OutputStatistics("CodeSerializer"); }
void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) override;
void SerializeBuiltin(int builtin_index, HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeIC(Code* ic, HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeGeneric(HeapObject* heap_object, HowToCode how_to_code,
WhereToPoint where_to_point);
int AddCodeStubKey(uint32_t stub_key);
DisallowHeapAllocation no_gc_;
String* source_;
List<uint32_t> stub_keys_;
DISALLOW_COPY_AND_ASSIGN(CodeSerializer);
};
// Wrapper around reservation sizes and the serialization payload.
class SnapshotData : public SerializedData {
public:
// Used when producing.
explicit SnapshotData(const Serializer& ser);
// Used when consuming.
explicit SnapshotData(const Vector<const byte> snapshot)
: SerializedData(const_cast<byte*>(snapshot.begin()), snapshot.length()) {
CHECK(IsSane());
}
Vector<const Reservation> Reservations() const;
Vector<const byte> Payload() const;
Vector<const byte> RawData() const {
return Vector<const byte>(data_, size_);
}
private:
bool IsSane();
// The data header consists of uint32_t-sized entries:
// [0] magic number and external reference count
// [1] version hash
// [2] number of reservation size entries
// [3] payload length
// ... reservations
// ... serialized payload
static const int kCheckSumOffset = kMagicNumberOffset + kInt32Size;
static const int kNumReservationsOffset = kCheckSumOffset + kInt32Size;
static const int kPayloadLengthOffset = kNumReservationsOffset + kInt32Size;
static const int kHeaderSize = kPayloadLengthOffset + kInt32Size;
};
// Wrapper around ScriptData to provide code-serializer-specific functionality.
class SerializedCodeData : public SerializedData {
public:
// Used when consuming.
static SerializedCodeData* FromCachedData(Isolate* isolate,
ScriptData* cached_data,
String* source);
// Used when producing.
SerializedCodeData(const List<byte>& payload, const CodeSerializer& cs);
// Return ScriptData object and relinquish ownership over it to the caller.
ScriptData* GetScriptData();
Vector<const Reservation> Reservations() const;
Vector<const byte> Payload() const;
Vector<const uint32_t> CodeStubKeys() const;
private:
explicit SerializedCodeData(ScriptData* data);
enum SanityCheckResult {
CHECK_SUCCESS = 0,
MAGIC_NUMBER_MISMATCH = 1,
VERSION_MISMATCH = 2,
SOURCE_MISMATCH = 3,
CPU_FEATURES_MISMATCH = 4,
FLAGS_MISMATCH = 5,
CHECKSUM_MISMATCH = 6
};
SanityCheckResult SanityCheck(Isolate* isolate, String* source) const;
uint32_t SourceHash(String* source) const;
// The data header consists of uint32_t-sized entries:
// [0] magic number and external reference count
// [1] version hash
// [2] source hash
// [3] cpu features
// [4] flag hash
// [5] number of code stub keys
// [6] number of reservation size entries
// [7] payload length
// [8] payload checksum part 1
// [9] payload checksum part 2
// ... reservations
// ... code stub keys
// ... serialized payload
static const int kVersionHashOffset = kMagicNumberOffset + kInt32Size;
static const int kSourceHashOffset = kVersionHashOffset + kInt32Size;
static const int kCpuFeaturesOffset = kSourceHashOffset + kInt32Size;
static const int kFlagHashOffset = kCpuFeaturesOffset + kInt32Size;
static const int kNumReservationsOffset = kFlagHashOffset + kInt32Size;
static const int kNumCodeStubKeysOffset = kNumReservationsOffset + kInt32Size;
static const int kPayloadLengthOffset = kNumCodeStubKeysOffset + kInt32Size;
static const int kChecksum1Offset = kPayloadLengthOffset + kInt32Size;
static const int kChecksum2Offset = kChecksum1Offset + kInt32Size;
static const int kHeaderSize = kChecksum2Offset + kInt32Size;
};
} // namespace internal
} // namespace v8
#endif // V8_SNAPSHOT_SERIALIZE_H_
#endif // V8_SNAPSHOT_SERIALIZER_COMMON_H_
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/serializer.h"
#include "src/macro-assembler.h"
#include "src/snapshot/natives.h"
namespace v8 {
namespace internal {
Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
: isolate_(isolate),
sink_(sink),
external_reference_encoder_(isolate),
root_index_map_(isolate),
recursion_depth_(0),
code_address_map_(NULL),
large_objects_total_size_(0),
seen_large_objects_index_(0) {
// The serializer is meant to be used only to generate initial heap images
// from a context in which there is only one isolate.
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
pending_chunk_[i] = 0;
max_chunk_size_[i] = static_cast<uint32_t>(
MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
}
#ifdef OBJECT_PRINT
if (FLAG_serialization_statistics) {
instance_type_count_ = NewArray<int>(kInstanceTypes);
instance_type_size_ = NewArray<size_t>(kInstanceTypes);
for (int i = 0; i < kInstanceTypes; i++) {
instance_type_count_[i] = 0;
instance_type_size_[i] = 0;
}
} else {
instance_type_count_ = NULL;
instance_type_size_ = NULL;
}
#endif // OBJECT_PRINT
}
Serializer::~Serializer() {
if (code_address_map_ != NULL) delete code_address_map_;
#ifdef OBJECT_PRINT
if (instance_type_count_ != NULL) {
DeleteArray(instance_type_count_);
DeleteArray(instance_type_size_);
}
#endif // OBJECT_PRINT
}
#ifdef OBJECT_PRINT
void Serializer::CountInstanceType(Map* map, int size) {
int instance_type = map->instance_type();
instance_type_count_[instance_type]++;
instance_type_size_[instance_type] += size;
}
#endif // OBJECT_PRINT
void Serializer::OutputStatistics(const char* name) {
if (!FLAG_serialization_statistics) return;
PrintF("%s:\n", name);
PrintF(" Spaces (bytes):\n");
for (int space = 0; space < kNumberOfSpaces; space++) {
PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
}
PrintF("\n");
for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
size_t s = pending_chunk_[space];
for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
PrintF("%16" V8_PTR_PREFIX "d", s);
}
PrintF("%16d\n", large_objects_total_size_);
#ifdef OBJECT_PRINT
PrintF(" Instance types (count and bytes):\n");
#define PRINT_INSTANCE_TYPE(Name) \
if (instance_type_count_[Name]) { \
PrintF("%10d %10" V8_PTR_PREFIX "d %s\n", instance_type_count_[Name], \
instance_type_size_[Name], #Name); \
}
INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
#undef PRINT_INSTANCE_TYPE
PrintF("\n");
#endif // OBJECT_PRINT
}
void Serializer::SerializeDeferredObjects() {
while (deferred_objects_.length() > 0) {
HeapObject* obj = deferred_objects_.RemoveLast();
ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
obj_serializer.SerializeDeferred();
}
sink_->Put(kSynchronize, "Finished with deferred objects");
}
bool Serializer::ShouldBeSkipped(Object** current) {
Object** roots = isolate()->heap()->roots_array_start();
return current == &roots[Heap::kStoreBufferTopRootIndex] ||
current == &roots[Heap::kStackLimitRootIndex] ||
current == &roots[Heap::kRealStackLimitRootIndex];
}
void Serializer::VisitPointers(Object** start, Object** end) {
for (Object** current = start; current < end; current++) {
if ((*current)->IsSmi()) {
sink_->Put(kOnePointerRawData, "Smi");
for (int i = 0; i < kPointerSize; i++) {
sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
}
} else {
SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
}
}
}
void Serializer::EncodeReservations(
List<SerializedData::Reservation>* out) const {
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
for (int j = 0; j < completed_chunks_[i].length(); j++) {
out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
}
if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
out->Add(SerializedData::Reservation(pending_chunk_[i]));
}
out->last().mark_as_last();
}
out->Add(SerializedData::Reservation(large_objects_total_size_));
out->last().mark_as_last();
}
#ifdef DEBUG
bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
DCHECK(reference.is_valid());
DCHECK(!reference.is_source());
DCHECK(!reference.is_global_proxy());
AllocationSpace space = reference.space();
int chunk_index = reference.chunk_index();
if (space == LO_SPACE) {
return chunk_index == 0 &&
reference.large_object_index() < seen_large_objects_index_;
} else if (chunk_index == completed_chunks_[space].length()) {
return reference.chunk_offset() < pending_chunk_[space];
} else {
return chunk_index < completed_chunks_[space].length() &&
reference.chunk_offset() < completed_chunks_[space][chunk_index];
}
}
#endif // DEBUG
bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) {
if (how_to_code == kPlain && where_to_point == kStartOfObject) {
// Encode a reference to a hot object by its index in the working set.
int index = hot_objects_.Find(obj);
if (index != HotObjectsList::kNotFound) {
DCHECK(index >= 0 && index < kNumberOfHotObjects);
if (FLAG_trace_serializer) {
PrintF(" Encoding hot object %d:", index);
obj->ShortPrint();
PrintF("\n");
}
if (skip != 0) {
sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
sink_->PutInt(skip, "HotObjectSkipDistance");
} else {
sink_->Put(kHotObject + index, "HotObject");
}
return true;
}
}
BackReference back_reference = back_reference_map_.Lookup(obj);
if (back_reference.is_valid()) {
// Encode the location of an already deserialized object in order to write
// its location into a later object. We can encode the location as an
// offset fromthe start of the deserialized objects or as an offset
// backwards from thecurrent allocation pointer.
if (back_reference.is_source()) {
FlushSkip(skip);
if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
} else if (back_reference.is_global_proxy()) {
FlushSkip(skip);
if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
} else {
if (FLAG_trace_serializer) {
PrintF(" Encoding back reference to: ");
obj->ShortPrint();
PrintF("\n");
}
PutAlignmentPrefix(obj);
AllocationSpace space = back_reference.space();
if (skip == 0) {
sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
} else {
sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
"BackRefWithSkip");
sink_->PutInt(skip, "BackRefSkipDistance");
}
PutBackReference(obj, back_reference);
}
return true;
}
return false;
}
void Serializer::PutRoot(int root_index, HeapObject* object,
SerializerDeserializer::HowToCode how_to_code,
SerializerDeserializer::WhereToPoint where_to_point,
int skip) {
if (FLAG_trace_serializer) {
PrintF(" Encoding root %d:", root_index);
object->ShortPrint();
PrintF("\n");
}
if (how_to_code == kPlain && where_to_point == kStartOfObject &&
root_index < kNumberOfRootArrayConstants &&
!isolate()->heap()->InNewSpace(object)) {
if (skip == 0) {
sink_->Put(kRootArrayConstants + root_index, "RootConstant");
} else {
sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
sink_->PutInt(skip, "SkipInPutRoot");
}
} else {
FlushSkip(skip);
sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
sink_->PutInt(root_index, "root_index");
}
}
void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
DCHECK(BackReferenceIsAlreadyAllocated(reference));
sink_->PutInt(reference.reference(), "BackRefValue");
hot_objects_.Add(object);
}
int Serializer::PutAlignmentPrefix(HeapObject* object) {
AllocationAlignment alignment = object->RequiredAlignment();
if (alignment != kWordAligned) {
DCHECK(1 <= alignment && alignment <= 3);
byte prefix = (kAlignmentPrefix - 1) + alignment;
sink_->Put(prefix, "Alignment");
return Heap::GetMaximumFillToAlign(alignment);
}
return 0;
}
BackReference Serializer::AllocateLargeObject(int size) {
// Large objects are allocated one-by-one when deserializing. We do not
// have to keep track of multiple chunks.
large_objects_total_size_ += size;
return BackReference::LargeObjectReference(seen_large_objects_index_++);
}
BackReference Serializer::Allocate(AllocationSpace space, int size) {
DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
uint32_t new_chunk_size = pending_chunk_[space] + size;
if (new_chunk_size > max_chunk_size(space)) {
// The new chunk size would not fit onto a single page. Complete the
// current chunk and start a new one.
sink_->Put(kNextChunk, "NextChunk");
sink_->Put(space, "NextChunkSpace");
completed_chunks_[space].Add(pending_chunk_[space]);
DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
pending_chunk_[space] = 0;
new_chunk_size = size;
}
uint32_t offset = pending_chunk_[space];
pending_chunk_[space] = new_chunk_size;
return BackReference::Reference(space, completed_chunks_[space].length(),
offset);
}
void Serializer::Pad() {
// The non-branching GetInt will read up to 3 bytes too far, so we need
// to pad the snapshot to make sure we don't read over the end.
for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
sink_->Put(kNop, "Padding");
}
// Pad up to pointer size for checksum.
while (!IsAligned(sink_->Position(), kPointerAlignment)) {
sink_->Put(kNop, "Padding");
}
}
void Serializer::InitializeCodeAddressMap() {
isolate_->InitializeLoggingAndCounters();
code_address_map_ = new CodeAddressMap(isolate_);
}
Code* Serializer::CopyCode(Code* code) {
code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
int size = code->CodeSize();
code_buffer_.AddAll(Vector<byte>(code->address(), size));
return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
}
void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
int size, Map* map) {
if (serializer_->code_address_map_) {
const char* code_name =
serializer_->code_address_map_->Lookup(object_->address());
LOG(serializer_->isolate_,
CodeNameEvent(object_->address(), sink_->Position(), code_name));
LOG(serializer_->isolate_,
SnapshotPositionEvent(object_->address(), sink_->Position()));
}
BackReference back_reference;
if (space == LO_SPACE) {
sink_->Put(kNewObject + reference_representation_ + space,
"NewLargeObject");
sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
if (object_->IsCode()) {
sink_->Put(EXECUTABLE, "executable large object");
} else {
sink_->Put(NOT_EXECUTABLE, "not executable large object");
}
back_reference = serializer_->AllocateLargeObject(size);
} else {
int fill = serializer_->PutAlignmentPrefix(object_);
back_reference = serializer_->Allocate(space, size + fill);
sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
}
#ifdef OBJECT_PRINT
if (FLAG_serialization_statistics) {
serializer_->CountInstanceType(map, size);
}
#endif // OBJECT_PRINT
// Mark this object as already serialized.
serializer_->back_reference_map()->Add(object_, back_reference);
// Serialize the map (first word of the object).
serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
}
void Serializer::ObjectSerializer::SerializeExternalString() {
// Instead of serializing this as an external string, we serialize
// an imaginary sequential string with the same content.
Isolate* isolate = serializer_->isolate();
DCHECK(object_->IsExternalString());
DCHECK(object_->map() != isolate->heap()->native_source_string_map());
ExternalString* string = ExternalString::cast(object_);
int length = string->length();
Map* map;
int content_size;
int allocation_size;
const byte* resource;
// Find the map and size for the imaginary sequential string.
bool internalized = object_->IsInternalizedString();
if (object_->IsExternalOneByteString()) {
map = internalized ? isolate->heap()->one_byte_internalized_string_map()
: isolate->heap()->one_byte_string_map();
allocation_size = SeqOneByteString::SizeFor(length);
content_size = length * kCharSize;
resource = reinterpret_cast<const byte*>(
ExternalOneByteString::cast(string)->resource()->data());
} else {
map = internalized ? isolate->heap()->internalized_string_map()
: isolate->heap()->string_map();
allocation_size = SeqTwoByteString::SizeFor(length);
content_size = length * kShortSize;
resource = reinterpret_cast<const byte*>(
ExternalTwoByteString::cast(string)->resource()->data());
}
AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
? LO_SPACE
: OLD_SPACE;
SerializePrologue(space, allocation_size, map);
// Output the rest of the imaginary string.
int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
// Output raw data header. Do not bother with common raw length cases here.
sink_->Put(kVariableRawData, "RawDataForString");
sink_->PutInt(bytes_to_output, "length");
// Serialize string header (except for map).
Address string_start = string->address();
for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
sink_->PutSection(string_start[i], "StringHeader");
}
// Serialize string content.
sink_->PutRaw(resource, content_size, "StringContent");
// Since the allocation size is rounded up to object alignment, there
// maybe left-over bytes that need to be padded.
int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
sink_->Put(kSkip, "SkipAfterString");
sink_->PutInt(bytes_to_output, "SkipDistance");
}
// Clear and later restore the next link in the weak cell or allocation site.
// TODO(all): replace this with proper iteration of weak slots in serializer.
class UnlinkWeakNextScope {
public:
explicit UnlinkWeakNextScope(HeapObject* object) : object_(nullptr) {
if (object->IsWeakCell()) {
object_ = object;
next_ = WeakCell::cast(object)->next();
WeakCell::cast(object)->clear_next(object->GetHeap()->the_hole_value());
} else if (object->IsAllocationSite()) {
object_ = object;
next_ = AllocationSite::cast(object)->weak_next();
AllocationSite::cast(object)->set_weak_next(
object->GetHeap()->undefined_value());
}
}
~UnlinkWeakNextScope() {
if (object_ != nullptr) {
if (object_->IsWeakCell()) {
WeakCell::cast(object_)->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
} else {
AllocationSite::cast(object_)->set_weak_next(next_,
UPDATE_WEAK_WRITE_BARRIER);
}
}
}
private:
HeapObject* object_;
Object* next_;
DisallowHeapAllocation no_gc_;
};
void Serializer::ObjectSerializer::Serialize() {
if (FLAG_trace_serializer) {
PrintF(" Encoding heap object: ");
object_->ShortPrint();
PrintF("\n");
}
// We cannot serialize typed array objects correctly.
DCHECK(!object_->IsJSTypedArray());
// We don't expect fillers.
DCHECK(!object_->IsFiller());
if (object_->IsScript()) {
// Clear cached line ends.
Object* undefined = serializer_->isolate()->heap()->undefined_value();
Script::cast(object_)->set_line_ends(undefined);
}
if (object_->IsExternalString()) {
Heap* heap = serializer_->isolate()->heap();
if (object_->map() != heap->native_source_string_map()) {
// Usually we cannot recreate resources for external strings. To work
// around this, external strings are serialized to look like ordinary
// sequential strings.
// The exception are native source code strings, since we can recreate
// their resources. In that case we fall through and leave it to
// VisitExternalOneByteString further down.
SerializeExternalString();
return;
}
}
int size = object_->Size();
Map* map = object_->map();
AllocationSpace space =
MemoryChunk::FromAddress(object_->address())->owner()->identity();
SerializePrologue(space, size, map);
// Serialize the rest of the object.
CHECK_EQ(0, bytes_processed_so_far_);
bytes_processed_so_far_ = kPointerSize;
RecursionScope recursion(serializer_);
// Objects that are immediately post processed during deserialization
// cannot be deferred, since post processing requires the object content.
if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
serializer_->QueueDeferredObject(object_);
sink_->Put(kDeferred, "Deferring object content");
return;
}
UnlinkWeakNextScope unlink_weak_next(object_);
object_->IterateBody(map->instance_type(), size, this);
OutputRawData(object_->address() + size);
}
void Serializer::ObjectSerializer::SerializeDeferred() {
if (FLAG_trace_serializer) {
PrintF(" Encoding deferred heap object: ");
object_->ShortPrint();
PrintF("\n");
}
int size = object_->Size();
Map* map = object_->map();
BackReference reference = serializer_->back_reference_map()->Lookup(object_);
// Serialize the rest of the object.
CHECK_EQ(0, bytes_processed_so_far_);
bytes_processed_so_far_ = kPointerSize;
serializer_->PutAlignmentPrefix(object_);
sink_->Put(kNewObject + reference.space(), "deferred object");
serializer_->PutBackReference(object_, reference);
sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
UnlinkWeakNextScope unlink_weak_next(object_);
object_->IterateBody(map->instance_type(), size, this);
OutputRawData(object_->address() + size);
}
void Serializer::ObjectSerializer::VisitPointers(Object** start, Object** end) {
Object** current = start;
while (current < end) {
while (current < end && (*current)->IsSmi()) current++;
if (current < end) OutputRawData(reinterpret_cast<Address>(current));
while (current < end && !(*current)->IsSmi()) {
HeapObject* current_contents = HeapObject::cast(*current);
int root_index = serializer_->root_index_map()->Lookup(current_contents);
// Repeats are not subject to the write barrier so we can only use
// immortal immovable root members. They are never in new space.
if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
Heap::RootIsImmortalImmovable(root_index) &&
current_contents == current[-1]) {
DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
int repeat_count = 1;
while (&current[repeat_count] < end - 1 &&
current[repeat_count] == current_contents) {
repeat_count++;
}
current += repeat_count;
bytes_processed_so_far_ += repeat_count * kPointerSize;
if (repeat_count > kNumberOfFixedRepeat) {
sink_->Put(kVariableRepeat, "VariableRepeat");
sink_->PutInt(repeat_count, "repeat count");
} else {
sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
}
} else {
serializer_->SerializeObject(current_contents, kPlain, kStartOfObject,
0);
bytes_processed_so_far_ += kPointerSize;
current++;
}
}
}
}
void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
Object* object = rinfo->target_object();
serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
kStartOfObject, skip);
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
int skip = OutputRawData(reinterpret_cast<Address>(p),
kCanReturnSkipInsteadOfSkipping);
sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
sink_->PutInt(skip, "SkipB4ExternalRef");
Address target = *p;
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
bytes_processed_so_far_ += kPointerSize;
}
void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
sink_->PutInt(skip, "SkipB4ExternalRef");
Address target = rinfo->target_external_reference();
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
// We can only reference to internal references of code that has been output.
DCHECK(object_->IsCode() && code_has_been_output_);
// We do not use skip from last patched pc to find the pc to patch, since
// target_address_address may not return addresses in ascending order when
// used for internal references. External references may be stored at the
// end of the code in the constant pool, whereas internal references are
// inline. That would cause the skip to be negative. Instead, we store the
// offset from code entry.
Address entry = Code::cast(object_)->entry();
intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
intptr_t target_offset = rinfo->target_internal_reference() - entry;
DCHECK(0 <= pc_offset &&
pc_offset <= Code::cast(object_)->instruction_size());
DCHECK(0 <= target_offset &&
target_offset <= Code::cast(object_)->instruction_size());
sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
? kInternalReference
: kInternalReferenceEncoded,
"InternalRef");
sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
}
void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
sink_->PutInt(skip, "SkipB4ExternalRef");
Address target = rinfo->target_address();
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
bytes_processed_so_far_ += kPointerSize;
}
void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
Cell* object = Cell::cast(rinfo->target_cell());
serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
bytes_processed_so_far_ += kPointerSize;
}
bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
int builtin_count,
v8::String::ExternalOneByteStringResource** resource_pointer,
FixedArray* source_cache, int resource_index) {
for (int i = 0; i < builtin_count; i++) {
Object* source = source_cache->get(i);
if (!source->IsUndefined()) {
ExternalOneByteString* string = ExternalOneByteString::cast(source);
typedef v8::String::ExternalOneByteStringResource Resource;
const Resource* resource = string->resource();
if (resource == *resource_pointer) {
sink_->Put(resource_index, "NativesStringResource");
sink_->PutSection(i, "NativesStringResourceEnd");
bytes_processed_so_far_ += sizeof(resource);
return true;
}
}
}
return false;
}
void Serializer::ObjectSerializer::VisitExternalOneByteString(
v8::String::ExternalOneByteStringResource** resource_pointer) {
Address references_start = reinterpret_cast<Address>(resource_pointer);
OutputRawData(references_start);
if (SerializeExternalNativeSourceString(
Natives::GetBuiltinsCount(), resource_pointer,
Natives::GetSourceCache(serializer_->isolate()->heap()),
kNativesStringResource)) {
return;
}
if (SerializeExternalNativeSourceString(
ExtraNatives::GetBuiltinsCount(), resource_pointer,
ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
kExtraNativesStringResource)) {
return;
}
// One of the strings in the natives cache should match the resource. We
// don't expect any other kinds of external strings here.
UNREACHABLE();
}
Address Serializer::ObjectSerializer::PrepareCode() {
// To make snapshots reproducible, we make a copy of the code object
// and wipe all pointers in the copy, which we then serialize.
Code* original = Code::cast(object_);
Code* code = serializer_->CopyCode(original);
// Code age headers are not serializable.
code->MakeYoung(serializer_->isolate());
int mode_mask = RelocInfo::kCodeTargetMask |
RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
RelocInfo* rinfo = it.rinfo();
rinfo->WipeOut();
}
// We need to wipe out the header fields *after* wiping out the
// relocations, because some of these fields are needed for the latter.
code->WipeOutHeader();
return code->address();
}
int Serializer::ObjectSerializer::OutputRawData(
Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
Address object_start = object_->address();
int base = bytes_processed_so_far_;
int up_to_offset = static_cast<int>(up_to - object_start);
int to_skip = up_to_offset - bytes_processed_so_far_;
int bytes_to_output = to_skip;
bytes_processed_so_far_ += to_skip;
// This assert will fail if the reloc info gives us the target_address_address
// locations in a non-ascending order. Luckily that doesn't happen.
DCHECK(to_skip >= 0);
bool outputting_code = false;
bool is_code_object = object_->IsCode();
if (to_skip != 0 && is_code_object && !code_has_been_output_) {
// Output the code all at once and fix later.
bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
outputting_code = true;
code_has_been_output_ = true;
}
if (bytes_to_output != 0 && (!is_code_object || outputting_code)) {
if (!outputting_code && bytes_to_output == to_skip &&
IsAligned(bytes_to_output, kPointerAlignment) &&
bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
int size_in_words = bytes_to_output >> kPointerSizeLog2;
sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
to_skip = 0; // This instruction includes skip.
} else {
// We always end up here if we are outputting the code of a code object.
sink_->Put(kVariableRawData, "VariableRawData");
sink_->PutInt(bytes_to_output, "length");
}
if (is_code_object) object_start = PrepareCode();
const char* description = is_code_object ? "Code" : "Byte";
sink_->PutRaw(object_start + base, bytes_to_output, description);
}
if (to_skip != 0 && return_skip == kIgnoringReturn) {
sink_->Put(kSkip, "Skip");
sink_->PutInt(to_skip, "SkipDistance");
to_skip = 0;
}
return to_skip;
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_SNAPSHOT_SERIALIZER_H_
#define V8_SNAPSHOT_SERIALIZER_H_
#include "src/isolate.h"
#include "src/log.h"
#include "src/objects.h"
#include "src/snapshot/serializer-common.h"
#include "src/snapshot/snapshot-source-sink.h"
namespace v8 {
namespace internal {
class CodeAddressMap : public CodeEventLogger {
public:
explicit CodeAddressMap(Isolate* isolate) : isolate_(isolate) {
isolate->logger()->addCodeEventListener(this);
}
~CodeAddressMap() override {
isolate_->logger()->removeCodeEventListener(this);
}
void CodeMoveEvent(AbstractCode* from, Address to) override {
address_to_name_map_.Move(from->address(), to);
}
void CodeDisableOptEvent(AbstractCode* code,
SharedFunctionInfo* shared) override {}
const char* Lookup(Address address) {
return address_to_name_map_.Lookup(address);
}
private:
class NameMap {
public:
NameMap() : impl_(HashMap::PointersMatch) {}
~NameMap() {
for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
DeleteArray(static_cast<const char*>(p->value));
}
}
void Insert(Address code_address, const char* name, int name_size) {
HashMap::Entry* entry = FindOrCreateEntry(code_address);
if (entry->value == NULL) {
entry->value = CopyName(name, name_size);
}
}
const char* Lookup(Address code_address) {
HashMap::Entry* entry = FindEntry(code_address);
return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
}
void Remove(Address code_address) {
HashMap::Entry* entry = FindEntry(code_address);
if (entry != NULL) {
DeleteArray(static_cast<char*>(entry->value));
RemoveEntry(entry);
}
}
void Move(Address from, Address to) {
if (from == to) return;
HashMap::Entry* from_entry = FindEntry(from);
DCHECK(from_entry != NULL);
void* value = from_entry->value;
RemoveEntry(from_entry);
HashMap::Entry* to_entry = FindOrCreateEntry(to);
DCHECK(to_entry->value == NULL);
to_entry->value = value;
}
private:
static char* CopyName(const char* name, int name_size) {
char* result = NewArray<char>(name_size + 1);
for (int i = 0; i < name_size; ++i) {
char c = name[i];
if (c == '\0') c = ' ';
result[i] = c;
}
result[name_size] = '\0';
return result;
}
HashMap::Entry* FindOrCreateEntry(Address code_address) {
return impl_.LookupOrInsert(code_address,
ComputePointerHash(code_address));
}
HashMap::Entry* FindEntry(Address code_address) {
return impl_.Lookup(code_address, ComputePointerHash(code_address));
}
void RemoveEntry(HashMap::Entry* entry) {
impl_.Remove(entry->key, entry->hash);
}
HashMap impl_;
DISALLOW_COPY_AND_ASSIGN(NameMap);
};
void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*,
const char* name, int length) override {
address_to_name_map_.Insert(code->address(), name, length);
}
NameMap address_to_name_map_;
Isolate* isolate_;
};
// There can be only one serializer per V8 process.
class Serializer : public SerializerDeserializer {
public:
Serializer(Isolate* isolate, SnapshotByteSink* sink);
~Serializer() override;
void EncodeReservations(List<SerializedData::Reservation>* out) const;
void SerializeDeferredObjects();
Isolate* isolate() const { return isolate_; }
BackReferenceMap* back_reference_map() { return &back_reference_map_; }
RootIndexMap* root_index_map() { return &root_index_map_; }
#ifdef OBJECT_PRINT
void CountInstanceType(Map* map, int size);
#endif // OBJECT_PRINT
protected:
class ObjectSerializer;
class RecursionScope {
public:
explicit RecursionScope(Serializer* serializer) : serializer_(serializer) {
serializer_->recursion_depth_++;
}
~RecursionScope() { serializer_->recursion_depth_--; }
bool ExceedsMaximum() {
return serializer_->recursion_depth_ >= kMaxRecursionDepth;
}
private:
static const int kMaxRecursionDepth = 32;
Serializer* serializer_;
};
virtual void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) = 0;
void PutRoot(int index, HeapObject* object, HowToCode how, WhereToPoint where,
int skip);
void PutBackReference(HeapObject* object, BackReference reference);
// Emit alignment prefix if necessary, return required padding space in bytes.
int PutAlignmentPrefix(HeapObject* object);
// Returns true if the object was successfully serialized.
bool SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip);
inline void FlushSkip(int skip) {
if (skip != 0) {
sink_->Put(kSkip, "SkipFromSerializeObject");
sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
}
}
bool BackReferenceIsAlreadyAllocated(BackReference back_reference);
// This will return the space for an object.
BackReference AllocateLargeObject(int size);
BackReference Allocate(AllocationSpace space, int size);
int EncodeExternalReference(Address addr) {
return external_reference_encoder_.Encode(addr);
}
// GetInt reads 4 bytes at once, requiring padding at the end.
void Pad();
// Some roots should not be serialized, because their actual value depends on
// absolute addresses and they are reset after deserialization, anyway.
bool ShouldBeSkipped(Object** current);
// We may not need the code address map for logging for every instance
// of the serializer. Initialize it on demand.
void InitializeCodeAddressMap();
Code* CopyCode(Code* code);
inline uint32_t max_chunk_size(int space) const {
DCHECK_LE(0, space);
DCHECK_LT(space, kNumberOfSpaces);
return max_chunk_size_[space];
}
SnapshotByteSink* sink() const { return sink_; }
void QueueDeferredObject(HeapObject* obj) {
DCHECK(back_reference_map_.Lookup(obj).is_valid());
deferred_objects_.Add(obj);
}
void OutputStatistics(const char* name);
Isolate* isolate_;
SnapshotByteSink* sink_;
ExternalReferenceEncoder external_reference_encoder_;
BackReferenceMap back_reference_map_;
RootIndexMap root_index_map_;
int recursion_depth_;
friend class Deserializer;
friend class ObjectSerializer;
friend class RecursionScope;
friend class SnapshotData;
private:
void VisitPointers(Object** start, Object** end) override;
CodeAddressMap* code_address_map_;
// Objects from the same space are put into chunks for bulk-allocation
// when deserializing. We have to make sure that each chunk fits into a
// page. So we track the chunk size in pending_chunk_ of a space, but
// when it exceeds a page, we complete the current chunk and start a new one.
uint32_t pending_chunk_[kNumberOfPreallocatedSpaces];
List<uint32_t> completed_chunks_[kNumberOfPreallocatedSpaces];
uint32_t max_chunk_size_[kNumberOfPreallocatedSpaces];
// We map serialized large objects to indexes for back-referencing.
uint32_t large_objects_total_size_;
uint32_t seen_large_objects_index_;
List<byte> code_buffer_;
// To handle stack overflow.
List<HeapObject*> deferred_objects_;
#ifdef OBJECT_PRINT
static const int kInstanceTypes = 256;
int* instance_type_count_;
size_t* instance_type_size_;
#endif // OBJECT_PRINT
DISALLOW_COPY_AND_ASSIGN(Serializer);
};
class Serializer::ObjectSerializer : public ObjectVisitor {
public:
ObjectSerializer(Serializer* serializer, HeapObject* obj,
SnapshotByteSink* sink, HowToCode how_to_code,
WhereToPoint where_to_point)
: serializer_(serializer),
object_(obj),
sink_(sink),
reference_representation_(how_to_code + where_to_point),
bytes_processed_so_far_(0),
code_has_been_output_(false) {}
~ObjectSerializer() override {}
void Serialize();
void SerializeDeferred();
void VisitPointers(Object** start, Object** end) override;
void VisitEmbeddedPointer(RelocInfo* target) override;
void VisitExternalReference(Address* p) override;
void VisitExternalReference(RelocInfo* rinfo) override;
void VisitInternalReference(RelocInfo* rinfo) override;
void VisitCodeTarget(RelocInfo* target) override;
void VisitCodeEntry(Address entry_address) override;
void VisitCell(RelocInfo* rinfo) override;
void VisitRuntimeEntry(RelocInfo* reloc) override;
// Used for seralizing the external strings that hold the natives source.
void VisitExternalOneByteString(
v8::String::ExternalOneByteStringResource** resource) override;
// We can't serialize a heap with external two byte strings.
void VisitExternalTwoByteString(
v8::String::ExternalStringResource** resource) override {
UNREACHABLE();
}
private:
void SerializePrologue(AllocationSpace space, int size, Map* map);
bool SerializeExternalNativeSourceString(
int builtin_count,
v8::String::ExternalOneByteStringResource** resource_pointer,
FixedArray* source_cache, int resource_index);
enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
// This function outputs or skips the raw data between the last pointer and
// up to the current position. It optionally can just return the number of
// bytes to skip instead of performing a skip instruction, in case the skip
// can be merged into the next instruction.
int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);
// External strings are serialized in a way to resemble sequential strings.
void SerializeExternalString();
Address PrepareCode();
Serializer* serializer_;
HeapObject* object_;
SnapshotByteSink* sink_;
int reference_representation_;
int bytes_processed_so_far_;
bool code_has_been_output_;
};
} // namespace internal
} // namespace v8
#endif // V8_SNAPSHOT_SERIALIZER_H_
......@@ -9,6 +9,9 @@
#include "src/api.h"
#include "src/base/platform/platform.h"
#include "src/full-codegen/full-codegen.h"
#include "src/snapshot/deserializer.h"
#include "src/snapshot/snapshot-source-sink.h"
#include "src/version.h"
namespace v8 {
namespace internal {
......@@ -228,5 +231,52 @@ Vector<const byte> Snapshot::ExtractContextData(const v8::StartupData* data) {
int context_length = data->raw_size - context_offset;
return Vector<const byte>(context_data, context_length);
}
SnapshotData::SnapshotData(const Serializer& ser) {
DisallowHeapAllocation no_gc;
List<Reservation> reservations;
ser.EncodeReservations(&reservations);
const List<byte>& payload = ser.sink()->data();
// Calculate sizes.
int reservation_size = reservations.length() * kInt32Size;
int size = kHeaderSize + reservation_size + payload.length();
// Allocate backing store and create result data.
AllocateData(size);
// Set header values.
SetMagicNumber(ser.isolate());
SetHeaderValue(kCheckSumOffset, Version::Hash());
SetHeaderValue(kNumReservationsOffset, reservations.length());
SetHeaderValue(kPayloadLengthOffset, payload.length());
// Copy reservation chunk sizes.
CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
reservation_size);
// Copy serialized data.
CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
static_cast<size_t>(payload.length()));
}
bool SnapshotData::IsSane() {
return GetHeaderValue(kCheckSumOffset) == Version::Hash();
}
Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
return Vector<const Reservation>(
reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
GetHeaderValue(kNumReservationsOffset));
}
Vector<const byte> SnapshotData::Payload() const {
int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
const byte* payload = data_ + kHeaderSize + reservations_size;
int length = GetHeaderValue(kPayloadLengthOffset);
DCHECK_EQ(data_ + size_, payload + length);
return Vector<const byte>(payload, length);
}
} // namespace internal
} // namespace v8
......@@ -7,7 +7,6 @@
#include "src/snapshot/snapshot.h"
#include "src/base/platform/mutex.h"
#include "src/snapshot/serialize.h"
#include "src/snapshot/snapshot-source-sink.h"
#include "src/v8.h" // for V8::Initialize
......
......@@ -7,7 +7,6 @@
#include "src/base/logging.h"
#include "src/handles-inl.h"
#include "src/snapshot/serialize.h" // for SerializerDeserializer::nop()
namespace v8 {
......
......@@ -5,7 +5,8 @@
#ifndef V8_SNAPSHOT_SNAPSHOT_H_
#define V8_SNAPSHOT_SNAPSHOT_H_
#include "src/snapshot/serialize.h"
#include "src/snapshot/partial-serializer.h"
#include "src/snapshot/startup-serializer.h"
namespace v8 {
namespace internal {
......@@ -88,6 +89,41 @@ class Snapshot : public AllStatic {
void SetSnapshotFromFile(StartupData* snapshot_blob);
#endif
// Wrapper around reservation sizes and the serialization payload.
class SnapshotData : public SerializedData {
public:
// Used when producing.
explicit SnapshotData(const Serializer& ser);
// Used when consuming.
explicit SnapshotData(const Vector<const byte> snapshot)
: SerializedData(const_cast<byte*>(snapshot.begin()), snapshot.length()) {
CHECK(IsSane());
}
Vector<const Reservation> Reservations() const;
Vector<const byte> Payload() const;
Vector<const byte> RawData() const {
return Vector<const byte>(data_, size_);
}
private:
bool IsSane();
// The data header consists of uint32_t-sized entries:
// [0] magic number and external reference count
// [1] version hash
// [2] number of reservation size entries
// [3] payload length
// ... reservations
// ... serialized payload
static const int kCheckSumOffset = kMagicNumberOffset + kInt32Size;
static const int kNumReservationsOffset = kCheckSumOffset + kInt32Size;
static const int kPayloadLengthOffset = kNumReservationsOffset + kInt32Size;
static const int kHeaderSize = kPayloadLengthOffset + kInt32Size;
};
} // namespace internal
} // namespace v8
......
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/startup-serializer.h"
#include "src/objects-inl.h"
#include "src/v8threads.h"
namespace v8 {
namespace internal {
StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
: Serializer(isolate, sink),
root_index_wave_front_(0),
serializing_builtins_(false) {
// Clear the cache of objects used by the partial snapshot. After the
// strong roots have been serialized we can create a partial snapshot
// which will repopulate the cache with objects needed by that partial
// snapshot.
isolate->partial_snapshot_cache()->Clear();
InitializeCodeAddressMap();
}
StartupSerializer::~StartupSerializer() {
OutputStatistics("StartupSerializer");
}
void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) {
DCHECK(!obj->IsJSFunction());
if (obj->IsCode()) {
Code* code = Code::cast(obj);
// If the function code is compiled (either as native code or bytecode),
// replace it with lazy-compile builtin. Only exception is when we are
// serializing the canonical interpreter-entry-trampoline builtin.
if (code->kind() == Code::FUNCTION ||
(!serializing_builtins_ && code->is_interpreter_entry_trampoline())) {
obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
}
} else if (obj->IsBytecodeArray()) {
obj = isolate()->heap()->undefined_value();
}
int root_index = root_index_map_.Lookup(obj);
bool is_immortal_immovable_root = false;
// We can only encode roots as such if it has already been serialized.
// That applies to root indices below the wave front.
if (root_index != RootIndexMap::kInvalidRootIndex) {
if (root_index < root_index_wave_front_) {
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
return;
} else {
is_immortal_immovable_root = Heap::RootIsImmortalImmovable(root_index);
}
}
if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
FlushSkip(skip);
// Object has not yet been serialized. Serialize it here.
ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
where_to_point);
object_serializer.Serialize();
if (is_immortal_immovable_root) {
// Make sure that the immortal immovable root has been included in the first
// chunk of its reserved space , so that it is deserialized onto the first
// page of its space and stays immortal immovable.
BackReference ref = back_reference_map_.Lookup(obj);
CHECK(ref.is_valid() && ref.chunk_index() == 0);
}
}
void StartupSerializer::SerializeWeakReferencesAndDeferred() {
// This phase comes right after the serialization (of the snapshot).
// After we have done the partial serialization the partial snapshot cache
// will contain some references needed to decode the partial snapshot. We
// add one entry with 'undefined' which is the sentinel that the deserializer
// uses to know it is done deserializing the array.
Object* undefined = isolate()->heap()->undefined_value();
VisitPointer(&undefined);
isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
SerializeDeferredObjects();
Pad();
}
void StartupSerializer::Synchronize(VisitorSynchronization::SyncTag tag) {
// We expect the builtins tag after builtins have been serialized.
DCHECK(!serializing_builtins_ || tag == VisitorSynchronization::kBuiltins);
serializing_builtins_ = (tag == VisitorSynchronization::kHandleScope);
sink_->Put(kSynchronize, "Synchronize");
}
void StartupSerializer::SerializeStrongReferences() {
Isolate* isolate = this->isolate();
// No active threads.
CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
// No active or weak handles.
CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
// We don't support serializing installed extensions.
CHECK(!isolate->has_installed_extensions());
isolate->heap()->IterateSmiRoots(this);
isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
}
void StartupSerializer::VisitPointers(Object** start, Object** end) {
for (Object** current = start; current < end; current++) {
if (start == isolate()->heap()->roots_array_start()) {
root_index_wave_front_ =
Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
}
if (ShouldBeSkipped(current)) {
sink_->Put(kSkip, "Skip");
sink_->PutInt(kPointerSize, "SkipOneWord");
} else if ((*current)->IsSmi()) {
sink_->Put(kOnePointerRawData, "Smi");
for (int i = 0; i < kPointerSize; i++) {
sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
}
} else {
SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
}
}
}
} // namespace internal
} // namespace v8
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_SNAPSHOT_STARTUP_SERIALIZER_H_
#define V8_SNAPSHOT_STARTUP_SERIALIZER_H_
#include "src/snapshot/serializer.h"
namespace v8 {
namespace internal {
class StartupSerializer : public Serializer {
public:
StartupSerializer(Isolate* isolate, SnapshotByteSink* sink);
~StartupSerializer() override;
// Serialize the current state of the heap. The order is:
// 1) Strong references.
// 2) Partial snapshot cache.
// 3) Weak references (e.g. the string table).
void SerializeStrongReferences();
void SerializeWeakReferencesAndDeferred();
private:
// The StartupSerializer has to serialize the root array, which is slightly
// different.
void VisitPointers(Object** start, Object** end) override;
void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) override;
void Synchronize(VisitorSynchronization::SyncTag tag) override;
intptr_t root_index_wave_front_;
bool serializing_builtins_;
DISALLOW_COPY_AND_ASSIGN(StartupSerializer);
};
} // namespace internal
} // namespace v8
#endif // V8_SNAPSHOT_STARTUP_SERIALIZER_H_
......@@ -548,240 +548,6 @@ class EmbeddedVector : public Vector<T> {
T buffer_[kSize];
};
/*
* A class that collects values into a backing store.
* Specialized versions of the class can allow access to the backing store
* in different ways.
* There is no guarantee that the backing store is contiguous (and, as a
* consequence, no guarantees that consecutively added elements are adjacent
* in memory). The collector may move elements unless it has guaranteed not
* to.
*/
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class Collector {
public:
explicit Collector(int initial_capacity = kMinCapacity)
: index_(0), size_(0) {
current_chunk_ = Vector<T>::New(initial_capacity);
}
virtual ~Collector() {
// Free backing store (in reverse allocation order).
current_chunk_.Dispose();
for (int i = chunks_.length() - 1; i >= 0; i--) {
chunks_.at(i).Dispose();
}
}
// Add a single element.
inline void Add(T value) {
if (index_ >= current_chunk_.length()) {
Grow(1);
}
current_chunk_[index_] = value;
index_++;
size_++;
}
// Add a block of contiguous elements and return a Vector backed by the
// memory area.
// A basic Collector will keep this vector valid as long as the Collector
// is alive.
inline Vector<T> AddBlock(int size, T initial_value) {
DCHECK(size > 0);
if (size > current_chunk_.length() - index_) {
Grow(size);
}
T* position = current_chunk_.start() + index_;
index_ += size;
size_ += size;
for (int i = 0; i < size; i++) {
position[i] = initial_value;
}
return Vector<T>(position, size);
}
// Add a contiguous block of elements and return a vector backed
// by the added block.
// A basic Collector will keep this vector valid as long as the Collector
// is alive.
inline Vector<T> AddBlock(Vector<const T> source) {
if (source.length() > current_chunk_.length() - index_) {
Grow(source.length());
}
T* position = current_chunk_.start() + index_;
index_ += source.length();
size_ += source.length();
for (int i = 0; i < source.length(); i++) {
position[i] = source[i];
}
return Vector<T>(position, source.length());
}
// Write the contents of the collector into the provided vector.
void WriteTo(Vector<T> destination) {
DCHECK(size_ <= destination.length());
int position = 0;
for (int i = 0; i < chunks_.length(); i++) {
Vector<T> chunk = chunks_.at(i);
for (int j = 0; j < chunk.length(); j++) {
destination[position] = chunk[j];
position++;
}
}
for (int i = 0; i < index_; i++) {
destination[position] = current_chunk_[i];
position++;
}
}
// Allocate a single contiguous vector, copy all the collected
// elements to the vector, and return it.
// The caller is responsible for freeing the memory of the returned
// vector (e.g., using Vector::Dispose).
Vector<T> ToVector() {
Vector<T> new_store = Vector<T>::New(size_);
WriteTo(new_store);
return new_store;
}
// Resets the collector to be empty.
virtual void Reset() {
for (int i = chunks_.length() - 1; i >= 0; i--) {
chunks_.at(i).Dispose();
}
chunks_.Rewind(0);
index_ = 0;
size_ = 0;
}
// Total number of elements added to collector so far.
inline int size() { return size_; }
protected:
static const int kMinCapacity = 16;
List<Vector<T> > chunks_;
Vector<T> current_chunk_; // Block of memory currently being written into.
int index_; // Current index in current chunk.
int size_; // Total number of elements in collector.
// Creates a new current chunk, and stores the old chunk in the chunks_ list.
void Grow(int min_capacity) {
DCHECK(growth_factor > 1);
int new_capacity;
int current_length = current_chunk_.length();
if (current_length < kMinCapacity) {
// The collector started out as empty.
new_capacity = min_capacity * growth_factor;
if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
} else {
int growth = current_length * (growth_factor - 1);
if (growth > max_growth) {
growth = max_growth;
}
new_capacity = current_length + growth;
if (new_capacity < min_capacity) {
new_capacity = min_capacity + growth;
}
}
NewChunk(new_capacity);
DCHECK(index_ + min_capacity <= current_chunk_.length());
}
// Before replacing the current chunk, give a subclass the option to move
// some of the current data into the new chunk. The function may update
// the current index_ value to represent data no longer in the current chunk.
// Returns the initial index of the new chunk (after copied data).
virtual void NewChunk(int new_capacity) {
Vector<T> new_chunk = Vector<T>::New(new_capacity);
if (index_ > 0) {
chunks_.Add(current_chunk_.SubVector(0, index_));
} else {
current_chunk_.Dispose();
}
current_chunk_ = new_chunk;
index_ = 0;
}
};
/*
* A collector that allows sequences of values to be guaranteed to
* stay consecutive.
* If the backing store grows while a sequence is active, the current
* sequence might be moved, but after the sequence is ended, it will
* not move again.
* NOTICE: Blocks allocated using Collector::AddBlock(int) can move
* as well, if inside an active sequence where another element is added.
*/
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class SequenceCollector : public Collector<T, growth_factor, max_growth> {
public:
explicit SequenceCollector(int initial_capacity)
: Collector<T, growth_factor, max_growth>(initial_capacity),
sequence_start_(kNoSequence) { }
virtual ~SequenceCollector() {}
void StartSequence() {
DCHECK(sequence_start_ == kNoSequence);
sequence_start_ = this->index_;
}
Vector<T> EndSequence() {
DCHECK(sequence_start_ != kNoSequence);
int sequence_start = sequence_start_;
sequence_start_ = kNoSequence;
if (sequence_start == this->index_) return Vector<T>();
return this->current_chunk_.SubVector(sequence_start, this->index_);
}
// Drops the currently added sequence, and all collected elements in it.
void DropSequence() {
DCHECK(sequence_start_ != kNoSequence);
int sequence_length = this->index_ - sequence_start_;
this->index_ = sequence_start_;
this->size_ -= sequence_length;
sequence_start_ = kNoSequence;
}
virtual void Reset() {
sequence_start_ = kNoSequence;
this->Collector<T, growth_factor, max_growth>::Reset();
}
private:
static const int kNoSequence = -1;
int sequence_start_;
// Move the currently active sequence to the new chunk.
virtual void NewChunk(int new_capacity) {
if (sequence_start_ == kNoSequence) {
// Fall back on default behavior if no sequence has been started.
this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
return;
}
int sequence_length = this->index_ - sequence_start_;
Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
DCHECK(sequence_length < new_chunk.length());
for (int i = 0; i < sequence_length; i++) {
new_chunk[i] = this->current_chunk_[sequence_start_ + i];
}
if (sequence_start_ > 0) {
this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
} else {
this->current_chunk_.Dispose();
}
this->current_chunk_ = new_chunk;
this->index_ = sequence_length;
sequence_start_ = 0;
}
};
// Compare 8bit/16bit chars to 8bit/16bit chars.
template <typename lchar, typename rchar>
inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs,
......
......@@ -19,7 +19,6 @@
#include "src/profiler/sampler.h"
#include "src/runtime-profiler.h"
#include "src/snapshot/natives.h"
#include "src/snapshot/serialize.h"
#include "src/snapshot/snapshot.h"
......
......@@ -32,6 +32,7 @@
#include "src/v8.h"
#include "include/v8-profiler.h"
#include "src/collector.h"
#include "src/debug/debug.h"
#include "src/hashmap.h"
#include "src/profiler/allocation-tracker.h"
......
......@@ -39,9 +39,12 @@
#include "src/objects.h"
#include "src/parsing/parser.h"
#include "src/runtime/runtime.h"
#include "src/snapshot/code-serializer.h"
#include "src/snapshot/deserializer.h"
#include "src/snapshot/natives.h"
#include "src/snapshot/serialize.h"
#include "src/snapshot/partial-serializer.h"
#include "src/snapshot/snapshot.h"
#include "src/snapshot/startup-serializer.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/utils-inl.h"
......
......@@ -32,6 +32,7 @@
#include "src/v8.h"
#include "src/base/platform/platform.h"
#include "src/collector.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
......
......@@ -8,7 +8,7 @@ import os
import sys
DECLARE_FILE = "src/assembler.h"
REGISTER_FILE = "src/snapshot/serialize.cc"
REGISTER_FILE = "src/snapshot/serializer-common.cc"
DECLARE_RE = re.compile("\s*static ExternalReference ([^(]+)\(")
REGISTER_RE = re.compile("\s*Add\(ExternalReference::([^(]+)\(")
......
......@@ -521,6 +521,7 @@
'../../src/code-stubs-hydrogen.cc',
'../../src/codegen.cc',
'../../src/codegen.h',
'../../src/collector.h',
'../../src/compilation-cache.cc',
'../../src/compilation-cache.h',
'../../src/compilation-dependencies.cc',
......@@ -1102,14 +1103,24 @@
'../../src/signature.h',
'../../src/simulator.h',
'../../src/small-pointer-list.h',
'../../src/snapshot/code-serializer.cc',
'../../src/snapshot/code-serializer.h',
'../../src/snapshot/deserializer.cc',
'../../src/snapshot/deserializer.h',
'../../src/snapshot/natives.h',
'../../src/snapshot/natives-common.cc',
'../../src/snapshot/serialize.cc',
'../../src/snapshot/serialize.h',
'../../src/snapshot/partial-serializer.cc',
'../../src/snapshot/partial-serializer.h',
'../../src/snapshot/serializer.cc',
'../../src/snapshot/serializer.h',
'../../src/snapshot/serializer-common.cc',
'../../src/snapshot/serializer-common.h',
'../../src/snapshot/snapshot.h',
'../../src/snapshot/snapshot-common.cc',
'../../src/snapshot/snapshot-source-sink.cc',
'../../src/snapshot/snapshot-source-sink.h',
'../../src/snapshot/startup-serializer.cc',
'../../src/snapshot/startup-serializer.h',
'../../src/source-position.h',
'../../src/splay-tree.h',
'../../src/splay-tree-inl.h',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment