Commit 677c043f authored by sgjesse@chromium.org's avatar sgjesse@chromium.org

Handle array construction on native code.

The construction of arrays when using the the Array function either as a constructor or a normal function is now handled fully in generated code in most cases. Only when Array is called with one argument which is either negative or abowe JSObject::kInitialMaxFastElementArray (which is currently 1000) or if the allocated object cannot fit in the room left in new space is the runtime system entered.

Two new native code built-in functions are added one for normal invocation and one for the construct call. The existing C++ builtin is renamed, but kept. When the normal invocation cannot be handled in generated code the C++ builtin is called. When the construct invocation cannot be handled in native code the generic construct stub is called (which will end up in the C++ builtin through a construct trampoline).

One thing that might be changed is preserving esi (constructor function) during the handling of a construct call. We know precisily what function we where calling anyway and can just reload it. This could remove the parameter construct_call to ArrayNativeCode and remove the handling of this from that function.

The X64 and ARM implementations are not part of this changelist.
Review URL: http://codereview.chromium.org/193125

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@2899 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent fb2897bc
......@@ -51,6 +51,22 @@ void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id) {
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// Just jump to the generic array code.
Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
Handle<Code> array_code(code);
__ Jump(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
// Just jump to the generic construct code.
Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
Handle<Code> generic_construct_stub(code);
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
......
......@@ -654,6 +654,8 @@ void Genesis::CreateRoots(v8::Handle<v8::ObjectTemplate> global_template,
InstallFunction(global, "Array", JS_ARRAY_TYPE, JSArray::kSize,
Top::initial_object_prototype(), Builtins::ArrayCode,
true);
array_function->shared()->set_construct_stub(
Builtins::builtin(Builtins::ArrayConstructCode));
array_function->shared()->DontAdaptArguments();
// This seems a bit hackish, but we need to make sure Array.length
......
......@@ -135,7 +135,9 @@ BUILTIN(EmptyFunction) {
BUILTIN_END
BUILTIN(ArrayCode) {
BUILTIN(ArrayCodeGeneric) {
Counters::array_function_runtime.Increment();
JSArray* array;
if (CalledAsConstructor()) {
array = JSArray::cast(*receiver);
......@@ -166,7 +168,7 @@ BUILTIN(ArrayCode) {
// Take the argument as the length.
obj = array->Initialize(0);
if (obj->IsFailure()) return obj;
if (args.length() == 2) return array->SetElementsLength(args[1]);
return array->SetElementsLength(args[1]);
}
// Optimize the case where there are no parameters passed.
......
......@@ -37,7 +37,7 @@ namespace internal {
\
V(EmptyFunction) \
\
V(ArrayCode) \
V(ArrayCodeGeneric) \
\
V(ArrayPush) \
V(ArrayPop) \
......@@ -83,8 +83,10 @@ namespace internal {
\
/* Uses KeyedLoadIC_Initialize; must be after in list. */ \
V(FunctionCall, BUILTIN, UNINITIALIZED) \
V(FunctionApply, BUILTIN, UNINITIALIZED)
V(FunctionApply, BUILTIN, UNINITIALIZED) \
\
V(ArrayCode, BUILTIN, UNINITIALIZED) \
V(ArrayConstructCode, BUILTIN, UNINITIALIZED)
#ifdef ENABLE_DEBUGGER_SUPPORT
// Define list of builtins used by the debugger implemented in assembly.
......@@ -217,6 +219,9 @@ class Builtins : public AllStatic {
static void Generate_FunctionCall(MacroAssembler* masm);
static void Generate_FunctionApply(MacroAssembler* masm);
static void Generate_ArrayCode(MacroAssembler* masm);
static void Generate_ArrayConstructCode(MacroAssembler* masm);
};
} } // namespace v8::internal
......
......@@ -658,6 +658,465 @@ void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the global context.
__ mov(result, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ mov(result, FieldOperand(result, GlobalObject::kGlobalContextOffset));
// Load the Array function from the global context.
__ mov(result,
Operand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
}
// Number of empty elements to allocate for an empty array.
static const int kPreallocatedArrayElements = 4;
// Allocate an empty JSArray. The allocated array is put into the result
// register. If the parameter holes is larger than zero an elements backing
// store is allocated with this size and filled with the hole values. Otherwise
// the elements backing store is set to the empty FixedArray.
static void AllocateEmptyJSArray(MacroAssembler* masm,
Register array_function,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
int holes,
Label* gc_required) {
ASSERT(holes >= 0);
// Load the initial map from the array function.
__ mov(scratch1, FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Allocate the JSArray object together with space for a fixed array with the
// requested elements.
int size = JSArray::kSize;
if (holes > 0) {
size += FixedArray::SizeFor(holes);
}
__ AllocateObjectInNewSpace(size,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// scratch1: initial map
// scratch2: start of next object
__ mov(FieldOperand(result, JSObject::kMapOffset), scratch1);
__ mov(FieldOperand(result, JSArray::kPropertiesOffset),
Factory::empty_fixed_array());
// Field JSArray::kElementsOffset is initialized later.
__ mov(FieldOperand(result, JSArray::kLengthOffset), Immediate(0));
// If no storage is requested for the elements array just set the empty
// fixed array.
if (holes == 0) {
__ mov(FieldOperand(result, JSArray::kElementsOffset),
Factory::empty_fixed_array());
return;
}
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// scratch2: start of next object
__ lea(scratch1, Operand(result, JSArray::kSize));
__ mov(FieldOperand(result, JSArray::kElementsOffset), scratch1);
// Initialize the FixedArray and fill it with holes. FixedArray length is not
// stored as a smi.
// result: JSObject
// scratch1: elements array
// scratch2: start of next object
__ mov(FieldOperand(scratch1, JSObject::kMapOffset),
Factory::fixed_array_map());
__ mov(FieldOperand(scratch1, Array::kLengthOffset), Immediate(holes));
// Fill the FixedArray with the hole value. Inline the code if short.
if (holes <= 4) {
// Use a scratch register here to have only one reloc info when unfolding
// the loop.
__ mov(scratch3, Factory::the_hole_value());
for (int i = 0; i < holes; i++) {
__ mov(FieldOperand(scratch1,
FixedArray::kHeaderSize + i * kPointerSize),
scratch3);
}
} else {
Label loop, entry;
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(scratch1, 0), Factory::the_hole_value());
__ add(Operand(scratch1), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(scratch1, Operand(scratch2));
__ j(below, &loop);
}
}
// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array and elements_array_end (see
// below for when that is not the case). If the parameter fill_with_holes is
// true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array is scratched.
static void AllocateJSArray(MacroAssembler* masm,
Register array_function, // Array function.
Register array_size, // As a smi.
Register result,
Register elements_array,
Register elements_array_end,
Register scratch,
bool fill_with_hole,
Label* gc_required) {
Label not_empty, allocated;
// Load the initial map from the array function.
__ mov(elements_array,
FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Check whether an empty sized array is requested.
__ test(array_size, Operand(array_size));
__ j(not_zero, &not_empty);
// If an empty array is requested allocate a small elements array anyway. This
// keeps the code below free of special casing for the empty array.
int size = JSArray::kSize + FixedArray::SizeFor(kPreallocatedArrayElements);
__ AllocateObjectInNewSpace(size,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
__ jmp(&allocated);
// Allocate the JSArray object together with space for a FixedArray with the
// requested elements.
__ bind(&not_empty);
ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ AllocateObjectInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
times_half_pointer_size, // array_size is a smi.
array_size,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// elements_array: initial map
// elements_array_end: start of next object
// array_size: size of array (smi)
__ bind(&allocated);
__ mov(FieldOperand(result, JSObject::kMapOffset), elements_array);
__ mov(elements_array, Factory::empty_fixed_array());
__ mov(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
// Field JSArray::kElementsOffset is initialized later.
__ mov(FieldOperand(result, JSArray::kLengthOffset), array_size);
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// elements_array_end: start of next object
// array_size: size of array (smi)
__ lea(elements_array, Operand(result, JSArray::kSize));
__ mov(FieldOperand(result, JSArray::kElementsOffset), elements_array);
// Initialize the fixed array and fill it with holes. FixedArray length is not
// stored as a smi.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
// array_size: size of array (smi)
ASSERT(kSmiTag == 0);
__ shr(array_size, kSmiTagSize); // Convert from smi to value.
__ mov(FieldOperand(elements_array, JSObject::kMapOffset),
Factory::fixed_array_map());
Label not_empty_2, fill_array;
__ test(array_size, Operand(array_size));
__ j(not_zero, &not_empty_2);
// Length of the FixedArray is the number of pre-allocated elements even
// though the actual JSArray has length 0.
__ mov(FieldOperand(elements_array, Array::kLengthOffset),
Immediate(kPreallocatedArrayElements));
__ jmp(&fill_array);
__ bind(&not_empty_2);
// For non-empty JSArrays the length of the FixedArray and the JSArray is the
// same.
__ mov(FieldOperand(elements_array, Array::kLengthOffset), array_size);
// Fill the allocated FixedArray with the hole value if requested.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
__ bind(&fill_array);
if (fill_with_hole) {
Label loop, entry;
__ mov(scratch, Factory::the_hole_value());
__ lea(elements_array, Operand(elements_array,
FixedArray::kHeaderSize - kHeapObjectTag));
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(elements_array, 0), scratch);
__ add(Operand(elements_array), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(elements_array, Operand(elements_array_end));
__ j(below, &loop);
}
}
// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
// edi: constructor (built-in Array function)
// eax: argc
// esp[0]: return address
// esp[4]: last argument
// This function is used for both construct and normal calls of Array. Whether
// it is a construct call or not is indicated by the construct_call parameter.
// The only difference between handling a construct call and a normal call is
// that for a construct call the constructor function in edi needs to be
// preserved for entering the generic code. In both cases argc in eax needs to
// be preserved.
static void ArrayNativeCode(MacroAssembler* masm,
bool construct_call,
Label *call_generic_code) {
Label argc_one_or_more, argc_two_or_more, prepare_generic_code_call;
// Push the constructor and argc. No need to tag argc as a smi, as there will
// be no garbage collection with this on the stack.
int push_count = 0;
if (construct_call) {
push_count++;
__ push(edi);
}
push_count++;
__ push(eax);
// Check for array construction with zero arguments or one.
__ test(eax, Operand(eax));
__ j(not_zero, &argc_one_or_more);
// Handle construction of an empty array.
AllocateEmptyJSArray(masm,
edi,
eax,
ebx,
ecx,
edi,
kPreallocatedArrayElements,
&prepare_generic_code_call);
__ IncrementCounter(&Counters::array_function_native, 1);
__ pop(ebx);
if (construct_call) {
__ pop(edi);
}
__ ret(kPointerSize);
// Check for one argument. Bail out if argument is not smi or if it is
// negative.
__ bind(&argc_one_or_more);
__ cmp(eax, 1);
__ j(not_equal, &argc_two_or_more);
ASSERT(kSmiTag == 0);
__ test(Operand(esp, (push_count + 1) * kPointerSize),
Immediate(kIntptrSignBit | kSmiTagMask));
__ j(not_zero, &prepare_generic_code_call);
// Handle construction of an empty array of a certain size. Get the size from
// the stack and bail out if size is to large to actually allocate an elements
// array.
__ mov(edx, Operand(esp, (push_count + 1) * kPointerSize));
ASSERT(kSmiTag == 0);
__ cmp(edx, JSObject::kInitialMaxFastElementArray << kSmiTagSize);
__ j(greater_equal, &prepare_generic_code_call);
// edx: array_size (smi)
// edi: constructor
// esp[0]: argc
// esp[4]: constructor (only if construct_call)
// esp[8]: return address
// esp[C]: argument
AllocateJSArray(masm,
edi,
edx,
eax,
ebx,
ecx,
edi,
true,
&prepare_generic_code_call);
__ IncrementCounter(&Counters::array_function_native, 1);
__ pop(ebx);
if (construct_call) {
__ pop(edi);
}
__ ret(2 * kPointerSize);
// Handle construction of an array from a list of arguments.
__ bind(&argc_two_or_more);
ASSERT(kSmiTag == 0);
__ shl(eax, kSmiTagSize); // Convet argc to a smi.
// eax: array_size (smi)
// edi: constructor
// esp[0] : argc
// esp[4]: constructor (only if construct_call)
// esp[8] : return address
// esp[C] : last argument
AllocateJSArray(masm,
edi,
eax,
ebx,
ecx,
edx,
edi,
false,
&prepare_generic_code_call);
__ IncrementCounter(&Counters::array_function_native, 1);
__ mov(eax, ebx);
__ pop(ebx);
if (construct_call) {
__ pop(edi);
}
__ push(eax);
// eax: JSArray
// ebx: argc
// edx: elements_array_end (untagged)
// esp[0]: JSArray
// esp[4]: return address
// esp[8]: last argument
// Location of the last argument
__ lea(edi, Operand(esp, 2 * kPointerSize));
// Location of the first array element (fill_with_holes is false, so the
// FixedArray is returned).
__ lea(edx, Operand(ecx, FixedArray::kHeaderSize - kHeapObjectTag));
// ebx: argc
// edx: location of the first array element
// edi: location of the last argument
// esp[0]: JSArray
// esp[4]: return address
// esp[8]: last argument
Label loop, entry;
__ mov(ecx, ebx);
__ jmp(&entry);
__ bind(&loop);
__ mov(eax, Operand(edi, ecx, times_pointer_size, 0));
__ mov(Operand(edx, 0), eax);
__ add(Operand(edx), Immediate(kPointerSize));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Remove caller arguments from the stack and return.
// ebx: argc
// esp[0]: JSArray
// esp[4]: return address
// esp[8]: last argument
__ pop(eax);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize));
__ push(ecx);
__ ret(0);
// Restore argc and constructor before running the generic code.
__ bind(&prepare_generic_code_call);
__ pop(eax);
if (construct_call) {
__ pop(edi);
}
__ jmp(call_generic_code);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the Array function.
GenerateLoadArrayFunction(masm, edi);
if (FLAG_debug_code) {
// Initial map for the builtin Array function shoud be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, "Unexpected initial map for Array function");
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as constructor.
ArrayNativeCode(masm, false, &generic_array_code);
// Jump to the generic array code in case the specialized code cannot handle
// the construction.
__ bind(&generic_array_code);
Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
Handle<Code> array_code(code);
__ jmp(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- edi : constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_constructor;
if (FLAG_debug_code) {
// The array construct code is only set for the builtin Array function which
// does always have a map.
GenerateLoadArrayFunction(masm, ebx);
__ cmp(edi, Operand(ebx));
__ Assert(equal, "Unexpected Array function");
// Initial map for the builtin Array function should be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, "Unexpected initial map for Array function");
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as constructor.
ArrayNativeCode(masm, false, &generic_constructor);
// Jump to the generic construct code in case the specialized code cannot
// handle the construction.
__ bind(&generic_constructor);
GenerateLoadArrayFunction(masm, edi);
Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
Handle<Code> generic_construct_stub(code);
__ jmp(generic_construct_stub, RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(ebp);
__ mov(ebp, Operand(esp));
......
......@@ -142,6 +142,8 @@ namespace internal {
SC(constructed_objects, V8.ConstructedObjects) \
SC(constructed_objects_runtime, V8.ConstructedObjectsRuntime) \
SC(constructed_objects_stub, V8.ConstructedObjectsStub) \
SC(array_function_runtime, V8.ArrayFunctionRuntime) \
SC(array_function_native, V8.ArrayFunctionNative) \
SC(for_in, V8.ForIn) \
SC(enum_cache_hits, V8.EnumCacheHits) \
SC(enum_cache_misses, V8.EnumCacheMisses) \
......
......@@ -452,6 +452,22 @@ void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// Just jump to the generic array code.
Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
Handle<Code> array_code(code);
__ Jump(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
// Just jump to the generic construct code.
Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
Handle<Code> generic_construct_stub(code);
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax: number of arguments
......
// Copyright 2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
var loop_count = 5
for (var i = 0; i < loop_count; i++) {
var a = new Array();
var b = Array();
assertEquals(0, a.length);
assertEquals(0, b.length);
for (var k = 0; k < 10; k++) {
assertEquals('undefined', typeof a[k]);
assertEquals('undefined', typeof b[k]);
}
}
for (var i = 0; i < loop_count; i++) {
for (var j = 0; j < 100; j++) {
var a = new Array(j);
var b = Array(j);
assertEquals(j, a.length);
assertEquals(j, b.length);
for (var k = 0; k < j; k++) {
assertEquals('undefined', typeof a[k]);
assertEquals('undefined', typeof b[k]);
}
}
}
for (var i = 0; i < loop_count; i++) {
a = new Array(0, 1);
assertArrayEquals([0, 1], a);
a = new Array(0, 1, 2);
assertArrayEquals([0, 1, 2], a);
a = new Array(0, 1, 2, 3);
assertArrayEquals([0, 1, 2, 3], a);
a = new Array(0, 1, 2, 3, 4);
assertArrayEquals([0, 1, 2, 3, 4], a);
a = new Array(0, 1, 2, 3, 4, 5);
assertArrayEquals([0, 1, 2, 3, 4, 5], a);
a = new Array(0, 1, 2, 3, 4, 5, 6);
assertArrayEquals([0, 1, 2, 3, 4, 5, 6], a);
a = new Array(0, 1, 2, 3, 4, 5, 6, 7);
assertArrayEquals([0, 1, 2, 3, 4, 5, 6, 7], a);
a = new Array(0, 1, 2, 3, 4, 5, 6, 7, 8);
assertArrayEquals([0, 1, 2, 3, 4, 5, 6, 7, 8], a);
a = new Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9);
assertArrayEquals([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], a);
}
function innerArrayLiteral(n) {
var a = new Array(n);
for (var i = 0; i < n; i++) {
a[i] = i * 2 + 7;
}
return a.join();
}
function testConstructOfSizeSize(n) {
var str = innerArrayLiteral(n);
var a = eval('[' + str + ']');
var b = eval('new Array(' + str + ')')
var c = eval('Array(' + str + ')')
assertEquals(n, a.length);
assertArrayEquals(a, b);
assertArrayEquals(a, c);
}
for (var i = 0; i < loop_count; i++) {
// JSObject::kInitialMaxFastElementArray is 10000.
for (var j = 1000; j < 12000; j += 1000) {
testConstructOfSizeSize(j);
}
}
for (var i = 0; i < loop_count; i++) {
assertArrayEquals(['xxx'], new Array('xxx'));
assertArrayEquals(['xxx'], Array('xxx'));
assertArrayEquals([true], new Array(true));
assertArrayEquals([false], Array(false));
assertArrayEquals([{a:1}], new Array({a:1}));
assertArrayEquals([{b:2}], Array({b:2}));
}
assertThrows('new Array(3.14)');
assertThrows('Array(2.72)');
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment