Commit 6b4d2976 authored by ager@chromium.org's avatar ager@chromium.org

Revert r6376 and r6373 which changes external array support. The ARM

version did not work.

TBR=kbr@chromium.org
Review URL: http://codereview.chromium.org/6295013

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@6381 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 49144ee6
This diff is collapsed.
This diff is collapsed.
......@@ -1282,6 +1282,44 @@ static void Generate_KeyedLoadIC_String(MacroAssembler* masm) {
}
static void Generate_KeyedLoadIC_ExternalByteArray(MacroAssembler* masm) {
KeyedLoadIC::GenerateExternalArray(masm, kExternalByteArray);
}
static void Generate_KeyedLoadIC_ExternalUnsignedByteArray(
MacroAssembler* masm) {
KeyedLoadIC::GenerateExternalArray(masm, kExternalUnsignedByteArray);
}
static void Generate_KeyedLoadIC_ExternalShortArray(MacroAssembler* masm) {
KeyedLoadIC::GenerateExternalArray(masm, kExternalShortArray);
}
static void Generate_KeyedLoadIC_ExternalUnsignedShortArray(
MacroAssembler* masm) {
KeyedLoadIC::GenerateExternalArray(masm, kExternalUnsignedShortArray);
}
static void Generate_KeyedLoadIC_ExternalIntArray(MacroAssembler* masm) {
KeyedLoadIC::GenerateExternalArray(masm, kExternalIntArray);
}
static void Generate_KeyedLoadIC_ExternalUnsignedIntArray(
MacroAssembler* masm) {
KeyedLoadIC::GenerateExternalArray(masm, kExternalUnsignedIntArray);
}
static void Generate_KeyedLoadIC_ExternalFloatArray(MacroAssembler* masm) {
KeyedLoadIC::GenerateExternalArray(masm, kExternalFloatArray);
}
static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) {
KeyedLoadIC::GeneratePreMonomorphic(masm);
}
......@@ -1326,6 +1364,44 @@ static void Generate_KeyedStoreIC_Generic(MacroAssembler* masm) {
}
static void Generate_KeyedStoreIC_ExternalByteArray(MacroAssembler* masm) {
KeyedStoreIC::GenerateExternalArray(masm, kExternalByteArray);
}
static void Generate_KeyedStoreIC_ExternalUnsignedByteArray(
MacroAssembler* masm) {
KeyedStoreIC::GenerateExternalArray(masm, kExternalUnsignedByteArray);
}
static void Generate_KeyedStoreIC_ExternalShortArray(MacroAssembler* masm) {
KeyedStoreIC::GenerateExternalArray(masm, kExternalShortArray);
}
static void Generate_KeyedStoreIC_ExternalUnsignedShortArray(
MacroAssembler* masm) {
KeyedStoreIC::GenerateExternalArray(masm, kExternalUnsignedShortArray);
}
static void Generate_KeyedStoreIC_ExternalIntArray(MacroAssembler* masm) {
KeyedStoreIC::GenerateExternalArray(masm, kExternalIntArray);
}
static void Generate_KeyedStoreIC_ExternalUnsignedIntArray(
MacroAssembler* masm) {
KeyedStoreIC::GenerateExternalArray(masm, kExternalUnsignedIntArray);
}
static void Generate_KeyedStoreIC_ExternalFloatArray(MacroAssembler* masm) {
KeyedStoreIC::GenerateExternalArray(masm, kExternalFloatArray);
}
static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm);
}
......
......@@ -93,6 +93,13 @@ enum BuiltinExtraArguments {
V(KeyedLoadIC_PreMonomorphic, KEYED_LOAD_IC, PREMONOMORPHIC) \
V(KeyedLoadIC_Generic, KEYED_LOAD_IC, MEGAMORPHIC) \
V(KeyedLoadIC_String, KEYED_LOAD_IC, MEGAMORPHIC) \
V(KeyedLoadIC_ExternalByteArray, KEYED_LOAD_IC, MEGAMORPHIC) \
V(KeyedLoadIC_ExternalUnsignedByteArray, KEYED_LOAD_IC, MEGAMORPHIC) \
V(KeyedLoadIC_ExternalShortArray, KEYED_LOAD_IC, MEGAMORPHIC) \
V(KeyedLoadIC_ExternalUnsignedShortArray, KEYED_LOAD_IC, MEGAMORPHIC) \
V(KeyedLoadIC_ExternalIntArray, KEYED_LOAD_IC, MEGAMORPHIC) \
V(KeyedLoadIC_ExternalUnsignedIntArray, KEYED_LOAD_IC, MEGAMORPHIC) \
V(KeyedLoadIC_ExternalFloatArray, KEYED_LOAD_IC, MEGAMORPHIC) \
V(KeyedLoadIC_IndexedInterceptor, KEYED_LOAD_IC, MEGAMORPHIC) \
\
V(StoreIC_Initialize, STORE_IC, UNINITIALIZED) \
......@@ -103,6 +110,13 @@ enum BuiltinExtraArguments {
\
V(KeyedStoreIC_Initialize, KEYED_STORE_IC, UNINITIALIZED) \
V(KeyedStoreIC_Generic, KEYED_STORE_IC, MEGAMORPHIC) \
V(KeyedStoreIC_ExternalByteArray, KEYED_STORE_IC, MEGAMORPHIC) \
V(KeyedStoreIC_ExternalUnsignedByteArray, KEYED_STORE_IC, MEGAMORPHIC) \
V(KeyedStoreIC_ExternalShortArray, KEYED_STORE_IC, MEGAMORPHIC) \
V(KeyedStoreIC_ExternalUnsignedShortArray, KEYED_STORE_IC, MEGAMORPHIC) \
V(KeyedStoreIC_ExternalIntArray, KEYED_STORE_IC, MEGAMORPHIC) \
V(KeyedStoreIC_ExternalUnsignedIntArray, KEYED_STORE_IC, MEGAMORPHIC) \
V(KeyedStoreIC_ExternalFloatArray, KEYED_STORE_IC, MEGAMORPHIC) \
\
/* Uses KeyedLoadIC_Initialize; must be after in list. */ \
V(FunctionCall, BUILTIN, UNINITIALIZED) \
......
......@@ -203,9 +203,7 @@ namespace internal {
V(zero_symbol, "0") \
V(global_eval_symbol, "GlobalEval") \
V(identity_hash_symbol, "v8::IdentityHash") \
V(closure_symbol, "(closure)") \
V(KeyedLoadExternalArray_symbol, "KeyedLoadExternalArray") \
V(KeyedStoreExternalArray_symbol, "KeyedStoreExternalArray")
V(closure_symbol, "(closure)")
// Forward declarations.
......
This diff is collapsed.
This diff is collapsed.
......@@ -367,6 +367,55 @@ void KeyedStoreIC::Clear(Address address, Code* target) {
}
Code* KeyedLoadIC::external_array_stub(JSObject::ElementsKind elements_kind) {
switch (elements_kind) {
case JSObject::EXTERNAL_BYTE_ELEMENTS:
return Builtins::builtin(Builtins::KeyedLoadIC_ExternalByteArray);
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
return Builtins::builtin(Builtins::KeyedLoadIC_ExternalUnsignedByteArray);
case JSObject::EXTERNAL_SHORT_ELEMENTS:
return Builtins::builtin(Builtins::KeyedLoadIC_ExternalShortArray);
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
return Builtins::builtin(
Builtins::KeyedLoadIC_ExternalUnsignedShortArray);
case JSObject::EXTERNAL_INT_ELEMENTS:
return Builtins::builtin(Builtins::KeyedLoadIC_ExternalIntArray);
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS:
return Builtins::builtin(Builtins::KeyedLoadIC_ExternalUnsignedIntArray);
case JSObject::EXTERNAL_FLOAT_ELEMENTS:
return Builtins::builtin(Builtins::KeyedLoadIC_ExternalFloatArray);
default:
UNREACHABLE();
return NULL;
}
}
Code* KeyedStoreIC::external_array_stub(JSObject::ElementsKind elements_kind) {
switch (elements_kind) {
case JSObject::EXTERNAL_BYTE_ELEMENTS:
return Builtins::builtin(Builtins::KeyedStoreIC_ExternalByteArray);
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
return Builtins::builtin(
Builtins::KeyedStoreIC_ExternalUnsignedByteArray);
case JSObject::EXTERNAL_SHORT_ELEMENTS:
return Builtins::builtin(Builtins::KeyedStoreIC_ExternalShortArray);
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
return Builtins::builtin(
Builtins::KeyedStoreIC_ExternalUnsignedShortArray);
case JSObject::EXTERNAL_INT_ELEMENTS:
return Builtins::builtin(Builtins::KeyedStoreIC_ExternalIntArray);
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS:
return Builtins::builtin(Builtins::KeyedStoreIC_ExternalUnsignedIntArray);
case JSObject::EXTERNAL_FLOAT_ELEMENTS:
return Builtins::builtin(Builtins::KeyedStoreIC_ExternalFloatArray);
default:
UNREACHABLE();
return NULL;
}
}
static bool HasInterceptorGetter(JSObject* object) {
return !object->GetNamedInterceptor()->getter()->IsUndefined();
}
......@@ -1194,10 +1243,7 @@ MaybeObject* KeyedLoadIC::Load(State state,
} else if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->HasExternalArrayElements()) {
MaybeObject* probe =
StubCache::ComputeKeyedLoadOrStoreExternalArray(*receiver, false);
stub =
probe->IsFailure() ? NULL : Code::cast(probe->ToObjectUnchecked());
stub = external_array_stub(receiver->GetElementsKind());
} else if (receiver->HasIndexedInterceptor()) {
stub = indexed_interceptor_stub();
} else if (state == UNINITIALIZED &&
......@@ -1590,10 +1636,7 @@ MaybeObject* KeyedStoreIC::Store(State state,
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->HasExternalArrayElements()) {
MaybeObject* probe =
StubCache::ComputeKeyedLoadOrStoreExternalArray(*receiver, true);
stub =
probe->IsFailure() ? NULL : Code::cast(probe->ToObjectUnchecked());
stub = external_array_stub(receiver->GetElementsKind());
} else if (state == UNINITIALIZED &&
key->IsSmi() &&
receiver->map()->has_fast_elements()) {
......
......@@ -345,6 +345,12 @@ class KeyedLoadIC: public IC {
static void GenerateGeneric(MacroAssembler* masm);
static void GenerateString(MacroAssembler* masm);
// Generators for external array types. See objects.h.
// These are similar to the generic IC; they optimize the case of
// operating upon external array types but fall back to the runtime
// for all other types.
static void GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type);
static void GenerateIndexedInterceptor(MacroAssembler* masm);
// Clear the use of the inlined version.
......@@ -380,6 +386,7 @@ class KeyedLoadIC: public IC {
static Code* string_stub() {
return Builtins::builtin(Builtins::KeyedLoadIC_String);
}
static Code* external_array_stub(JSObject::ElementsKind elements_kind);
static Code* indexed_interceptor_stub() {
return Builtins::builtin(Builtins::KeyedLoadIC_IndexedInterceptor);
......@@ -463,6 +470,13 @@ class KeyedStoreIC: public IC {
static void GenerateRuntimeSetProperty(MacroAssembler* masm);
static void GenerateGeneric(MacroAssembler* masm);
// Generators for external array types. See objects.h.
// These are similar to the generic IC; they optimize the case of
// operating upon external array types but fall back to the runtime
// for all other types.
static void GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type);
// Clear the inlined version so the IC is always hit.
static void ClearInlinedVersion(Address address);
......@@ -487,6 +501,7 @@ class KeyedStoreIC: public IC {
static Code* generic_stub() {
return Builtins::builtin(Builtins::KeyedStoreIC_Generic);
}
static Code* external_array_stub(JSObject::ElementsKind elements_kind);
static void Clear(Address address, Code* target);
......
......@@ -172,11 +172,23 @@ void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
}
void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
UNIMPLEMENTED_MIPS();
}
void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) {
UNIMPLEMENTED_MIPS();
}
void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
UNIMPLEMENTED_MIPS();
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
UNIMPLEMENTED_MIPS();
}
......
......@@ -397,20 +397,6 @@ Object* ConstructStubCompiler::CompileConstructStub(
}
Object* ExternalArrayStubCompiler::CompileKeyedLoadStub(
ExternalArrayType array_type, Code::Flags flags) {
UNIMPLEMENTED_MIPS();
return reinterpret_cast<Object*>(NULL); // UNIMPLEMENTED RETURN
}
Object* ExternalArrayStubCompiler::CompileKeyedStoreStub(
ExternalArrayType array_type, Code::Flags flags) {
UNIMPLEMENTED_MIPS();
return reinterpret_cast<Object*>(NULL); // UNIMPLEMENTED RETURN
}
#undef __
} } // namespace v8::internal
......
......@@ -507,74 +507,6 @@ MaybeObject* StubCache::ComputeKeyedStoreSpecialized(JSObject* receiver) {
}
namespace {
ExternalArrayType ElementsKindToExternalArrayType(JSObject::ElementsKind kind) {
switch (kind) {
case JSObject::EXTERNAL_BYTE_ELEMENTS:
return kExternalByteArray;
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
return kExternalUnsignedByteArray;
case JSObject::EXTERNAL_SHORT_ELEMENTS:
return kExternalShortArray;
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
return kExternalUnsignedShortArray;
case JSObject::EXTERNAL_INT_ELEMENTS:
return kExternalIntArray;
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS:
return kExternalUnsignedIntArray;
case JSObject::EXTERNAL_FLOAT_ELEMENTS:
return kExternalFloatArray;
default:
UNREACHABLE();
return static_cast<ExternalArrayType>(0);
}
}
} // anonymous namespace
MaybeObject* StubCache::ComputeKeyedLoadOrStoreExternalArray(
JSObject* receiver,
bool is_store) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(
is_store ? Code::KEYED_STORE_IC : Code::KEYED_LOAD_IC,
NORMAL);
ExternalArrayType array_type =
ElementsKindToExternalArrayType(receiver->GetElementsKind());
String* name =
is_store ? Heap::KeyedStoreExternalArray_symbol()
: Heap::KeyedLoadExternalArray_symbol();
// Use the global maps for the particular external array types,
// rather than the receiver's map, when looking up the cached code,
// so that we actually canonicalize these stubs.
Map* map = Heap::MapForExternalArrayType(array_type);
Object* code = map->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
ExternalArrayStubCompiler compiler;
{ MaybeObject* maybe_code =
is_store ? compiler.CompileKeyedStoreStub(array_type, flags) :
compiler.CompileKeyedLoadStub(array_type, flags);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
if (is_store) {
PROFILE(
CodeCreateEvent(Logger::KEYED_STORE_IC_TAG, Code::cast(code), 0));
} else {
PROFILE(
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), 0));
}
Object* result;
{ MaybeObject* maybe_result =
map->UpdateCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeStoreNormal() {
return Builtins::builtin(Builtins::StoreIC_Normal);
}
......@@ -1777,16 +1709,4 @@ void CallOptimization::AnalyzePossibleApiFunction(JSFunction* function) {
}
MaybeObject* ExternalArrayStubCompiler::GetCode(Code::Flags flags) {
Object* result;
{ MaybeObject* maybe_result = GetCodeWithFlags(flags, "ExternalArrayStub");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Code* code = Code::cast(result);
USE(code);
PROFILE(CodeCreateEvent(Logger::STUB_TAG, code, "ExternalArrayStub"));
return result;
}
} } // namespace v8::internal
......@@ -167,10 +167,6 @@ class StubCache : public AllStatic {
MUST_USE_RESULT static MaybeObject* ComputeKeyedStoreSpecialized(
JSObject* receiver);
MUST_USE_RESULT static MaybeObject* ComputeKeyedLoadOrStoreExternalArray(
JSObject* receiver,
bool is_store);
// ---
MUST_USE_RESULT static MaybeObject* ComputeCallField(int argc,
......@@ -801,20 +797,6 @@ class CallOptimization BASE_EMBEDDED {
CallHandlerInfo* api_call_info_;
};
class ExternalArrayStubCompiler: public StubCompiler {
public:
explicit ExternalArrayStubCompiler() {}
MUST_USE_RESULT MaybeObject* CompileKeyedLoadStub(
ExternalArrayType array_type, Code::Flags flags);
MUST_USE_RESULT MaybeObject* CompileKeyedStoreStub(
ExternalArrayType array_type, Code::Flags flags);
private:
MaybeObject* GetCode(Code::Flags flags);
};
} } // namespace v8::internal
#endif // V8_STUB_CACHE_H_
......@@ -2721,17 +2721,6 @@ void Assembler::cvttss2si(Register dst, const Operand& src) {
}
void Assembler::cvttss2si(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2C);
emit_sse_operand(dst, src);
}
void Assembler::cvttsd2si(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
......@@ -2743,17 +2732,6 @@ void Assembler::cvttsd2si(Register dst, const Operand& src) {
}
void Assembler::cvttsd2si(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2C);
emit_sse_operand(dst, src);
}
void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
......
......@@ -1205,9 +1205,7 @@ class Assembler : public Malloced {
void movss(const Operand& dst, XMMRegister src);
void cvttss2si(Register dst, const Operand& src);
void cvttss2si(Register dst, XMMRegister src);
void cvttsd2si(Register dst, const Operand& src);
void cvttsd2si(Register dst, XMMRegister src);
void cvttsd2siq(Register dst, XMMRegister src);
void cvtlsi2sd(XMMRegister dst, const Operand& src);
......
......@@ -1113,11 +1113,9 @@ int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) {
} else if (opcode == 0x2C) {
// CVTTSS2SI:
// Convert with truncation scalar single-precision FP to dword integer.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
AppendToBuffer("cvttss2si%c %s,",
operand_size_code(), NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
// Assert that mod is not 3, so source is memory, not an XMM register.
ASSERT_NE(0xC0, *current & 0xC0);
current += PrintOperands("cvttss2si", REG_OPER_OP_ORDER, current);
} else if (opcode == 0x5A) {
// CVTSS2SD:
// Convert scalar single-precision FP to scalar double-precision FP.
......
......@@ -727,6 +727,131 @@ void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
}
void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(rax, &slow);
// Check that the object is a JS object.
__ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
__ j(not_equal, &slow);
// Check that the receiver does not require access checks. We need
// to check this explicitly since this generic stub does not perform
// map checks. The map is already in rdx.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
// rax: index (as a smi)
// rdx: JSObject
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::RootIndexForExternalArrayType(array_type));
__ j(not_equal, &slow);
// Check that the index is in range.
__ SmiToInteger32(rcx, rax);
__ cmpl(rcx, FieldOperand(rbx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// rax: index (as a smi)
// rdx: receiver (JSObject)
// rcx: untagged index
// rbx: elements array
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rbx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
__ movsxbq(rcx, Operand(rbx, rcx, times_1, 0));
break;
case kExternalUnsignedByteArray:
__ movzxbq(rcx, Operand(rbx, rcx, times_1, 0));
break;
case kExternalShortArray:
__ movsxwq(rcx, Operand(rbx, rcx, times_2, 0));
break;
case kExternalUnsignedShortArray:
__ movzxwq(rcx, Operand(rbx, rcx, times_2, 0));
break;
case kExternalIntArray:
__ movsxlq(rcx, Operand(rbx, rcx, times_4, 0));
break;
case kExternalUnsignedIntArray:
__ movl(rcx, Operand(rbx, rcx, times_4, 0));
break;
case kExternalFloatArray:
__ cvtss2sd(xmm0, Operand(rbx, rcx, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
// rax: index
// rdx: receiver
// For integer array types:
// rcx: value
// For floating-point array type:
// xmm0: value as double.
ASSERT(kSmiValueSize == 32);
if (array_type == kExternalUnsignedIntArray) {
// For the UnsignedInt array type, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
NearLabel box_int;
__ JumpIfUIntNotValidSmiValue(rcx, &box_int);
__ Integer32ToSmi(rax, rcx);
__ ret(0);
__ bind(&box_int);
// Allocate a HeapNumber for the int and perform int-to-double
// conversion.
// The value is zero-extended since we loaded the value from memory
// with movl.
__ cvtqsi2sd(xmm0, rcx);
__ AllocateHeapNumber(rcx, rbx, &slow);
// Set the value.
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rcx);
__ ret(0);
} else if (array_type == kExternalFloatArray) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
__ AllocateHeapNumber(rcx, rbx, &slow);
// Set the value.
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rcx);
__ ret(0);
} else {
__ Integer32ToSmi(rax, rcx);
__ ret(0);
}
// Slow case: Jump to runtime.
__ bind(&slow);
__ IncrementCounter(&Counters::keyed_load_external_array_slow, 1);
GenerateRuntimeGetProperty(masm);
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
......@@ -898,6 +1023,149 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) {
}
void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Get the map from the receiver.
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(rcx, &slow);
// Check that the object is a JS object.
__ CmpInstanceType(rbx, JS_OBJECT_TYPE);
__ j(not_equal, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::RootIndexForExternalArrayType(array_type));
__ j(not_equal, &slow);
// Check that the index is in range.
__ SmiToInteger32(rdi, rcx); // Untag the index.
__ cmpl(rdi, FieldOperand(rbx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
// rbx: elements array
// rdi: untagged key
NearLabel check_heap_number;
__ JumpIfNotSmi(rax, &check_heap_number);
// No more branches to slow case on this path. Key and receiver not needed.
__ SmiToInteger32(rdx, rax);
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rbx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ movw(Operand(rbx, rdi, times_2, 0), rdx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ movl(Operand(rbx, rdi, times_4, 0), rdx);
break;
case kExternalFloatArray:
// Need to perform int-to-float conversion.
__ cvtlsi2ss(xmm0, rdx);
__ movss(Operand(rbx, rdi, times_4, 0), xmm0);
break;
default:
UNREACHABLE();
break;
}
__ ret(0);
__ bind(&check_heap_number);
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
// rbx: elements array
// rdi: untagged key
__ CmpObjectType(rax, HEAP_NUMBER_TYPE, kScratchRegister);
__ j(not_equal, &slow);
// No more branches to slow case on this path.
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
__ movsd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rdi: untagged index
// rbx: base pointer of external storage
// top of FPU stack: value
if (array_type == kExternalFloatArray) {
__ cvtsd2ss(xmm0, xmm0);
__ movss(Operand(rbx, rdi, times_4, 0), xmm0);
__ ret(0);
} else {
// Need to perform float-to-int conversion.
// Test the value for NaN.
// Convert to int32 and store the low byte/word.
// If the value is NaN or +/-infinity, the result is 0x80000000,
// which is automatically zero when taken mod 2^n, n < 32.
// rdx: value (converted to an untagged integer)
// rdi: untagged index
// rbx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ cvtsd2si(rdx, xmm0);
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ cvtsd2si(rdx, xmm0);
__ movw(Operand(rbx, rdi, times_2, 0), rdx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray: {
// Convert to int64, so that NaN and infinities become
// 0x8000000000000000, which is zero mod 2^32.
__ cvtsd2siq(rdx, xmm0);
__ movl(Operand(rbx, rdi, times_4, 0), rdx);
break;
}
default:
UNREACHABLE();
break;
}
__ ret(0);
}
// Slow case: call runtime.
__ bind(&slow);
GenerateRuntimeSetProperty(masm);
}
// The generated code does not accept smi keys.
// The generated code falls through if both probes miss.
static void GenerateMonomorphicCacheProbe(MacroAssembler* masm,
......
......@@ -3144,306 +3144,6 @@ MaybeObject* ConstructStubCompiler::CompileConstructStub(JSFunction* function) {
}
MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
ExternalArrayType array_type, Code::Flags flags) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(rax, &slow);
// Check that the object is a JS object.
__ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
__ j(not_equal, &slow);
// Check that the receiver does not require access checks. We need
// to check this explicitly since this generic stub does not perform
// map checks. The map is already in rdx.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
// rax: index (as a smi)
// rdx: JSObject
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::RootIndexForExternalArrayType(array_type));
__ j(not_equal, &slow);
// Check that the index is in range.
__ SmiToInteger32(rcx, rax);
__ cmpl(rcx, FieldOperand(rbx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// rax: index (as a smi)
// rdx: receiver (JSObject)
// rcx: untagged index
// rbx: elements array
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rbx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
__ movsxbq(rcx, Operand(rbx, rcx, times_1, 0));
break;
case kExternalUnsignedByteArray:
__ movzxbq(rcx, Operand(rbx, rcx, times_1, 0));
break;
case kExternalShortArray:
__ movsxwq(rcx, Operand(rbx, rcx, times_2, 0));
break;
case kExternalUnsignedShortArray:
__ movzxwq(rcx, Operand(rbx, rcx, times_2, 0));
break;
case kExternalIntArray:
__ movsxlq(rcx, Operand(rbx, rcx, times_4, 0));
break;
case kExternalUnsignedIntArray:
__ movl(rcx, Operand(rbx, rcx, times_4, 0));
break;
case kExternalFloatArray:
__ cvtss2sd(xmm0, Operand(rbx, rcx, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
// rax: index
// rdx: receiver
// For integer array types:
// rcx: value
// For floating-point array type:
// xmm0: value as double.
ASSERT(kSmiValueSize == 32);
if (array_type == kExternalUnsignedIntArray) {
// For the UnsignedInt array type, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
NearLabel box_int;
__ JumpIfUIntNotValidSmiValue(rcx, &box_int);
__ Integer32ToSmi(rax, rcx);
__ ret(0);
__ bind(&box_int);
// Allocate a HeapNumber for the int and perform int-to-double
// conversion.
// The value is zero-extended since we loaded the value from memory
// with movl.
__ cvtqsi2sd(xmm0, rcx);
__ AllocateHeapNumber(rcx, rbx, &slow);
// Set the value.
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rcx);
__ ret(0);
} else if (array_type == kExternalFloatArray) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
__ AllocateHeapNumber(rcx, rbx, &slow);
// Set the value.
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rcx);
__ ret(0);
} else {
__ Integer32ToSmi(rax, rcx);
__ ret(0);
}
// Slow case: Jump to runtime.
__ bind(&slow);
__ IncrementCounter(&Counters::keyed_load_external_array_slow, 1);
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ pop(rbx);
__ push(rdx); // receiver
__ push(rax); // name
__ push(rbx); // return address
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
// Return the generated code.
return GetCode(flags);
}
MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
ExternalArrayType array_type, Code::Flags flags) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Get the map from the receiver.
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(rcx, &slow);
// Check that the object is a JS object.
__ CmpInstanceType(rbx, JS_OBJECT_TYPE);
__ j(not_equal, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::RootIndexForExternalArrayType(array_type));
__ j(not_equal, &slow);
// Check that the index is in range.
__ SmiToInteger32(rdi, rcx); // Untag the index.
__ cmpl(rdi, FieldOperand(rbx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
// rbx: elements array
// rdi: untagged key
NearLabel check_heap_number;
__ JumpIfNotSmi(rax, &check_heap_number);
// No more branches to slow case on this path. Key and receiver not needed.
__ SmiToInteger32(rdx, rax);
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rbx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ movw(Operand(rbx, rdi, times_2, 0), rdx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ movl(Operand(rbx, rdi, times_4, 0), rdx);
break;
case kExternalFloatArray:
// Need to perform int-to-float conversion.
__ cvtlsi2ss(xmm0, rdx);
__ movss(Operand(rbx, rdi, times_4, 0), xmm0);
break;
default:
UNREACHABLE();
break;
}
__ ret(0);
__ bind(&check_heap_number);
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
// rbx: elements array
// rdi: untagged key
__ CmpObjectType(rax, HEAP_NUMBER_TYPE, kScratchRegister);
__ j(not_equal, &slow);
// No more branches to slow case on this path.
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
__ movsd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rdi: untagged index
// rbx: base pointer of external storage
// top of FPU stack: value
if (array_type == kExternalFloatArray) {
__ cvtsd2ss(xmm0, xmm0);
__ movss(Operand(rbx, rdi, times_4, 0), xmm0);
__ ret(0);
} else {
// Perform float-to-int conversion with truncation (round-to-zero)
// behavior.
// Convert to int32 and store the low byte/word.
// If the value is NaN or +/-infinity, the result is 0x80000000,
// which is automatically zero when taken mod 2^n, n < 32.
// rdx: value (converted to an untagged integer)
// rdi: untagged index
// rbx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ cvttsd2si(rdx, xmm0);
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ cvttsd2si(rdx, xmm0);
__ movw(Operand(rbx, rdi, times_2, 0), rdx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray: {
// Convert to int64, so that NaN and infinities become
// 0x8000000000000000, which is zero mod 2^32.
__ cvttsd2siq(rdx, xmm0);
__ movl(Operand(rbx, rdi, times_4, 0), rdx);
break;
}
default:
UNREACHABLE();
break;
}
__ ret(0);
}
// Slow case: call runtime.
__ bind(&slow);
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ pop(rbx);
__ push(rdx); // receiver
__ push(rcx); // key
__ push(rax); // value
__ push(rbx); // return address
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 3, 1);
return GetCode(flags);
}
#undef __
} } // namespace v8::internal
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment