Commit 6a6388f0 authored by bbudge's avatar bbudge Committed by Commit bot

Revert of Add SIMD 128 alignment support to Heap. (patchset #3 id:40001 of...

Revert of Add SIMD 128 alignment support to Heap. (patchset #3 id:40001 of https://codereview.chromium.org/1159453004/)

Reason for revert:
Breaks Linux - arm64 - sim - MSAN
TBR=jochen

Original issue's description:
> Add SIMD 128 alignment support to Heap.
> Adds SIMD 128 alignment sizes and masks.
> Adds support in Heap for SIMD alignments and fills.
> Reworks cctest so that each test independently aligns its allocation address, rather than depending on the previous tests ending state. Adds test cases for SIMD.
>
> LOG=N
> BUG=v8:4124

TBR=hpayer@chromium.org,jochen@chromium.org
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=v8:4124

Review URL: https://codereview.chromium.org/1169453003

Cr-Commit-Position: refs/heads/master@{#28768}
parent 4347d56a
......@@ -197,8 +197,6 @@ typedef int32_t uc32;
const int kOneByteSize = kCharSize;
const int kUC16Size = sizeof(uc16); // NOLINT
// 128 bit SIMD value size.
const int kSimd128Size = 16;
// Round up n to be a multiple of sz, where sz is a power of 2.
#define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
......@@ -311,10 +309,6 @@ const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
const intptr_t kDoubleAlignment = 8;
const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
// Desired alignment for 128 bit SIMD values.
const intptr_t kSimd128Alignment = 16;
const intptr_t kSimd128AlignmentMask = kSimd128Alignment - 1;
// Desired alignment for generated code is 32 bytes (to improve cache line
// utilization).
const int kCodeAlignmentBits = 5;
......@@ -455,12 +449,7 @@ enum AllocationSpace {
const int kSpaceTagSize = 3;
const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
enum AllocationAlignment {
kWordAligned,
kDoubleAligned,
kDoubleUnaligned,
kSimd128Unaligned
};
enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned };
// A flag that indicates whether objects should be pretenured when
// allocated (allocated directly into the old generation) or not
......
......@@ -1995,8 +1995,6 @@ int Heap::GetMaximumFillToAlign(AllocationAlignment alignment) {
case kDoubleAligned:
case kDoubleUnaligned:
return kDoubleSize - kPointerSize;
case kSimd128Unaligned:
return kSimd128Size - kPointerSize;
default:
UNREACHABLE();
}
......@@ -2010,10 +2008,6 @@ int Heap::GetFillToAlign(Address address, AllocationAlignment alignment) {
return kPointerSize;
if (alignment == kDoubleUnaligned && (offset & kDoubleAlignmentMask) == 0)
return kDoubleSize - kPointerSize; // No fill if double is always aligned.
if (alignment == kSimd128Unaligned) {
return (kSimd128Size - (static_cast<int>(offset) + kPointerSize)) &
kSimd128AlignmentMask;
}
return 0;
}
......
......@@ -1784,18 +1784,14 @@ TEST(TestSizeOfObjects) {
TEST(TestAlignmentCalculations) {
// Maximum fill amounts are consistent.
// Maximum fill amounts should be consistent.
int maximum_double_misalignment = kDoubleSize - kPointerSize;
int maximum_simd128_misalignment = kSimd128Size - kPointerSize;
int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned);
CHECK_EQ(0, max_word_fill);
int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned);
CHECK_EQ(maximum_double_misalignment, max_double_fill);
int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned);
CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill);
int max_simd128_unaligned_fill =
Heap::GetMaximumFillToAlign(kSimd128Unaligned);
CHECK_EQ(maximum_simd128_misalignment, max_simd128_unaligned_fill);
Address base = reinterpret_cast<Address>(NULL);
int fill = 0;
......@@ -1817,16 +1813,6 @@ TEST(TestAlignmentCalculations) {
CHECK_EQ(maximum_double_misalignment, fill);
fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleUnaligned);
CHECK_EQ(0, fill);
// 128 bit SIMD types have 2 or 4 possible alignments, depending on platform.
fill = Heap::GetFillToAlign(base, kSimd128Unaligned);
CHECK_EQ((3 * kPointerSize) & kSimd128AlignmentMask, fill);
fill = Heap::GetFillToAlign(base + kPointerSize, kSimd128Unaligned);
CHECK_EQ((2 * kPointerSize) & kSimd128AlignmentMask, fill);
fill = Heap::GetFillToAlign(base + 2 * kPointerSize, kSimd128Unaligned);
CHECK_EQ(kPointerSize, fill);
fill = Heap::GetFillToAlign(base + 3 * kPointerSize, kSimd128Unaligned);
CHECK_EQ(0, fill);
}
......@@ -1842,94 +1828,65 @@ static HeapObject* NewSpaceAllocateAligned(int size,
}
// Get new space allocation into the desired alignment.
static Address AlignNewSpace(AllocationAlignment alignment, int offset) {
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
int fill = Heap::GetFillToAlign(*top_addr, alignment);
if (fill) {
NewSpaceAllocateAligned(fill + offset, kWordAligned);
}
return *top_addr;
}
TEST(TestAlignedAllocation) {
// Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
const intptr_t double_misalignment = kDoubleSize - kPointerSize;
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
Address start;
HeapObject* obj;
HeapObject* filler;
if (double_misalignment) {
// Allocate a pointer sized object that must be double aligned at an
// aligned address.
start = AlignNewSpace(kDoubleAligned, 0);
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
// There is no filler.
CHECK_EQ(kPointerSize, *top_addr - start);
// Allocate a second pointer sized object that must be double aligned at an
// unaligned address.
start = AlignNewSpace(kDoubleAligned, kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == kPointerSize);
CHECK_EQ(kPointerSize + double_misalignment, *top_addr - start);
// Similarly for kDoubleUnaligned.
start = AlignNewSpace(kDoubleUnaligned, 0);
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
// Align the top for the first test.
if (!IsAddressAligned(*top_addr, kDoubleAlignment))
NewSpaceAllocateAligned(kPointerSize, kWordAligned);
// Allocate a pointer sized object that must be double aligned.
Address start = *top_addr;
HeapObject* obj1 = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment));
// Only the object was allocated.
CHECK_EQ(kPointerSize, *top_addr - start);
start = AlignNewSpace(kDoubleUnaligned, kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == kPointerSize);
CHECK_EQ(kPointerSize + double_misalignment, *top_addr - start);
}
// Now test SIMD alignment. There are 2 or 4 possible alignments, depending
// on platform.
start = AlignNewSpace(kSimd128Unaligned, 0);
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is no filler.
// top is now misaligned.
// Allocate a second pointer sized object that must be double aligned.
HeapObject* obj2 = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment));
// There should be a filler object in between the two objects.
CHECK(HeapObject::FromAddress(start + kPointerSize)->IsFiller());
// Two objects and a filler object were allocated.
CHECK_EQ(2 * kPointerSize + double_misalignment, *top_addr - start);
// Similarly for kDoubleUnaligned. top is misaligned.
start = *top_addr;
obj1 = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment, kPointerSize));
CHECK_EQ(kPointerSize, *top_addr - start);
start = AlignNewSpace(kSimd128Unaligned, kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == kSimd128Size - kPointerSize);
CHECK_EQ(kPointerSize + kSimd128Size - kPointerSize, *top_addr - start);
obj2 = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment, kPointerSize));
CHECK(HeapObject::FromAddress(start + kPointerSize)->IsFiller());
CHECK_EQ(2 * kPointerSize + double_misalignment, *top_addr - start);
}
}
if (double_misalignment) {
// Test the 2 other alignments possible on 32 bit platforms.
start = AlignNewSpace(kSimd128Unaligned, 2 * kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == 2 * kPointerSize);
CHECK_EQ(kPointerSize + 2 * kPointerSize, *top_addr - start);
start = AlignNewSpace(kSimd128Unaligned, 3 * kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == kPointerSize);
CHECK_EQ(kPointerSize + kPointerSize, *top_addr - start);
// Force allocation to happen from the free list, at a desired misalignment.
static Address SetUpFreeListAllocation(int misalignment) {
Heap* heap = CcTest::heap();
OldSpace* old_space = heap->old_space();
Address top = old_space->top();
// First, allocate enough filler to get the linear area into the desired
// misalignment.
const intptr_t maximum_misalignment = 2 * kPointerSize;
const intptr_t maximum_misalignment_mask = maximum_misalignment - 1;
intptr_t top_alignment = OffsetFrom(top) & maximum_misalignment_mask;
int filler_size = misalignment - static_cast<int>(top_alignment);
if (filler_size < 0) filler_size += maximum_misalignment;
if (filler_size) {
// Create the filler object.
AllocationResult allocation = old_space->AllocateRawUnaligned(filler_size);
HeapObject* obj = NULL;
allocation.To(&obj);
heap->CreateFillerObjectAt(obj->address(), filler_size);
}
top = old_space->top();
old_space->EmptyAllocationInfo();
return top;
}
......@@ -1945,105 +1902,38 @@ static HeapObject* OldSpaceAllocateAligned(int size,
}
// Get old space allocation into the desired alignment.
static Address AlignOldSpace(AllocationAlignment alignment, int offset) {
Address* top_addr = CcTest::heap()->old_space()->allocation_top_address();
int fill = Heap::GetFillToAlign(*top_addr, alignment);
int allocation = fill + offset;
if (allocation) {
OldSpaceAllocateAligned(allocation, kWordAligned);
}
Address top = *top_addr;
// Now force the remaining allocation onto the free list.
CcTest::heap()->old_space()->EmptyAllocationInfo();
return top;
}
// Test the case where allocation must be done from the free list, so filler
// may precede or follow the object.
TEST(TestAlignedOverAllocation) {
// Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
const intptr_t double_misalignment = kDoubleSize - kPointerSize;
Address start;
HeapObject* obj;
HeapObject* filler1;
HeapObject* filler2;
if (double_misalignment) {
start = AlignOldSpace(kDoubleAligned, 0);
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
// The object is aligned, and a filler object is created after.
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
filler1 = HeapObject::FromAddress(start + kPointerSize);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
Address start = SetUpFreeListAllocation(0);
HeapObject* obj1 = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
// The object should be aligned, and a filler object should be created.
CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment));
CHECK(HeapObject::FromAddress(start)->IsFiller() &&
HeapObject::FromAddress(start + kPointerSize)->IsFiller());
// Try the opposite alignment case.
start = AlignOldSpace(kDoubleAligned, kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1);
CHECK(filler1->IsFiller());
CHECK(filler1->Size() == kPointerSize);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
start = SetUpFreeListAllocation(kPointerSize);
HeapObject* obj2 = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment));
CHECK(HeapObject::FromAddress(start)->IsFiller() &&
HeapObject::FromAddress(start + kPointerSize)->IsFiller());
// Similarly for kDoubleUnaligned.
start = AlignOldSpace(kDoubleUnaligned, 0);
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
// The object is aligned, and a filler object is created after.
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
filler1 = HeapObject::FromAddress(start + kPointerSize);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
start = SetUpFreeListAllocation(0);
obj1 = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
// The object should be aligned, and a filler object should be created.
CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment, kPointerSize));
CHECK(HeapObject::FromAddress(start)->IsFiller() &&
HeapObject::FromAddress(start + kPointerSize)->IsFiller());
// Try the opposite alignment case.
start = AlignOldSpace(kDoubleUnaligned, kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
}
// Now test SIMD alignment. There are 2 or 4 possible alignments, depending
// on platform.
start = AlignOldSpace(kSimd128Unaligned, 0);
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object after the object.
filler1 = HeapObject::FromAddress(start + kPointerSize);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kSimd128Size - kPointerSize);
start = AlignOldSpace(kSimd128Unaligned, kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object before the object.
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kSimd128Size - kPointerSize);
if (double_misalignment) {
// Test the 2 other alignments possible on 32 bit platforms.
start = AlignOldSpace(kSimd128Unaligned, 2 * kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There are filler objects before and after the object.
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == 2 * kPointerSize);
filler2 = HeapObject::FromAddress(start + 3 * kPointerSize);
CHECK(obj != filler2 && filler2->IsFiller() &&
filler2->Size() == kPointerSize);
start = AlignOldSpace(kSimd128Unaligned, 3 * kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There are filler objects before and after the object.
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
filler2 = HeapObject::FromAddress(start + 2 * kPointerSize);
CHECK(obj != filler2 && filler2->IsFiller() &&
filler2->Size() == 2 * kPointerSize);
start = SetUpFreeListAllocation(kPointerSize);
obj2 = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment, kPointerSize));
CHECK(HeapObject::FromAddress(start)->IsFiller() &&
HeapObject::FromAddress(start + kPointerSize)->IsFiller());
}
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment