Port lithium template classes to ARM.

This is a port of the IA32 version and is needed to allow 
changing the register allocator interface in a later change.



Review URL: http://codereview.chromium.org/6250027

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@6436 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent b5151d11
......@@ -64,12 +64,12 @@ void LOsrEntry::MarkSpilledDoubleRegister(int allocation_index,
}
void LInstruction::PrintTo(StringStream* stream) const {
void LInstruction::PrintTo(StringStream* stream) {
stream->Add("%s ", this->Mnemonic());
if (HasResult()) {
result()->PrintTo(stream);
stream->Add(" ");
PrintOutputOperandTo(stream);
}
PrintDataTo(stream);
if (HasEnvironment()) {
......@@ -84,7 +84,29 @@ void LInstruction::PrintTo(StringStream* stream) const {
}
void LLabel::PrintDataTo(StringStream* stream) const {
template<int R, int I, int T>
void LTemplateInstruction<R, I, T>::PrintDataTo(StringStream* stream) {
stream->Add("= ");
inputs_.PrintOperandsTo(stream);
}
template<int R, int I, int T>
void LTemplateInstruction<R, I, T>::PrintOutputOperandTo(StringStream* stream) {
results_.PrintOperandsTo(stream);
}
template<typename T, int N>
void OperandContainer<T, N>::PrintOperandsTo(StringStream* stream) {
for (int i = 0; i < N; i++) {
if (i > 0) stream->Add(" ");
elems_[i]->PrintTo(stream);
}
}
void LLabel::PrintDataTo(StringStream* stream) {
LGap::PrintDataTo(stream);
LLabel* rep = replacement();
if (rep != NULL) {
......@@ -143,74 +165,65 @@ const char* LArithmeticT::Mnemonic() const {
}
void LBinaryOperation::PrintDataTo(StringStream* stream) const {
stream->Add("= ");
left()->PrintTo(stream);
stream->Add(" ");
right()->PrintTo(stream);
}
void LGoto::PrintDataTo(StringStream* stream) const {
void LGoto::PrintDataTo(StringStream* stream) {
stream->Add("B%d", block_id());
}
void LBranch::PrintDataTo(StringStream* stream) const {
void LBranch::PrintDataTo(StringStream* stream) {
stream->Add("B%d | B%d on ", true_block_id(), false_block_id());
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
}
void LCmpIDAndBranch::PrintDataTo(StringStream* stream) const {
void LCmpIDAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if ");
left()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
stream->Add(" %s ", Token::String(op()));
right()->PrintTo(stream);
InputAt(1)->PrintTo(stream);
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
void LIsNullAndBranch::PrintDataTo(StringStream* stream) const {
void LIsNullAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if ");
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
stream->Add(is_strict() ? " === null" : " == null");
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
void LIsObjectAndBranch::PrintDataTo(StringStream* stream) const {
void LIsObjectAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_object(");
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsSmiAndBranch::PrintDataTo(StringStream* stream) const {
void LIsSmiAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_smi(");
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) const {
void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if has_instance_type(");
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) const {
void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if has_cached_array_index(");
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) const {
void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if class_of_test(");
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
stream->Add(", \"%o\") then B%d else B%d",
*hydrogen()->class_name(),
true_block_id(),
......@@ -218,29 +231,29 @@ void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) const {
}
void LTypeofIs::PrintDataTo(StringStream* stream) const {
input()->PrintTo(stream);
void LTypeofIs::PrintDataTo(StringStream* stream) {
InputAt(0)->PrintTo(stream);
stream->Add(" == \"%s\"", *hydrogen()->type_literal()->ToCString());
}
void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) const {
void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if typeof ");
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
stream->Add(" == \"%s\" then B%d else B%d",
*hydrogen()->type_literal()->ToCString(),
true_block_id(), false_block_id());
}
void LCallConstantFunction::PrintDataTo(StringStream* stream) const {
void LCallConstantFunction::PrintDataTo(StringStream* stream) {
stream->Add("#%d / ", arity());
}
void LUnaryMathOperation::PrintDataTo(StringStream* stream) const {
void LUnaryMathOperation::PrintDataTo(StringStream* stream) {
stream->Add("/%s ", hydrogen()->OpName());
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
}
......@@ -249,48 +262,43 @@ void LLoadContextSlot::PrintDataTo(StringStream* stream) {
}
void LCallKeyed::PrintDataTo(StringStream* stream) const {
void LCallKeyed::PrintDataTo(StringStream* stream) {
stream->Add("[r2] #%d / ", arity());
}
void LCallNamed::PrintDataTo(StringStream* stream) const {
void LCallNamed::PrintDataTo(StringStream* stream) {
SmartPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallGlobal::PrintDataTo(StringStream* stream) const {
void LCallGlobal::PrintDataTo(StringStream* stream) {
SmartPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallKnownGlobal::PrintDataTo(StringStream* stream) const {
void LCallKnownGlobal::PrintDataTo(StringStream* stream) {
stream->Add("#%d / ", arity());
}
void LCallNew::PrintDataTo(StringStream* stream) const {
LUnaryOperation::PrintDataTo(stream);
void LCallNew::PrintDataTo(StringStream* stream) {
stream->Add("= ");
InputAt(0)->PrintTo(stream);
stream->Add(" #%d / ", arity());
}
void LClassOfTest::PrintDataTo(StringStream* stream) const {
void LClassOfTest::PrintDataTo(StringStream* stream) {
stream->Add("= class_of_test(");
input()->PrintTo(stream);
InputAt(0)->PrintTo(stream);
stream->Add(", \"%o\")", *hydrogen()->class_name());
}
void LUnaryOperation::PrintDataTo(StringStream* stream) const {
stream->Add("= ");
input()->PrintTo(stream);
}
void LAccessArgumentsAt::PrintDataTo(StringStream* stream) const {
void LAccessArgumentsAt::PrintDataTo(StringStream* stream) {
arguments()->PrintTo(stream);
stream->Add(" length ");
......@@ -301,6 +309,24 @@ void LAccessArgumentsAt::PrintDataTo(StringStream* stream) const {
}
void LStoreNamed::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" <- ");
value()->PrintTo(stream);
}
void LStoreKeyed::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
stream->Add("] <- ");
value()->PrintTo(stream);
}
LChunk::LChunk(HGraph* graph)
: spill_slot_count_(0),
graph_(graph),
......@@ -310,11 +336,6 @@ LChunk::LChunk(HGraph* graph)
}
void LChunk::Verify() const {
// TODO(twuerthinger): Implement verification for chunk.
}
int LChunk::GetNextSpillIndex(bool is_double) {
// Skip a slot if for a double-width slot.
if (is_double) spill_slot_count_++;
......@@ -369,24 +390,6 @@ void LChunk::MarkEmptyBlocks() {
}
void LStoreNamed::PrintDataTo(StringStream* stream) const {
object()->PrintTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" <- ");
value()->PrintTo(stream);
}
void LStoreKeyed::PrintDataTo(StringStream* stream) const {
object()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
stream->Add("] <- ");
value()->PrintTo(stream);
}
int LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) {
LGap* gap = new LGap(block);
int index = -1;
......@@ -593,33 +596,52 @@ LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) {
}
LInstruction* LChunkBuilder::Define(LInstruction* instr) {
template<int I, int T>
LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr,
LUnallocated* result) {
allocator_->RecordDefinition(current_instruction_, result);
instr->set_result(result);
return instr;
}
template<int I, int T>
LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr) {
return Define(instr, new LUnallocated(LUnallocated::NONE));
}
LInstruction* LChunkBuilder::DefineAsRegister(LInstruction* instr) {
template<int I, int T>
LInstruction* LChunkBuilder::DefineAsRegister(
LTemplateInstruction<1, I, T>* instr) {
return Define(instr, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
LInstruction* LChunkBuilder::DefineAsSpilled(LInstruction* instr, int index) {
template<int I, int T>
LInstruction* LChunkBuilder::DefineAsSpilled(
LTemplateInstruction<1, I, T>* instr, int index) {
return Define(instr, new LUnallocated(LUnallocated::FIXED_SLOT, index));
}
LInstruction* LChunkBuilder::DefineSameAsFirst(LInstruction* instr) {
template<int I, int T>
LInstruction* LChunkBuilder::DefineSameAsFirst(
LTemplateInstruction<1, I, T>* instr) {
return Define(instr, new LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT));
}
LInstruction* LChunkBuilder::DefineFixed(LInstruction* instr, Register reg) {
template<int I, int T>
LInstruction* LChunkBuilder::DefineFixed(
LTemplateInstruction<1, I, T>* instr, Register reg) {
return Define(instr, ToUnallocated(reg));
}
LInstruction* LChunkBuilder::DefineFixedDouble(LInstruction* instr,
DoubleRegister reg) {
template<int I, int T>
LInstruction* LChunkBuilder::DefineFixedDouble(
LTemplateInstruction<1, I, T>* instr, DoubleRegister reg) {
return Define(instr, ToUnallocated(reg));
}
......@@ -687,13 +709,6 @@ LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) {
}
LInstruction* LChunkBuilder::Define(LInstruction* instr, LUnallocated* result) {
allocator_->RecordDefinition(current_instruction_, result);
instr->set_result(result);
return instr;
}
LUnallocated* LChunkBuilder::TempRegister() {
LUnallocated* operand = new LUnallocated(LUnallocated::MUST_HAVE_REGISTER);
allocator_->RecordTemporary(operand);
......@@ -801,7 +816,7 @@ LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
ASSERT(right->representation().IsTagged());
LOperand* left_operand = UseFixed(left, r1);
LOperand* right_operand = UseFixed(right, r0);
LInstruction* result = new LArithmeticT(op, left_operand, right_operand);
LArithmeticT* result = new LArithmeticT(op, left_operand, right_operand);
return MarkAsCall(DefineFixed(result, r0), instr);
}
......@@ -882,8 +897,14 @@ void LChunkBuilder::VisitInstruction(HInstruction* current) {
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
if (current->IsTest()) {
instr->set_hydrogen_value(HTest::cast(current)->value());
if (current->IsTest() && !instr->IsGoto()) {
ASSERT(instr->IsControl());
HTest* test = HTest::cast(current);
instr->set_hydrogen_value(test->value());
HBasicBlock* first = test->FirstSuccessor();
HBasicBlock* second = test->SecondSuccessor();
ASSERT(first != NULL && second != NULL);
instr->SetBranchTargets(first->block_id(), second->block_id());
} else {
instr->set_hydrogen_value(current);
}
......@@ -939,21 +960,13 @@ LInstruction* LChunkBuilder::DoGoto(HGoto* instr) {
LInstruction* LChunkBuilder::DoTest(HTest* instr) {
HValue* v = instr->value();
HBasicBlock* first = instr->FirstSuccessor();
HBasicBlock* second = instr->SecondSuccessor();
ASSERT(first != NULL && second != NULL);
int first_id = first->block_id();
int second_id = second->block_id();
if (v->EmitAtUses()) {
if (v->IsClassOfTest()) {
HClassOfTest* compare = HClassOfTest::cast(v);
ASSERT(compare->value()->representation().IsTagged());
return new LClassOfTestAndBranch(UseTempRegister(compare->value()),
TempRegister(),
first_id,
second_id);
TempRegister());
} else if (v->IsCompare()) {
HCompare* compare = HCompare::cast(v);
Token::Value op = compare->token();
......@@ -964,16 +977,12 @@ LInstruction* LChunkBuilder::DoTest(HTest* instr) {
ASSERT(left->representation().IsInteger32());
ASSERT(right->representation().IsInteger32());
return new LCmpIDAndBranch(UseRegisterAtStart(left),
UseOrConstantAtStart(right),
first_id,
second_id);
UseOrConstantAtStart(right));
} else if (r.IsDouble()) {
ASSERT(left->representation().IsDouble());
ASSERT(right->representation().IsDouble());
return new LCmpIDAndBranch(UseRegisterAtStart(left),
UseRegisterAtStart(right),
first_id,
second_id);
UseRegisterAtStart(right));
} else {
ASSERT(left->representation().IsTagged());
ASSERT(right->representation().IsTagged());
......@@ -981,38 +990,30 @@ LInstruction* LChunkBuilder::DoTest(HTest* instr) {
LOperand* left_operand = UseFixed(left, reversed ? r0 : r1);
LOperand* right_operand = UseFixed(right, reversed ? r1 : r0);
LInstruction* result = new LCmpTAndBranch(left_operand,
right_operand,
first_id,
second_id);
right_operand);
return MarkAsCall(result, instr);
}
} else if (v->IsIsSmi()) {
HIsSmi* compare = HIsSmi::cast(v);
ASSERT(compare->value()->representation().IsTagged());
return new LIsSmiAndBranch(Use(compare->value()),
first_id,
second_id);
return new LIsSmiAndBranch(Use(compare->value()));
} else if (v->IsHasInstanceType()) {
HHasInstanceType* compare = HHasInstanceType::cast(v);
ASSERT(compare->value()->representation().IsTagged());
return new LHasInstanceTypeAndBranch(UseRegisterAtStart(compare->value()),
first_id,
second_id);
return new LHasInstanceTypeAndBranch(
UseRegisterAtStart(compare->value()));
} else if (v->IsHasCachedArrayIndex()) {
HHasCachedArrayIndex* compare = HHasCachedArrayIndex::cast(v);
ASSERT(compare->value()->representation().IsTagged());
return new LHasCachedArrayIndexAndBranch(
UseRegisterAtStart(compare->value()), first_id, second_id);
UseRegisterAtStart(compare->value()));
} else if (v->IsIsNull()) {
HIsNull* compare = HIsNull::cast(v);
ASSERT(compare->value()->representation().IsTagged());
return new LIsNullAndBranch(UseRegisterAtStart(compare->value()),
first_id,
second_id);
return new LIsNullAndBranch(UseRegisterAtStart(compare->value()));
} else if (v->IsIsObject()) {
HIsObject* compare = HIsObject::cast(v);
ASSERT(compare->value()->representation().IsTagged());
......@@ -1021,41 +1022,33 @@ LInstruction* LChunkBuilder::DoTest(HTest* instr) {
LOperand* temp2 = TempRegister();
return new LIsObjectAndBranch(UseRegisterAtStart(compare->value()),
temp1,
temp2,
first_id,
second_id);
temp2);
} else if (v->IsCompareJSObjectEq()) {
HCompareJSObjectEq* compare = HCompareJSObjectEq::cast(v);
return new LCmpJSObjectEqAndBranch(UseRegisterAtStart(compare->left()),
UseRegisterAtStart(compare->right()),
first_id,
second_id);
UseRegisterAtStart(compare->right()));
} else if (v->IsInstanceOf()) {
HInstanceOf* instance_of = HInstanceOf::cast(v);
LInstruction* result =
new LInstanceOfAndBranch(Use(instance_of->left()),
Use(instance_of->right()),
first_id,
second_id);
Use(instance_of->right()));
return MarkAsCall(result, instr);
} else if (v->IsTypeofIs()) {
HTypeofIs* typeof_is = HTypeofIs::cast(v);
return new LTypeofIsAndBranch(UseTempRegister(typeof_is->value()),
first_id,
second_id);
return new LTypeofIsAndBranch(UseTempRegister(typeof_is->value()));
} else {
if (v->IsConstant()) {
if (HConstant::cast(v)->handle()->IsTrue()) {
return new LGoto(first_id);
return new LGoto(instr->FirstSuccessor()->block_id());
} else if (HConstant::cast(v)->handle()->IsFalse()) {
return new LGoto(second_id);
return new LGoto(instr->SecondSuccessor()->block_id());
}
}
Abort("Undefined compare before branch");
return NULL;
}
}
return new LBranch(UseRegisterAtStart(v), first_id, second_id);
return new LBranch(UseRegisterAtStart(v));
}
......@@ -1078,7 +1071,7 @@ LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) {
LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) {
LInstruction* result =
LInstanceOf* result =
new LInstanceOf(UseFixed(instr->left(), r0),
UseFixed(instr->right(), r1));
return MarkAsCall(DefineFixed(result, r0), instr);
......@@ -1087,7 +1080,7 @@ LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) {
LInstruction* LChunkBuilder::DoInstanceOfKnownGlobal(
HInstanceOfKnownGlobal* instr) {
LInstruction* result =
LInstanceOfKnownGlobal* result =
new LInstanceOfKnownGlobal(UseFixed(instr->value(), r0), FixedTemp(r4));
MarkAsSaveDoubles(result);
return AssignEnvironment(AssignPointerMap(DefineFixed(result, r0)));
......@@ -1099,7 +1092,7 @@ LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) {
LOperand* receiver = UseFixed(instr->receiver(), r0);
LOperand* length = UseRegisterAtStart(instr->length());
LOperand* elements = UseRegisterAtStart(instr->elements());
LInstruction* result = new LApplyArguments(function,
LApplyArguments* result = new LApplyArguments(function,
receiver,
length,
elements);
......@@ -1135,7 +1128,7 @@ LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
BuiltinFunctionId op = instr->op();
LOperand* input = UseRegisterAtStart(instr->value());
LOperand* temp = (op == kMathFloor) ? TempRegister() : NULL;
LInstruction* result = new LUnaryMathOperation(input, temp);
LUnaryMathOperation* result = new LUnaryMathOperation(input, temp);
switch (op) {
case kMathAbs:
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
......@@ -1168,8 +1161,8 @@ LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
LInstruction* LChunkBuilder::DoCallKeyed(HCallKeyed* instr) {
ASSERT(instr->key()->representation().IsTagged());
argument_count_ -= instr->argument_count();
UseFixed(instr->key(), r2);
return MarkAsCall(DefineFixed(new LCallKeyed, r0), instr);
LOperand* key = UseFixed(instr->key(), r2);
return MarkAsCall(DefineFixed(new LCallKeyed(key), r0), instr);
}
......@@ -1194,7 +1187,7 @@ LInstruction* LChunkBuilder::DoCallKnownGlobal(HCallKnownGlobal* instr) {
LInstruction* LChunkBuilder::DoCallNew(HCallNew* instr) {
LOperand* constructor = UseFixed(instr->constructor(), r1);
argument_count_ -= instr->argument_count();
LInstruction* result = new LCallNew(constructor);
LCallNew* result = new LCallNew(constructor);
return MarkAsCall(DefineFixed(result, r0), instr);
}
......@@ -1384,7 +1377,7 @@ LInstruction* LChunkBuilder::DoCompare(HCompare* instr) {
bool reversed = (op == Token::GT || op == Token::LTE);
LOperand* left = UseFixed(instr->left(), reversed ? r0 : r1);
LOperand* right = UseFixed(instr->right(), reversed ? r1 : r0);
LInstruction* result = new LCmpT(left, right);
LCmpT* result = new LCmpT(left, right);
return MarkAsCall(DefineFixed(result, r0), instr);
}
}
......@@ -1394,7 +1387,7 @@ LInstruction* LChunkBuilder::DoCompareJSObjectEq(
HCompareJSObjectEq* instr) {
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
LInstruction* result = new LCmpJSObjectEq(left, right);
LCmpJSObjectEq* result = new LCmpJSObjectEq(left, right);
return DefineAsRegister(result);
}
......@@ -1461,7 +1454,7 @@ LInstruction* LChunkBuilder::DoFixedArrayLength(HFixedArrayLength* instr) {
LInstruction* LChunkBuilder::DoValueOf(HValueOf* instr) {
LOperand* object = UseRegister(instr->value());
LInstruction* result = new LValueOf(object, TempRegister());
LValueOf* result = new LValueOf(object, TempRegister());
return AssignEnvironment(DefineSameAsFirst(result));
}
......@@ -1484,7 +1477,7 @@ LInstruction* LChunkBuilder::DoChange(HChange* instr) {
if (from.IsTagged()) {
if (to.IsDouble()) {
LOperand* value = UseRegister(instr->value());
LInstruction* res = new LNumberUntagD(value);
LNumberUntagD* res = new LNumberUntagD(value);
return AssignEnvironment(DefineAsRegister(res));
} else {
ASSERT(to.IsInteger32());
......@@ -1510,13 +1503,13 @@ LInstruction* LChunkBuilder::DoChange(HChange* instr) {
// Make sure that the temp and result_temp registers are
// different.
LUnallocated* result_temp = TempRegister();
LInstruction* result = new LNumberTagD(value, temp1, temp2);
LNumberTagD* result = new LNumberTagD(value, temp1, temp2);
Define(result, result_temp);
return AssignPointerMap(result);
} else {
ASSERT(to.IsInteger32());
LOperand* value = UseRegister(instr->value());
LInstruction* res = new LDoubleToI(value);
LDoubleToI* res = new LDoubleToI(value);
return AssignEnvironment(DefineAsRegister(res));
}
} else if (from.IsInteger32()) {
......@@ -1526,7 +1519,7 @@ LInstruction* LChunkBuilder::DoChange(HChange* instr) {
if (val->HasRange() && val->range()->IsInSmiRange()) {
return DefineSameAsFirst(new LSmiTag(value));
} else {
LInstruction* result = new LNumberTagI(value);
LNumberTagI* result = new LNumberTagI(value);
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
}
} else {
......@@ -1603,7 +1596,7 @@ LInstruction* LChunkBuilder::DoConstant(HConstant* instr) {
LInstruction* LChunkBuilder::DoLoadGlobal(HLoadGlobal* instr) {
LInstruction* result = new LLoadGlobal();
LLoadGlobal* result = new LLoadGlobal();
return instr->check_hole_value()
? AssignEnvironment(DefineAsRegister(result))
: DefineAsRegister(result);
......@@ -1652,7 +1645,7 @@ LInstruction* LChunkBuilder::DoLoadKeyedFastElement(
ASSERT(instr->key()->representation().IsInteger32());
LOperand* obj = UseRegisterAtStart(instr->object());
LOperand* key = UseRegisterAtStart(instr->key());
LInstruction* result = new LLoadKeyedFastElement(obj, key);
LLoadKeyedFastElement* result = new LLoadKeyedFastElement(obj, key);
return AssignEnvironment(DefineSameAsFirst(result));
}
......@@ -1726,7 +1719,7 @@ LInstruction* LChunkBuilder::DoStoreNamedGeneric(HStoreNamedGeneric* instr) {
LInstruction* LChunkBuilder::DoStringCharCodeAt(HStringCharCodeAt* instr) {
LOperand* string = UseRegister(instr->string());
LOperand* index = UseRegisterOrConstant(instr->index());
LInstruction* result = new LStringCharCodeAt(string, index);
LStringCharCodeAt* result = new LStringCharCodeAt(string, index);
return AssignEnvironment(AssignPointerMap(DefineAsRegister(result)));
}
......@@ -1760,7 +1753,7 @@ LInstruction* LChunkBuilder::DoFunctionLiteral(HFunctionLiteral* instr) {
LInstruction* LChunkBuilder::DoDeleteProperty(HDeleteProperty* instr) {
LOperand* object = UseRegisterAtStart(instr->object());
LOperand* key = UseRegisterAtStart(instr->key());
LInstruction* result = new LDeleteProperty(object, key);
LDeleteProperty* result = new LDeleteProperty(object, key);
return MarkAsCall(DefineFixed(result, r0), instr);
}
......@@ -1801,13 +1794,13 @@ LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) {
LOperand* arguments = UseRegister(instr->arguments());
LOperand* length = UseTempRegister(instr->length());
LOperand* index = UseRegister(instr->index());
LInstruction* result = new LAccessArgumentsAt(arguments, length, index);
return DefineAsRegister(AssignEnvironment(result));
LAccessArgumentsAt* result = new LAccessArgumentsAt(arguments, length, index);
return AssignEnvironment(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) {
LInstruction* result = new LTypeof(UseRegisterAtStart(instr->value()));
LTypeof* result = new LTypeof(UseRegisterAtStart(instr->value()));
return MarkAsCall(DefineFixed(result, r0), instr);
}
......
......@@ -43,10 +43,22 @@ class LCodeGen;
// Type hierarchy:
//
// LInstruction
// LTemplateInstruction
// LControlInstruction
// LBranch
// LClassOfTestAndBranch
// LCmpJSObjectEqAndBranch
// LCmpIDAndBranch
// LHasCachedArrayIndexAndBranch
// LHasInstanceTypeAndBranch
// LInstanceOfAndBranch
// LIsNullAndBranch
// LIsObjectAndBranch
// LIsSmiAndBranch
// LTypeofIsAndBranch
// LAccessArgumentsAt
// LArgumentsElements
// LArgumentsLength
// LBinaryOperation
// LAddI
// LApplyArguments
// LArithmeticD
......@@ -54,20 +66,17 @@ class LCodeGen;
// LBitI
// LBoundsCheck
// LCmpID
// LCmpIDAndBranch
// LCmpJSObjectEq
// LCmpJSObjectEqAndBranch
// LCmpT
// LDivI
// LInstanceOf
// LInstanceOfAndBranch
// LInstanceOfKnownGlobal
// LLoadKeyedFastElement
// LLoadKeyedGeneric
// LModI
// LMulI
// LPower
// LShiftI
// LStringCharCodeAt
// LSubI
// LCallConstantFunction
// LCallFunction
......@@ -77,25 +86,27 @@ class LCodeGen;
// LCallNamed
// LCallRuntime
// LCallStub
// LCheckPrototypeMaps
// LConstant
// LConstantD
// LConstantI
// LConstantT
// LDeoptimize
// LFunctionLiteral
// LGap
// LLabel
// LGlobalObject
// LGlobalReceiver
// LLabel
// LGoto
// LLazyBailout
// LLoadContextSlot
// LLoadGlobal
// LMaterializedLiteral
// LCheckPrototypeMaps
// LLoadContextSlot
// LArrayLiteral
// LObjectLiteral
// LRegExpLiteral
// LOsrEntry
// LParameter
// LRegExpConstructResult
// LStackCheck
// LStoreKeyed
// LStoreKeyedFastElement
......@@ -103,31 +114,25 @@ class LCodeGen;
// LStoreNamed
// LStoreNamedField
// LStoreNamedGeneric
// LUnaryOperation
// LJSArrayLength
// LFixedArrayLength
// LStringCharCodeAt
// LBitNotI
// LBranch
// LCallNew
// LCheckFunction
// LCheckPrototypeMaps
// LCheckInstanceType
// LCheckMap
// LCheckSmi
// LClassOfTest
// LClassOfTestAndBranch
// LDeleteProperty
// LDoubleToI
// LFixedArrayLength
// LHasCachedArrayIndex
// LHasCachedArrayIndexAndBranch
// LHasInstanceType
// LHasInstanceTypeAndBranch
// LInteger32ToDouble
// LIsNull
// LIsNullAndBranch
// LIsObject
// LIsObjectAndBranch
// LIsSmi
// LIsSmiAndBranch
// LJSArrayLength
// LLoadNamedField
// LLoadNamedGeneric
// LLoadFunctionPrototype
......@@ -142,19 +147,16 @@ class LCodeGen;
// LThrow
// LTypeof
// LTypeofIs
// LTypeofIsAndBranch
// LUnaryMathOperation
// LValueOf
// LUnknownOSRValue
#define LITHIUM_ALL_INSTRUCTION_LIST(V) \
V(BinaryOperation) \
V(ControlInstruction) \
V(Constant) \
V(Call) \
V(MaterializedLiteral) \
V(StoreKeyed) \
V(StoreNamed) \
V(UnaryOperation) \
LITHIUM_CONCRETE_INSTRUCTION_LIST(V)
......@@ -293,14 +295,17 @@ class LInstruction: public ZoneObject {
virtual void CompileToNative(LCodeGen* generator) = 0;
virtual const char* Mnemonic() const = 0;
virtual void PrintTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream) const { }
virtual void PrintTo(StringStream* stream);
virtual void PrintDataTo(StringStream* stream) = 0;
virtual void PrintOutputOperandTo(StringStream* stream) = 0;
// Declare virtual type testers.
#define DECLARE_DO(type) virtual bool Is##type() const { return false; }
LITHIUM_ALL_INSTRUCTION_LIST(DECLARE_DO)
#undef DECLARE_DO
virtual bool IsControl() const { return false; }
virtual void SetBranchTargets(int true_block_id, int false_block_id) { }
void set_environment(LEnvironment* env) { environment_.set(env); }
LEnvironment* environment() const { return environment_.get(); }
......@@ -310,9 +315,7 @@ class LInstruction: public ZoneObject {
LPointerMap* pointer_map() const { return pointer_map_.get(); }
bool HasPointerMap() const { return pointer_map_.is_set(); }
void set_result(LOperand* operand) { result_.set(operand); }
LOperand* result() const { return result_.get(); }
bool HasResult() const { return result_.is_set(); }
virtual bool HasResult() const = 0;
void set_hydrogen_value(HValue* value) { hydrogen_value_ = value; }
HValue* hydrogen_value() const { return hydrogen_value_; }
......@@ -330,13 +333,66 @@ class LInstruction: public ZoneObject {
private:
SetOncePointer<LEnvironment> environment_;
SetOncePointer<LPointerMap> pointer_map_;
SetOncePointer<LOperand> result_;
HValue* hydrogen_value_;
SetOncePointer<LEnvironment> deoptimization_environment_;
};
class LGap: public LInstruction {
template<typename ElementType, int NumElements>
class OperandContainer {
public:
OperandContainer() {
for (int i = 0; i < NumElements; i++) elems_[i] = NULL;
}
int length() { return NumElements; }
ElementType& operator[](int i) {
ASSERT(i < length());
return elems_[i];
}
void PrintOperandsTo(StringStream* stream);
private:
ElementType elems_[NumElements];
};
template<typename ElementType>
class OperandContainer<ElementType, 0> {
public:
int length() { return 0; }
void PrintOperandsTo(StringStream* stream) { }
};
// R = number of result operands (0 or 1).
// I = number of input operands.
// T = number of temporary operands.
template<int R, int I, int T>
class LTemplateInstruction: public LInstruction {
public:
// Allow 0 or 1 output operands.
STATIC_ASSERT(R == 0 || R == 1);
virtual bool HasResult() const { return R != 0; }
void set_result(LOperand* operand) { results_[0] = operand; }
LOperand* result() { return results_[0]; }
int InputCount() { return I; }
LOperand* InputAt(int i) { return inputs_[i]; }
int TempCount() { return T; }
LOperand* TempAt(int i) { return temps_[i]; }
virtual void PrintDataTo(StringStream* stream);
virtual void PrintOutputOperandTo(StringStream* stream);
protected:
OperandContainer<LOperand*, R> results_;
OperandContainer<LOperand*, I> inputs_;
OperandContainer<LOperand*, T> temps_;
};
class LGap: public LTemplateInstruction<0, 0, 0> {
public:
explicit LGap(HBasicBlock* block)
: block_(block) {
......@@ -377,13 +433,13 @@ class LGap: public LInstruction {
};
class LGoto: public LInstruction {
class LGoto: public LTemplateInstruction<0, 0, 0> {
public:
LGoto(int block_id, bool include_stack_check = false)
: block_id_(block_id), include_stack_check_(include_stack_check) { }
DECLARE_CONCRETE_INSTRUCTION(Goto, "goto")
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
virtual bool IsControl() const { return true; }
int block_id() const { return block_id_; }
......@@ -395,7 +451,7 @@ class LGoto: public LInstruction {
};
class LLazyBailout: public LInstruction {
class LLazyBailout: public LTemplateInstruction<0, 0, 0> {
public:
LLazyBailout() : gap_instructions_size_(0) { }
......@@ -411,7 +467,7 @@ class LLazyBailout: public LInstruction {
};
class LDeoptimize: public LInstruction {
class LDeoptimize: public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Deoptimize, "deoptimize")
};
......@@ -424,7 +480,7 @@ class LLabel: public LGap {
DECLARE_CONCRETE_INSTRUCTION(Label, "label")
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
int block_id() const { return block()->block_id(); }
bool is_loop_header() const { return block()->IsLoopHeader(); }
......@@ -439,13 +495,13 @@ class LLabel: public LGap {
};
class LParameter: public LInstruction {
class LParameter: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Parameter, "parameter")
};
class LCallStub: public LInstruction {
class LCallStub: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallStub, "call-stub")
DECLARE_HYDROGEN_ACCESSOR(CallStub)
......@@ -456,96 +512,81 @@ class LCallStub: public LInstruction {
};
class LUnknownOSRValue: public LInstruction {
class LUnknownOSRValue: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue, "unknown-osr-value")
};
class LUnaryOperation: public LInstruction {
template<int I, int T>
class LControlInstruction: public LTemplateInstruction<0, I, T> {
public:
explicit LUnaryOperation(LOperand* input) : input_(input) { }
DECLARE_INSTRUCTION(UnaryOperation)
LOperand* input() const { return input_; }
virtual void PrintDataTo(StringStream* stream) const;
private:
LOperand* input_;
};
class LBinaryOperation: public LInstruction {
public:
LBinaryOperation(LOperand* left, LOperand* right)
: left_(left), right_(right) { }
DECLARE_INSTRUCTION(BinaryOperation)
DECLARE_INSTRUCTION(ControlInstruction)
virtual bool IsControl() const { return true; }
LOperand* left() const { return left_; }
LOperand* right() const { return right_; }
virtual void PrintDataTo(StringStream* stream) const;
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
void SetBranchTargets(int true_block_id, int false_block_id) {
true_block_id_ = true_block_id;
false_block_id_ = false_block_id;
}
private:
LOperand* left_;
LOperand* right_;
int true_block_id_;
int false_block_id_;
};
class LApplyArguments: public LBinaryOperation {
class LApplyArguments: public LTemplateInstruction<1, 4, 0> {
public:
LApplyArguments(LOperand* function,
LOperand* receiver,
LOperand* length,
LOperand* elements)
: LBinaryOperation(function, receiver),
length_(length),
elements_(elements) { }
LOperand* elements) {
inputs_[0] = function;
inputs_[1] = receiver;
inputs_[2] = length;
inputs_[3] = elements;
}
DECLARE_CONCRETE_INSTRUCTION(ApplyArguments, "apply-arguments")
LOperand* function() const { return left(); }
LOperand* receiver() const { return right(); }
LOperand* length() const { return length_; }
LOperand* elements() const { return elements_; }
private:
LOperand* length_;
LOperand* elements_;
LOperand* function() { return inputs_[0]; }
LOperand* receiver() { return inputs_[1]; }
LOperand* length() { return inputs_[2]; }
LOperand* elements() { return inputs_[3]; }
};
class LAccessArgumentsAt: public LInstruction {
class LAccessArgumentsAt: public LTemplateInstruction<1, 3, 0> {
public:
LAccessArgumentsAt(LOperand* arguments, LOperand* length, LOperand* index)
: arguments_(arguments), length_(length), index_(index) { }
LAccessArgumentsAt(LOperand* arguments, LOperand* length, LOperand* index) {
inputs_[0] = arguments;
inputs_[1] = length;
inputs_[2] = index;
}
DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt, "access-arguments-at")
LOperand* arguments() const { return arguments_; }
LOperand* length() const { return length_; }
LOperand* index() const { return index_; }
virtual void PrintDataTo(StringStream* stream) const;
LOperand* arguments() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
LOperand* index() { return inputs_[2]; }
private:
LOperand* arguments_;
LOperand* length_;
LOperand* index_;
virtual void PrintDataTo(StringStream* stream);
};
class LArgumentsLength: public LUnaryOperation {
class LArgumentsLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LArgumentsLength(LOperand* elements) : LUnaryOperation(elements) {}
explicit LArgumentsLength(LOperand* elements) {
inputs_[0] = elements;
}
DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength, "arguments-length")
};
class LArgumentsElements: public LInstruction {
class LArgumentsElements: public LTemplateInstruction<1, 0, 0> {
public:
LArgumentsElements() { }
......@@ -553,341 +594,274 @@ class LArgumentsElements: public LInstruction {
};
class LModI: public LBinaryOperation {
class LModI: public LTemplateInstruction<1, 2, 0> {
public:
LModI(LOperand* left, LOperand* right) : LBinaryOperation(left, right) { }
LModI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
};
class LDivI: public LBinaryOperation {
class LDivI: public LTemplateInstruction<1, 2, 0> {
public:
LDivI(LOperand* left, LOperand* right)
: LBinaryOperation(left, right) { }
LDivI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
DECLARE_HYDROGEN_ACCESSOR(Div)
};
class LMulI: public LBinaryOperation {
class LMulI: public LTemplateInstruction<1, 2, 1> {
public:
LMulI(LOperand* left, LOperand* right, LOperand* temp)
: LBinaryOperation(left, right), temp_(temp) { }
LMulI(LOperand* left, LOperand* right, LOperand* temp) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-i")
DECLARE_HYDROGEN_ACCESSOR(Mul)
LOperand* temp() const { return temp_; }
private:
LOperand* temp_;
};
class LCmpID: public LBinaryOperation {
class LCmpID: public LTemplateInstruction<1, 2, 0> {
public:
LCmpID(LOperand* left, LOperand* right)
: LBinaryOperation(left, right) { }
LCmpID(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpID, "cmp-id")
DECLARE_HYDROGEN_ACCESSOR(Compare)
Token::Value op() const { return hydrogen()->token(); }
bool is_double() const {
return hydrogen()->GetInputRepresentation().IsDouble();
}
DECLARE_CONCRETE_INSTRUCTION(CmpID, "cmp-id")
DECLARE_HYDROGEN_ACCESSOR(Compare)
};
class LCmpIDAndBranch: public LCmpID {
class LCmpIDAndBranch: public LControlInstruction<2, 0> {
public:
LCmpIDAndBranch(LOperand* left,
LOperand* right,
int true_block_id,
int false_block_id)
: LCmpID(left, right),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
LCmpIDAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpIDAndBranch, "cmp-id-and-branch")
virtual void PrintDataTo(StringStream* stream) const;
virtual bool IsControl() const { return true; }
DECLARE_HYDROGEN_ACCESSOR(Compare)
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
Token::Value op() const { return hydrogen()->token(); }
bool is_double() const {
return hydrogen()->GetInputRepresentation().IsDouble();
}
private:
int true_block_id_;
int false_block_id_;
virtual void PrintDataTo(StringStream* stream);
};
class LUnaryMathOperation: public LUnaryOperation {
class LUnaryMathOperation: public LTemplateInstruction<1, 1, 1> {
public:
explicit LUnaryMathOperation(LOperand* value, LOperand* temp)
: LUnaryOperation(value), temp_(temp) { }
LUnaryMathOperation(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(UnaryMathOperation, "unary-math-operation")
DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
BuiltinFunctionId op() const { return hydrogen()->op(); }
LOperand* temp() const { return temp_; }
private:
LOperand* temp_;
};
class LCmpJSObjectEq: public LBinaryOperation {
class LCmpJSObjectEq: public LTemplateInstruction<1, 2, 0> {
public:
LCmpJSObjectEq(LOperand* left, LOperand* right)
: LBinaryOperation(left, right) {}
LCmpJSObjectEq(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpJSObjectEq, "cmp-jsobject-eq")
};
class LCmpJSObjectEqAndBranch: public LCmpJSObjectEq {
class LCmpJSObjectEqAndBranch: public LControlInstruction<2, 0> {
public:
LCmpJSObjectEqAndBranch(LOperand* left,
LOperand* right,
int true_block_id,
int false_block_id)
: LCmpJSObjectEq(left, right),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
LCmpJSObjectEqAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpJSObjectEqAndBranch,
"cmp-jsobject-eq-and-branch")
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
private:
int true_block_id_;
int false_block_id_;
};
class LIsNull: public LUnaryOperation {
class LIsNull: public LTemplateInstruction<1, 1, 0> {
public:
explicit LIsNull(LOperand* value) : LUnaryOperation(value) {}
explicit LIsNull(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsNull, "is-null")
DECLARE_HYDROGEN_ACCESSOR(IsNull);
DECLARE_HYDROGEN_ACCESSOR(IsNull)
bool is_strict() const { return hydrogen()->is_strict(); }
};
class LIsNullAndBranch: public LIsNull {
class LIsNullAndBranch: public LControlInstruction<1, 0> {
public:
LIsNullAndBranch(LOperand* value,
int true_block_id,
int false_block_id)
: LIsNull(value),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
explicit LIsNullAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsNullAndBranch, "is-null-and-branch")
virtual void PrintDataTo(StringStream* stream) const;
virtual bool IsControl() const { return true; }
DECLARE_HYDROGEN_ACCESSOR(IsNull)
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
bool is_strict() const { return hydrogen()->is_strict(); }
private:
int true_block_id_;
int false_block_id_;
virtual void PrintDataTo(StringStream* stream);
};
class LIsObject: public LUnaryOperation {
class LIsObject: public LTemplateInstruction<1, 1, 1> {
public:
LIsObject(LOperand* value, LOperand* temp)
: LUnaryOperation(value), temp_(temp) {}
LIsObject(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(IsObject, "is-object")
LOperand* temp() const { return temp_; }
private:
LOperand* temp_;
};
class LIsObjectAndBranch: public LIsObject {
class LIsObjectAndBranch: public LControlInstruction<1, 2> {
public:
LIsObjectAndBranch(LOperand* value,
LOperand* temp,
LOperand* temp2,
int true_block_id,
int false_block_id)
: LIsObject(value, temp),
temp2_(temp2),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
LIsObjectAndBranch(LOperand* value, LOperand* temp, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp;
temps_[1] = temp2;
}
DECLARE_CONCRETE_INSTRUCTION(IsObjectAndBranch, "is-object-and-branch")
virtual void PrintDataTo(StringStream* stream) const;
virtual bool IsControl() const { return true; }
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
LOperand* temp2() const { return temp2_; }
private:
LOperand* temp2_;
int true_block_id_;
int false_block_id_;
virtual void PrintDataTo(StringStream* stream);
};
class LIsSmi: public LUnaryOperation {
class LIsSmi: public LTemplateInstruction<1, 1, 0> {
public:
explicit LIsSmi(LOperand* value) : LUnaryOperation(value) {}
explicit LIsSmi(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsSmi, "is-smi")
DECLARE_HYDROGEN_ACCESSOR(IsSmi)
};
class LIsSmiAndBranch: public LIsSmi {
class LIsSmiAndBranch: public LControlInstruction<1, 0> {
public:
LIsSmiAndBranch(LOperand* value,
int true_block_id,
int false_block_id)
: LIsSmi(value),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
explicit LIsSmiAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch, "is-smi-and-branch")
virtual void PrintDataTo(StringStream* stream) const;
virtual bool IsControl() const { return true; }
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
private:
int true_block_id_;
int false_block_id_;
virtual void PrintDataTo(StringStream* stream);
};
class LHasInstanceType: public LUnaryOperation {
class LHasInstanceType: public LTemplateInstruction<1, 1, 0> {
public:
explicit LHasInstanceType(LOperand* value)
: LUnaryOperation(value) { }
explicit LHasInstanceType(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasInstanceType, "has-instance-type")
DECLARE_HYDROGEN_ACCESSOR(HasInstanceType)
InstanceType TestType(); // The type to test against when generating code.
Condition BranchCondition(); // The branch condition for 'true'.
};
class LHasInstanceTypeAndBranch: public LHasInstanceType {
class LHasInstanceTypeAndBranch: public LControlInstruction<1, 0> {
public:
LHasInstanceTypeAndBranch(LOperand* value,
int true_block_id,
int false_block_id)
: LHasInstanceType(value),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
explicit LHasInstanceTypeAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch,
"has-instance-type-and-branch")
virtual void PrintDataTo(StringStream* stream) const;
virtual bool IsControl() const { return true; }
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
DECLARE_HYDROGEN_ACCESSOR(HasInstanceType)
private:
int true_block_id_;
int false_block_id_;
virtual void PrintDataTo(StringStream* stream);
};
class LHasCachedArrayIndex: public LUnaryOperation {
class LHasCachedArrayIndex: public LTemplateInstruction<1, 1, 0> {
public:
explicit LHasCachedArrayIndex(LOperand* value) : LUnaryOperation(value) {}
explicit LHasCachedArrayIndex(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndex, "has-cached-array-index")
DECLARE_HYDROGEN_ACCESSOR(HasCachedArrayIndex)
};
class LHasCachedArrayIndexAndBranch: public LHasCachedArrayIndex {
class LHasCachedArrayIndexAndBranch: public LControlInstruction<1, 0> {
public:
LHasCachedArrayIndexAndBranch(LOperand* value,
int true_block_id,
int false_block_id)
: LHasCachedArrayIndex(value),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
explicit LHasCachedArrayIndexAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch,
"has-cached-array-index-and-branch")
virtual void PrintDataTo(StringStream* stream) const;
virtual bool IsControl() const { return true; }
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
private:
int true_block_id_;
int false_block_id_;
virtual void PrintDataTo(StringStream* stream);
};
class LClassOfTest: public LUnaryOperation {
class LClassOfTest: public LTemplateInstruction<1, 1, 0> {
public:
explicit LClassOfTest(LOperand* value) : LUnaryOperation(value) {}
explicit LClassOfTest(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(ClassOfTest, "class-of-test")
DECLARE_HYDROGEN_ACCESSOR(ClassOfTest)
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
};
class LClassOfTestAndBranch: public LClassOfTest {
class LClassOfTestAndBranch: public LControlInstruction<1, 1> {
public:
LClassOfTestAndBranch(LOperand* value,
LOperand* temporary,
int true_block_id,
int false_block_id)
: LClassOfTest(value),
temporary_(temporary),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
LClassOfTestAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch,
"class-of-test-and-branch")
virtual void PrintDataTo(StringStream* stream) const;
virtual bool IsControl() const { return true; }
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
LOperand* temporary() { return temporary_; }
DECLARE_HYDROGEN_ACCESSOR(ClassOfTest)
private:
LOperand* temporary_;
int true_block_id_;
int false_block_id_;
virtual void PrintDataTo(StringStream* stream);
};
class LCmpT: public LBinaryOperation {
class LCmpT: public LTemplateInstruction<1, 2, 0> {
public:
LCmpT(LOperand* left, LOperand* right) : LBinaryOperation(left, right) {}
LCmpT(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpT, "cmp-t")
DECLARE_HYDROGEN_ACCESSOR(Compare)
......@@ -896,90 +870,78 @@ class LCmpT: public LBinaryOperation {
};
class LCmpTAndBranch: public LCmpT {
class LCmpTAndBranch: public LControlInstruction<2, 0> {
public:
LCmpTAndBranch(LOperand* left,
LOperand* right,
int true_block_id,
int false_block_id)
: LCmpT(left, right),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
LCmpTAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpTAndBranch, "cmp-t-and-branch")
DECLARE_HYDROGEN_ACCESSOR(Compare)
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
private:
int true_block_id_;
int false_block_id_;
Token::Value op() const { return hydrogen()->token(); }
};
class LInstanceOf: public LBinaryOperation {
class LInstanceOf: public LTemplateInstruction<1, 2, 0> {
public:
LInstanceOf(LOperand* left, LOperand* right)
: LBinaryOperation(left, right) { }
LInstanceOf(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(InstanceOf, "instance-of")
};
class LInstanceOfAndBranch: public LInstanceOf {
class LInstanceOfAndBranch: public LControlInstruction<2, 0> {
public:
LInstanceOfAndBranch(LOperand* left,
LOperand* right,
int true_block_id,
int false_block_id)
: LInstanceOf(left, right),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
LInstanceOfAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(InstanceOfAndBranch, "instance-of-and-branch")
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
private:
int true_block_id_;
int false_block_id_;
};
class LInstanceOfKnownGlobal: public LUnaryOperation {
class LInstanceOfKnownGlobal: public LTemplateInstruction<1, 1, 1> {
public:
explicit LInstanceOfKnownGlobal(LOperand* left, LOperand* temp)
: LUnaryOperation(left), temp_(temp) { }
LInstanceOfKnownGlobal(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(InstanceOfKnownGlobal,
"instance-of-known-global")
DECLARE_HYDROGEN_ACCESSOR(InstanceOfKnownGlobal)
Handle<JSFunction> function() const { return hydrogen()->function(); }
LOperand* temp() const { return temp_; }
private:
LOperand* temp_;
};
class LBoundsCheck: public LBinaryOperation {
class LBoundsCheck: public LTemplateInstruction<0, 2, 0> {
public:
LBoundsCheck(LOperand* index, LOperand* length)
: LBinaryOperation(index, length) { }
LBoundsCheck(LOperand* index, LOperand* length) {
inputs_[0] = index;
inputs_[1] = length;
}
LOperand* index() const { return left(); }
LOperand* length() const { return right(); }
LOperand* index() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(BoundsCheck, "bounds-check")
};
class LBitI: public LBinaryOperation {
class LBitI: public LTemplateInstruction<1, 2, 0> {
public:
LBitI(Token::Value op, LOperand* left, LOperand* right)
: LBinaryOperation(left, right), op_(op) { }
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
......@@ -990,10 +952,13 @@ class LBitI: public LBinaryOperation {
};
class LShiftI: public LBinaryOperation {
class LShiftI: public LTemplateInstruction<1, 2, 0> {
public:
LShiftI(Token::Value op, LOperand* left, LOperand* right, bool can_deopt)
: LBinaryOperation(left, right), op_(op), can_deopt_(can_deopt) { }
: op_(op), can_deopt_(can_deopt) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
......@@ -1007,17 +972,19 @@ class LShiftI: public LBinaryOperation {
};
class LSubI: public LBinaryOperation {
class LSubI: public LTemplateInstruction<1, 2, 0> {
public:
LSubI(LOperand* left, LOperand* right)
: LBinaryOperation(left, right) { }
LSubI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(SubI, "sub-i")
DECLARE_HYDROGEN_ACCESSOR(Sub)
};
class LConstant: public LInstruction {
class LConstant: public LTemplateInstruction<1, 0, 0> {
DECLARE_INSTRUCTION(Constant)
};
......@@ -1058,39 +1025,31 @@ class LConstantT: public LConstant {
};
class LBranch: public LUnaryOperation {
class LBranch: public LControlInstruction<1, 0> {
public:
LBranch(LOperand* input, int true_block_id, int false_block_id)
: LUnaryOperation(input),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
explicit LBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Branch, "branch")
DECLARE_HYDROGEN_ACCESSOR(Value)
virtual void PrintDataTo(StringStream* stream) const;
virtual bool IsControl() const { return true; }
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
private:
int true_block_id_;
int false_block_id_;
virtual void PrintDataTo(StringStream* stream);
};
class LCmpMapAndBranch: public LUnaryOperation {
class LCmpMapAndBranch: public LTemplateInstruction<0, 1, 1> {
public:
LCmpMapAndBranch(LOperand* value, LOperand* temp)
: LUnaryOperation(value), temp_(temp) { }
LCmpMapAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(CmpMapAndBranch, "cmp-map-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareMap)
virtual bool IsControl() const { return true; }
LOperand* temp() const { return temp_; }
Handle<Map> map() const { return hydrogen()->map(); }
int true_block_id() const {
return hydrogen()->FirstSuccessor()->block_id();
......@@ -1098,75 +1057,82 @@ class LCmpMapAndBranch: public LUnaryOperation {
int false_block_id() const {
return hydrogen()->SecondSuccessor()->block_id();
}
private:
LOperand* temp_;
};
class LJSArrayLength: public LUnaryOperation {
class LJSArrayLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LJSArrayLength(LOperand* input) : LUnaryOperation(input) { }
explicit LJSArrayLength(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(JSArrayLength, "js-array-length")
DECLARE_HYDROGEN_ACCESSOR(JSArrayLength)
};
class LFixedArrayLength: public LUnaryOperation {
class LFixedArrayLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LFixedArrayLength(LOperand* input) : LUnaryOperation(input) { }
explicit LFixedArrayLength(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(FixedArrayLength, "fixed-array-length")
DECLARE_HYDROGEN_ACCESSOR(FixedArrayLength)
};
class LValueOf: public LUnaryOperation {
class LValueOf: public LTemplateInstruction<1, 1, 1> {
public:
LValueOf(LOperand* input, LOperand* temporary)
: LUnaryOperation(input), temporary_(temporary) { }
LOperand* temporary() const { return temporary_; }
LValueOf(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(ValueOf, "value-of")
DECLARE_HYDROGEN_ACCESSOR(ValueOf)
private:
LOperand* temporary_;
};
class LThrow: public LUnaryOperation {
class LThrow: public LTemplateInstruction<0, 1, 0> {
public:
explicit LThrow(LOperand* value) : LUnaryOperation(value) { }
explicit LThrow(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Throw, "throw")
};
class LBitNotI: public LUnaryOperation {
class LBitNotI: public LTemplateInstruction<1, 1, 0> {
public:
explicit LBitNotI(LOperand* use) : LUnaryOperation(use) { }
explicit LBitNotI(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(BitNotI, "bit-not-i")
};
class LAddI: public LBinaryOperation {
class LAddI: public LTemplateInstruction<1, 2, 0> {
public:
LAddI(LOperand* left, LOperand* right)
: LBinaryOperation(left, right) { }
LAddI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(AddI, "add-i")
DECLARE_HYDROGEN_ACCESSOR(Add)
};
class LArithmeticD: public LBinaryOperation {
class LArithmeticD: public LTemplateInstruction<1, 2, 0> {
public:
LArithmeticD(Token::Value op, LOperand* left, LOperand* right)
: LBinaryOperation(left, right), op_(op) { }
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
......@@ -1178,10 +1144,13 @@ class LArithmeticD: public LBinaryOperation {
};
class LArithmeticT: public LBinaryOperation {
class LArithmeticT: public LTemplateInstruction<1, 2, 0> {
public:
LArithmeticT(Token::Value op, LOperand* left, LOperand* right)
: LBinaryOperation(left, right), op_(op) { }
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
virtual void CompileToNative(LCodeGen* generator);
virtual const char* Mnemonic() const;
......@@ -1193,166 +1162,186 @@ class LArithmeticT: public LBinaryOperation {
};
class LReturn: public LUnaryOperation {
class LReturn: public LTemplateInstruction<0, 1, 0> {
public:
explicit LReturn(LOperand* use) : LUnaryOperation(use) { }
explicit LReturn(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Return, "return")
};
class LLoadNamedField: public LUnaryOperation {
class LLoadNamedField: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadNamedField(LOperand* object) : LUnaryOperation(object) { }
explicit LLoadNamedField(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedField)
};
class LLoadNamedGeneric: public LUnaryOperation {
class LLoadNamedGeneric: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadNamedGeneric(LOperand* object) : LUnaryOperation(object) { }
explicit LLoadNamedGeneric(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric, "load-named-generic")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedGeneric)
LOperand* object() const { return input(); }
LOperand* object() { return inputs_[0]; }
Handle<Object> name() const { return hydrogen()->name(); }
};
class LLoadFunctionPrototype: public LUnaryOperation {
class LLoadFunctionPrototype: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadFunctionPrototype(LOperand* function)
: LUnaryOperation(function) { }
explicit LLoadFunctionPrototype(LOperand* function) {
inputs_[0] = function;
}
DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype, "load-function-prototype")
DECLARE_HYDROGEN_ACCESSOR(LoadFunctionPrototype)
LOperand* function() const { return input(); }
LOperand* function() { return inputs_[0]; }
};
class LLoadElements: public LUnaryOperation {
class LLoadElements: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadElements(LOperand* obj) : LUnaryOperation(obj) { }
explicit LLoadElements(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadElements, "load-elements")
};
class LLoadKeyedFastElement: public LBinaryOperation {
class LLoadKeyedFastElement: public LTemplateInstruction<1, 2, 0> {
public:
LLoadKeyedFastElement(LOperand* elements, LOperand* key)
: LBinaryOperation(elements, key) { }
LLoadKeyedFastElement(LOperand* elements, LOperand* key) {
inputs_[0] = elements;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFastElement, "load-keyed-fast-element")
DECLARE_HYDROGEN_ACCESSOR(LoadKeyedFastElement)
LOperand* elements() const { return left(); }
LOperand* key() const { return right(); }
LOperand* elements() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LLoadKeyedGeneric: public LBinaryOperation {
class LLoadKeyedGeneric: public LTemplateInstruction<1, 2, 0> {
public:
LLoadKeyedGeneric(LOperand* obj, LOperand* key)
: LBinaryOperation(obj, key) { }
LLoadKeyedGeneric(LOperand* obj, LOperand* key) {
inputs_[0] = obj;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric, "load-keyed-generic")
LOperand* object() const { return left(); }
LOperand* key() const { return right(); }
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LLoadGlobal: public LInstruction {
class LLoadGlobal: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(LoadGlobal, "load-global")
DECLARE_HYDROGEN_ACCESSOR(LoadGlobal)
};
class LStoreGlobal: public LUnaryOperation {
class LStoreGlobal: public LTemplateInstruction<0, 1, 0> {
public:
explicit LStoreGlobal(LOperand* value) : LUnaryOperation(value) {}
explicit LStoreGlobal(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(StoreGlobal, "store-global")
DECLARE_HYDROGEN_ACCESSOR(StoreGlobal)
};
class LLoadContextSlot: public LInstruction {
class LLoadContextSlot: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot, "load-context-slot")
DECLARE_HYDROGEN_ACCESSOR(LoadContextSlot)
int context_chain_length() const {
return hydrogen()->context_chain_length();
}
int slot_index() const { return hydrogen()->slot_index(); }
int context_chain_length() { return hydrogen()->context_chain_length(); }
int slot_index() { return hydrogen()->slot_index(); }
virtual void PrintDataTo(StringStream* stream);
};
class LPushArgument: public LUnaryOperation {
class LPushArgument: public LTemplateInstruction<0, 1, 0> {
public:
explicit LPushArgument(LOperand* argument) : LUnaryOperation(argument) {}
explicit LPushArgument(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(PushArgument, "push-argument")
};
class LGlobalObject: public LInstruction {
class LGlobalObject: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(GlobalObject, "global-object")
};
class LGlobalReceiver: public LInstruction {
class LGlobalReceiver: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(GlobalReceiver, "global-receiver")
};
class LCallConstantFunction: public LInstruction {
class LCallConstantFunction: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallConstantFunction, "call-constant-function")
DECLARE_HYDROGEN_ACCESSOR(CallConstantFunction)
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> function() const { return hydrogen()->function(); }
Handle<JSFunction> function() { return hydrogen()->function(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallKeyed: public LInstruction {
class LCallKeyed: public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallKeyed(LOperand* key) {
inputs_[0] = key;
}
DECLARE_CONCRETE_INSTRUCTION(CallKeyed, "call-keyed")
DECLARE_HYDROGEN_ACCESSOR(CallKeyed)
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallNamed: public LInstruction {
class LCallNamed: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallNamed, "call-named")
DECLARE_HYDROGEN_ACCESSOR(CallNamed)
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
Handle<String> name() const { return hydrogen()->name(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallFunction: public LInstruction {
class LCallFunction: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallFunction, "call-function")
DECLARE_HYDROGEN_ACCESSOR(CallFunction)
......@@ -1361,44 +1350,46 @@ class LCallFunction: public LInstruction {
};
class LCallGlobal: public LInstruction {
class LCallGlobal: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallGlobal, "call-global")
DECLARE_HYDROGEN_ACCESSOR(CallGlobal)
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
Handle<String> name() const {return hydrogen()->name(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallKnownGlobal: public LInstruction {
class LCallKnownGlobal: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallKnownGlobal, "call-known-global")
DECLARE_HYDROGEN_ACCESSOR(CallKnownGlobal)
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> target() const { return hydrogen()->target(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallNew: public LUnaryOperation {
class LCallNew: public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallNew(LOperand* constructor) : LUnaryOperation(constructor) { }
explicit LCallNew(LOperand* constructor) {
inputs_[0] = constructor;
}
DECLARE_CONCRETE_INSTRUCTION(CallNew, "call-new")
DECLARE_HYDROGEN_ACCESSOR(CallNew)
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallRuntime: public LInstruction {
class LCallRuntime: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallRuntime, "call-runtime")
DECLARE_HYDROGEN_ACCESSOR(CallRuntime)
......@@ -1408,42 +1399,44 @@ class LCallRuntime: public LInstruction {
};
class LInteger32ToDouble: public LUnaryOperation {
class LInteger32ToDouble: public LTemplateInstruction<1, 1, 0> {
public:
explicit LInteger32ToDouble(LOperand* use) : LUnaryOperation(use) { }
explicit LInteger32ToDouble(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Integer32ToDouble, "int32-to-double")
};
class LNumberTagI: public LUnaryOperation {
class LNumberTagI: public LTemplateInstruction<1, 1, 0> {
public:
explicit LNumberTagI(LOperand* use) : LUnaryOperation(use) { }
explicit LNumberTagI(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(NumberTagI, "number-tag-i")
};
class LNumberTagD: public LUnaryOperation {
class LNumberTagD: public LTemplateInstruction<1, 1, 2> {
public:
LNumberTagD(LOperand* value, LOperand* temp1, LOperand* temp2)
: LUnaryOperation(value), temp1_(temp1), temp2_(temp2) { }
LNumberTagD(LOperand* value, LOperand* temp1, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
DECLARE_CONCRETE_INSTRUCTION(NumberTagD, "number-tag-d")
LOperand* temp1() const { return temp1_; }
LOperand* temp2() const { return temp2_; }
private:
LOperand* temp1_;
LOperand* temp2_;
};
// Sometimes truncating conversion from a tagged value to an int32.
class LDoubleToI: public LUnaryOperation {
class LDoubleToI: public LTemplateInstruction<1, 1, 0> {
public:
explicit LDoubleToI(LOperand* value) : LUnaryOperation(value) { }
explicit LDoubleToI(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(DoubleToI, "double-to-i")
DECLARE_HYDROGEN_ACCESSOR(Change)
......@@ -1453,42 +1446,46 @@ class LDoubleToI: public LUnaryOperation {
// Truncating conversion from a tagged value to an int32.
class LTaggedToI: public LUnaryOperation {
class LTaggedToI: public LTemplateInstruction<1, 1, 1> {
public:
LTaggedToI(LOperand* value, LOperand* temp)
: LUnaryOperation(value), temp_(temp) { }
LTaggedToI(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
DECLARE_HYDROGEN_ACCESSOR(Change)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
LOperand* temp() const { return temp_; }
private:
LOperand* temp_;
};
class LSmiTag: public LUnaryOperation {
class LSmiTag: public LTemplateInstruction<1, 1, 0> {
public:
explicit LSmiTag(LOperand* use) : LUnaryOperation(use) { }
explicit LSmiTag(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(SmiTag, "smi-tag")
};
class LNumberUntagD: public LUnaryOperation {
class LNumberUntagD: public LTemplateInstruction<1, 1, 0> {
public:
explicit LNumberUntagD(LOperand* value) : LUnaryOperation(value) { }
explicit LNumberUntagD(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(NumberUntagD, "double-untag")
};
class LSmiUntag: public LUnaryOperation {
class LSmiUntag: public LTemplateInstruction<1, 1, 0> {
public:
LSmiUntag(LOperand* use, bool needs_check)
: LUnaryOperation(use), needs_check_(needs_check) { }
LSmiUntag(LOperand* value, bool needs_check)
: needs_check_(needs_check) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(SmiUntag, "smi-untag")
......@@ -1499,23 +1496,21 @@ class LSmiUntag: public LUnaryOperation {
};
class LStoreNamed: public LInstruction {
class LStoreNamed: public LTemplateInstruction<0, 2, 0> {
public:
LStoreNamed(LOperand* obj, LOperand* val)
: object_(obj), value_(val) { }
LStoreNamed(LOperand* obj, LOperand* val) {
inputs_[0] = obj;
inputs_[1] = val;
}
DECLARE_INSTRUCTION(StoreNamed)
DECLARE_HYDROGEN_ACCESSOR(StoreNamed)
virtual void PrintDataTo(StringStream* stream) const;
virtual void PrintDataTo(StringStream* stream);
LOperand* object() const { return object_; }
LOperand* object() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
Handle<Object> name() const { return hydrogen()->name(); }
LOperand* value() const { return value_; }
private:
LOperand* object_;
LOperand* value_;
};
......@@ -1530,7 +1525,7 @@ class LStoreNamedField: public LStoreNamed {
bool is_in_object() { return hydrogen()->is_in_object(); }
int offset() { return hydrogen()->offset(); }
bool needs_write_barrier() { return hydrogen()->NeedsWriteBarrier(); }
Handle<Map> transition() { return hydrogen()->transition(); }
Handle<Map> transition() const { return hydrogen()->transition(); }
};
......@@ -1544,23 +1539,21 @@ class LStoreNamedGeneric: public LStoreNamed {
};
class LStoreKeyed: public LInstruction {
class LStoreKeyed: public LTemplateInstruction<0, 3, 0> {
public:
LStoreKeyed(LOperand* obj, LOperand* key, LOperand* val)
: object_(obj), key_(key), value_(val) { }
LStoreKeyed(LOperand* obj, LOperand* key, LOperand* val) {
inputs_[0] = obj;
inputs_[1] = key;
inputs_[2] = val;
}
DECLARE_INSTRUCTION(StoreKeyed)
virtual void PrintDataTo(StringStream* stream) const;
LOperand* object() const { return object_; }
LOperand* key() const { return key_; }
LOperand* value() const { return value_; }
virtual void PrintDataTo(StringStream* stream);
private:
LOperand* object_;
LOperand* key_;
LOperand* value_;
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
LOperand* value() { return inputs_[2]; }
};
......@@ -1584,84 +1577,88 @@ class LStoreKeyedGeneric: public LStoreKeyed {
};
class LStringCharCodeAt: public LBinaryOperation {
class LStringCharCodeAt: public LTemplateInstruction<1, 2, 0> {
public:
LStringCharCodeAt(LOperand* string, LOperand* index)
: LBinaryOperation(string, index) {}
LStringCharCodeAt(LOperand* string, LOperand* index) {
inputs_[0] = string;
inputs_[1] = index;
}
DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt, "string-char-code-at")
DECLARE_HYDROGEN_ACCESSOR(StringCharCodeAt)
LOperand* string() { return left(); }
LOperand* index() { return right(); }
LOperand* string() { return inputs_[0]; }
LOperand* index() { return inputs_[1]; }
};
class LStringLength: public LUnaryOperation {
class LStringLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LStringLength(LOperand* string) : LUnaryOperation(string) {}
explicit LStringLength(LOperand* string) {
inputs_[0] = string;
}
DECLARE_CONCRETE_INSTRUCTION(StringLength, "string-length")
DECLARE_HYDROGEN_ACCESSOR(StringLength)
LOperand* string() { return inputs_[0]; }
};
class LCheckFunction: public LUnaryOperation {
class LCheckFunction: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckFunction(LOperand* use) : LUnaryOperation(use) { }
explicit LCheckFunction(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckFunction, "check-function")
DECLARE_HYDROGEN_ACCESSOR(CheckFunction)
};
class LCheckInstanceType: public LUnaryOperation {
class LCheckInstanceType: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckInstanceType(LOperand* use) : LUnaryOperation(use) { }
explicit LCheckInstanceType(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType, "check-instance-type")
DECLARE_HYDROGEN_ACCESSOR(CheckInstanceType)
LOperand* temp() const { return temp_; }
private:
LOperand* temp_;
};
class LCheckMap: public LUnaryOperation {
class LCheckMap: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckMap(LOperand* use) : LUnaryOperation(use) { }
explicit LCheckMap(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckMap, "check-map")
DECLARE_HYDROGEN_ACCESSOR(CheckMap)
};
class LCheckPrototypeMaps: public LInstruction {
class LCheckPrototypeMaps: public LTemplateInstruction<0, 0, 2> {
public:
LCheckPrototypeMaps(LOperand* temp1, LOperand* temp2)
: temp1_(temp1), temp2_(temp2) { }
LCheckPrototypeMaps(LOperand* temp1, LOperand* temp2) {
temps_[0] = temp1;
temps_[1] = temp2;
}
DECLARE_CONCRETE_INSTRUCTION(CheckPrototypeMaps, "check-prototype-maps")
DECLARE_HYDROGEN_ACCESSOR(CheckPrototypeMaps)
Handle<JSObject> prototype() const { return hydrogen()->prototype(); }
Handle<JSObject> holder() const { return hydrogen()->holder(); }
LOperand* temp1() const { return temp1_; }
LOperand* temp2() const { return temp2_; }
private:
LOperand* temp1_;
LOperand* temp2_;
};
class LCheckSmi: public LUnaryOperation {
class LCheckSmi: public LTemplateInstruction<0, 1, 0> {
public:
LCheckSmi(LOperand* use, Condition condition)
: LUnaryOperation(use), condition_(condition) { }
LCheckSmi(LOperand* value, Condition condition)
: condition_(condition) {
inputs_[0] = value;
}
Condition condition() const { return condition_; }
......@@ -1675,34 +1672,28 @@ class LCheckSmi: public LUnaryOperation {
};
class LMaterializedLiteral: public LInstruction {
public:
DECLARE_INSTRUCTION(MaterializedLiteral)
};
class LArrayLiteral: public LMaterializedLiteral {
class LArrayLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ArrayLiteral, "array-literal")
DECLARE_HYDROGEN_ACCESSOR(ArrayLiteral)
};
class LObjectLiteral: public LMaterializedLiteral {
class LObjectLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ObjectLiteral, "object-literal")
DECLARE_HYDROGEN_ACCESSOR(ObjectLiteral)
};
class LRegExpLiteral: public LMaterializedLiteral {
class LRegExpLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(RegExpLiteral, "regexp-literal")
DECLARE_HYDROGEN_ACCESSOR(RegExpLiteral)
};
class LFunctionLiteral: public LInstruction {
class LFunctionLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(FunctionLiteral, "function-literal")
DECLARE_HYDROGEN_ACCESSOR(FunctionLiteral)
......@@ -1711,61 +1702,61 @@ class LFunctionLiteral: public LInstruction {
};
class LTypeof: public LUnaryOperation {
class LTypeof: public LTemplateInstruction<1, 1, 0> {
public:
explicit LTypeof(LOperand* input) : LUnaryOperation(input) { }
explicit LTypeof(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Typeof, "typeof")
};
class LTypeofIs: public LUnaryOperation {
class LTypeofIs: public LTemplateInstruction<1, 1, 0> {
public:
explicit LTypeofIs(LOperand* input) : LUnaryOperation(input) { }
virtual void PrintDataTo(StringStream* stream) const;
explicit LTypeofIs(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(TypeofIs, "typeof-is")
DECLARE_HYDROGEN_ACCESSOR(TypeofIs)
Handle<String> type_literal() { return hydrogen()->type_literal(); }
virtual void PrintDataTo(StringStream* stream);
};
class LTypeofIsAndBranch: public LTypeofIs {
class LTypeofIsAndBranch: public LControlInstruction<1, 0> {
public:
LTypeofIsAndBranch(LOperand* value,
int true_block_id,
int false_block_id)
: LTypeofIs(value),
true_block_id_(true_block_id),
false_block_id_(false_block_id) { }
explicit LTypeofIsAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch, "typeof-is-and-branch")
DECLARE_HYDROGEN_ACCESSOR(TypeofIs)
virtual void PrintDataTo(StringStream* stream) const;
virtual bool IsControl() const { return true; }
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
Handle<String> type_literal() { return hydrogen()->type_literal(); }
private:
int true_block_id_;
int false_block_id_;
virtual void PrintDataTo(StringStream* stream);
};
class LDeleteProperty: public LBinaryOperation {
class LDeleteProperty: public LTemplateInstruction<1, 2, 0> {
public:
LDeleteProperty(LOperand* obj, LOperand* key) : LBinaryOperation(obj, key) {}
LDeleteProperty(LOperand* obj, LOperand* key) {
inputs_[0] = obj;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(DeleteProperty, "delete-property")
LOperand* object() const { return left(); }
LOperand* key() const { return right(); }
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LOsrEntry: public LInstruction {
class LOsrEntry: public LTemplateInstruction<0, 0, 0> {
public:
LOsrEntry();
......@@ -1788,7 +1779,7 @@ class LOsrEntry: public LInstruction {
};
class LStackCheck: public LInstruction {
class LStackCheck: public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(StackCheck, "stack-check")
};
......@@ -1844,8 +1835,6 @@ class LChunk: public ZoneObject {
inlined_closures_.Add(closure);
}
void Verify() const;
private:
int spill_slot_count_;
HGraph* const graph_;
......@@ -1902,9 +1891,10 @@ class LChunkBuilder BASE_EMBEDDED {
LUnallocated* ToUnallocated(DoubleRegister reg);
// Methods for setting up define-use relationships.
LOperand* Use(HValue* value, LUnallocated* operand);
LOperand* UseFixed(HValue* value, Register fixed_register);
LOperand* UseFixedDouble(HValue* value, DoubleRegister fixed_register);
MUST_USE_RESULT LOperand* Use(HValue* value, LUnallocated* operand);
MUST_USE_RESULT LOperand* UseFixed(HValue* value, Register fixed_register);
MUST_USE_RESULT LOperand* UseFixedDouble(HValue* value,
DoubleRegister fixed_register);
// A value that is guaranteed to be allocated to a register.
// Operand created by UseRegister is guaranteed to be live until the end of
......@@ -1914,37 +1904,53 @@ class LChunkBuilder BASE_EMBEDDED {
// instruction start. Register allocator is free to assign the same register
// to some other operand used inside instruction (i.e. temporary or
// output).
LOperand* UseRegister(HValue* value);
LOperand* UseRegisterAtStart(HValue* value);
MUST_USE_RESULT LOperand* UseRegister(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterAtStart(HValue* value);
// An input operand in a register that may be trashed.
LOperand* UseTempRegister(HValue* value);
MUST_USE_RESULT LOperand* UseTempRegister(HValue* value);
// An input operand in a register or stack slot.
LOperand* Use(HValue* value);
LOperand* UseAtStart(HValue* value);
MUST_USE_RESULT LOperand* Use(HValue* value);
MUST_USE_RESULT LOperand* UseAtStart(HValue* value);
// An input operand in a register, stack slot or a constant operand.
LOperand* UseOrConstant(HValue* value);
LOperand* UseOrConstantAtStart(HValue* value);
MUST_USE_RESULT LOperand* UseOrConstant(HValue* value);
MUST_USE_RESULT LOperand* UseOrConstantAtStart(HValue* value);
// An input operand in a register or a constant operand.
LOperand* UseRegisterOrConstant(HValue* value);
LOperand* UseRegisterOrConstantAtStart(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterOrConstant(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterOrConstantAtStart(HValue* value);
// An input operand in register, stack slot or a constant operand.
// Will not be moved to a register even if one is freely available.
LOperand* UseAny(HValue* value);
MUST_USE_RESULT LOperand* UseAny(HValue* value);
// Temporary operand that must be in a register.
MUST_USE_RESULT LUnallocated* TempRegister();
MUST_USE_RESULT LOperand* FixedTemp(Register reg);
MUST_USE_RESULT LOperand* FixedTemp(DoubleRegister reg);
// Methods for setting up define-use relationships.
// Return the same instruction that they are passed.
LInstruction* Define(LInstruction* instr, LUnallocated* result);
LInstruction* Define(LInstruction* instr);
LInstruction* DefineAsRegister(LInstruction* instr);
LInstruction* DefineAsSpilled(LInstruction* instr, int index);
LInstruction* DefineSameAsFirst(LInstruction* instr);
LInstruction* DefineFixed(LInstruction* instr, Register reg);
LInstruction* DefineFixedDouble(LInstruction* instr, DoubleRegister reg);
template<int I, int T>
LInstruction* Define(LTemplateInstruction<1, I, T>* instr,
LUnallocated* result);
template<int I, int T>
LInstruction* Define(LTemplateInstruction<1, I, T>* instr);
template<int I, int T>
LInstruction* DefineAsRegister(LTemplateInstruction<1, I, T>* instr);
template<int I, int T>
LInstruction* DefineAsSpilled(LTemplateInstruction<1, I, T>* instr,
int index);
template<int I, int T>
LInstruction* DefineSameAsFirst(LTemplateInstruction<1, I, T>* instr);
template<int I, int T>
LInstruction* DefineFixed(LTemplateInstruction<1, I, T>* instr,
Register reg);
template<int I, int T>
LInstruction* DefineFixedDouble(LTemplateInstruction<1, I, T>* instr,
DoubleRegister reg);
LInstruction* AssignEnvironment(LInstruction* instr);
LInstruction* AssignPointerMap(LInstruction* instr);
......@@ -1965,11 +1971,6 @@ class LChunkBuilder BASE_EMBEDDED {
LEnvironment* CreateEnvironment(HEnvironment* hydrogen_env);
// Temporary operand that must be in a register.
LUnallocated* TempRegister();
LOperand* FixedTemp(Register reg);
LOperand* FixedTemp(DoubleRegister reg);
void VisitInstruction(HInstruction* current);
void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
......
......@@ -1016,8 +1016,8 @@ void LCodeGen::DoModI(LModI* instr) {
LModI* instr_;
};
// These registers hold untagged 32 bit values.
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
Register result = ToRegister(instr->result());
Register scratch = scratch0();
......@@ -1102,8 +1102,8 @@ void LCodeGen::DoDivI(LDivI* instr) {
LDivI* instr_;
};
const Register left = ToRegister(instr->left());
const Register right = ToRegister(instr->right());
const Register left = ToRegister(instr->InputAt(0));
const Register right = ToRegister(instr->InputAt(1));
const Register scratch = scratch0();
const Register result = ToRegister(instr->result());
......@@ -1170,10 +1170,11 @@ void LCodeGen::DoDivI(LDivI* instr) {
}
void LCodeGen::DoDeferredGenericBinaryStub(LBinaryOperation* instr,
template<int T>
void LCodeGen::DoDeferredGenericBinaryStub(LTemplateInstruction<1, 2, T>* instr,
Token::Value op) {
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
__ PushSafepointRegistersAndDoubles();
GenericBinaryOpStub stub(op, OVERWRITE_LEFT, left, right);
......@@ -1190,12 +1191,12 @@ void LCodeGen::DoDeferredGenericBinaryStub(LBinaryOperation* instr,
void LCodeGen::DoMulI(LMulI* instr) {
Register scratch = scratch0();
Register left = ToRegister(instr->left());
Register right = EmitLoadRegister(instr->right(), scratch);
Register left = ToRegister(instr->InputAt(0));
Register right = EmitLoadRegister(instr->InputAt(1), scratch);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero) &&
!instr->right()->IsConstantOperand()) {
__ orr(ToRegister(instr->temp()), left, right);
!instr->InputAt(1)->IsConstantOperand()) {
__ orr(ToRegister(instr->TempAt(0)), left, right);
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
......@@ -1213,13 +1214,13 @@ void LCodeGen::DoMulI(LMulI* instr) {
Label done;
__ tst(left, Operand(left));
__ b(ne, &done);
if (instr->right()->IsConstantOperand()) {
if (ToInteger32(LConstantOperand::cast(instr->right())) < 0) {
if (instr->InputAt(1)->IsConstantOperand()) {
if (ToInteger32(LConstantOperand::cast(instr->InputAt(1))) < 0) {
DeoptimizeIf(no_condition, instr->environment());
}
} else {
// Test the non-zero operand for negative sign.
__ cmp(ToRegister(instr->temp()), Operand(0));
__ cmp(ToRegister(instr->TempAt(0)), Operand(0));
DeoptimizeIf(mi, instr->environment());
}
__ bind(&done);
......@@ -1228,8 +1229,8 @@ void LCodeGen::DoMulI(LMulI* instr) {
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
Register result = ToRegister(left);
......@@ -1253,8 +1254,8 @@ void LCodeGen::DoBitI(LBitI* instr) {
void LCodeGen::DoShiftI(LShiftI* instr) {
Register scratch = scratch0();
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
Register result = ToRegister(left);
......@@ -1311,9 +1312,9 @@ void LCodeGen::DoShiftI(LShiftI* instr) {
void LCodeGen::DoSubI(LSubI* instr) {
Register left = ToRegister(instr->left());
Register right = EmitLoadRegister(instr->right(), ip);
ASSERT(instr->left()->Equals(instr->result()));
Register left = ToRegister(instr->InputAt(0));
Register right = EmitLoadRegister(instr->InputAt(1), ip);
ASSERT(instr->InputAt(0)->Equals(instr->result()));
__ sub(left, left, right, SetCC);
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(vs, instr->environment());
......@@ -1343,22 +1344,22 @@ void LCodeGen::DoConstantT(LConstantT* instr) {
void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->input());
Register array = ToRegister(instr->InputAt(0));
__ ldr(result, FieldMemOperand(array, JSArray::kLengthOffset));
}
void LCodeGen::DoFixedArrayLength(LFixedArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->input());
Register array = ToRegister(instr->InputAt(0));
__ ldr(result, FieldMemOperand(array, FixedArray::kLengthOffset));
}
void LCodeGen::DoValueOf(LValueOf* instr) {
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->temporary());
Register map = ToRegister(instr->TempAt(0));
ASSERT(input.is(result));
Label done;
......@@ -1376,14 +1377,14 @@ void LCodeGen::DoValueOf(LValueOf* instr) {
void LCodeGen::DoBitNotI(LBitNotI* instr) {
LOperand* input = instr->input();
LOperand* input = instr->InputAt(0);
ASSERT(input->Equals(instr->result()));
__ mvn(ToRegister(input), Operand(ToRegister(input)));
}
void LCodeGen::DoThrow(LThrow* instr) {
Register input_reg = EmitLoadRegister(instr->input(), ip);
Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
__ push(input_reg);
CallRuntime(Runtime::kThrow, 1, instr);
......@@ -1394,8 +1395,8 @@ void LCodeGen::DoThrow(LThrow* instr) {
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
Register right_reg = EmitLoadRegister(right, ip);
......@@ -1408,8 +1409,8 @@ void LCodeGen::DoAddI(LAddI* instr) {
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DoubleRegister left = ToDoubleRegister(instr->left());
DoubleRegister right = ToDoubleRegister(instr->right());
DoubleRegister left = ToDoubleRegister(instr->InputAt(0));
DoubleRegister right = ToDoubleRegister(instr->InputAt(1));
switch (instr->op()) {
case Token::ADD:
__ vadd(left, left, right);
......@@ -1435,8 +1436,8 @@ void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
ASSERT(ToRegister(instr->left()).is(r1));
ASSERT(ToRegister(instr->right()).is(r0));
ASSERT(ToRegister(instr->InputAt(0)).is(r1));
ASSERT(ToRegister(instr->InputAt(1)).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
// TODO(regis): Implement TypeRecordingBinaryOpStub and replace current
......@@ -1480,11 +1481,11 @@ void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->representation();
if (r.IsInteger32()) {
Register reg = ToRegister(instr->input());
Register reg = ToRegister(instr->InputAt(0));
__ cmp(reg, Operand(0));
EmitBranch(true_block, false_block, nz);
} else if (r.IsDouble()) {
DoubleRegister reg = ToDoubleRegister(instr->input());
DoubleRegister reg = ToDoubleRegister(instr->InputAt(0));
Register scratch = scratch0();
// Test the double value. Zero and NaN are false.
......@@ -1493,7 +1494,7 @@ void LCodeGen::DoBranch(LBranch* instr) {
EmitBranch(true_block, false_block, ne);
} else {
ASSERT(r.IsTagged());
Register reg = ToRegister(instr->input());
Register reg = ToRegister(instr->InputAt(0));
if (instr->hydrogen()->type().IsBoolean()) {
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(reg, ip);
......@@ -1636,8 +1637,8 @@ void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) {
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
Register result = ToRegister(instr->result());
__ cmp(left, Operand(right));
......@@ -1647,8 +1648,8 @@ void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) {
void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
int false_block = chunk_->LookupDestination(instr->false_block_id());
int true_block = chunk_->LookupDestination(instr->true_block_id());
......@@ -1658,7 +1659,7 @@ void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) {
void LCodeGen::DoIsNull(LIsNull* instr) {
Register reg = ToRegister(instr->input());
Register reg = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
__ LoadRoot(ip, Heap::kNullValueRootIndex);
......@@ -1693,7 +1694,7 @@ void LCodeGen::DoIsNull(LIsNull* instr) {
void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) {
Register scratch = scratch0();
Register reg = ToRegister(instr->input());
Register reg = ToRegister(instr->InputAt(0));
// TODO(fsc): If the expression is known to be a smi, then it's
// definitely not null. Jump to the false block.
......@@ -1747,7 +1748,7 @@ void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
void LCodeGen::DoIsSmi(LIsSmi* instr) {
ASSERT(instr->hydrogen()->value()->representation().IsTagged());
Register result = ToRegister(instr->result());
Register input_reg = EmitLoadRegister(instr->input(), ip);
Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
__ tst(input_reg, Operand(kSmiTagMask));
__ LoadRoot(result, Heap::kTrueValueRootIndex);
Label done;
......@@ -1761,32 +1762,12 @@ void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Register input_reg = EmitLoadRegister(instr->input(), ip);
Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
__ tst(input_reg, Operand(kSmiTagMask));
EmitBranch(true_block, false_block, eq);
}
InstanceType LHasInstanceType::TestType() {
InstanceType from = hydrogen()->from();
InstanceType to = hydrogen()->to();
if (from == FIRST_TYPE) return to;
ASSERT(from == to || to == LAST_TYPE);
return from;
}
Condition LHasInstanceType::BranchCondition() {
InstanceType from = hydrogen()->from();
InstanceType to = hydrogen()->to();
if (from == to) return eq;
if (to == LAST_TYPE) return hs;
if (from == FIRST_TYPE) return ls;
UNREACHABLE();
return eq;
}
static InstanceType TestType(HHasInstanceType* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
......@@ -1808,7 +1789,7 @@ static Condition BranchCondition(HHasInstanceType* instr) {
void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) {
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
ASSERT(instr->hydrogen()->value()->representation().IsTagged());
......@@ -1826,7 +1807,7 @@ void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) {
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register scratch = scratch0();
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
......@@ -1836,8 +1817,8 @@ void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
__ tst(input, Operand(kSmiTagMask));
__ b(eq, false_label);
__ CompareObjectType(input, scratch, scratch, instr->TestType());
EmitBranch(true_block, false_block, instr->BranchCondition());
__ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
}
......@@ -1910,7 +1891,7 @@ void LCodeGen::EmitClassOfTest(Label* is_true,
void LCodeGen::DoClassOfTest(LClassOfTest* instr) {
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
ASSERT(input.is(result));
Handle<String> class_name = instr->hydrogen()->class_name();
......@@ -1931,9 +1912,9 @@ void LCodeGen::DoClassOfTest(LClassOfTest* instr) {
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
Register temp = scratch0();
Register temp2 = ToRegister(instr->temporary());
Register temp2 = ToRegister(instr->TempAt(0));
Handle<String> class_name = instr->hydrogen()->class_name();
int true_block = chunk_->LookupDestination(instr->true_block_id());
......@@ -1949,8 +1930,8 @@ void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->input());
Register temp = ToRegister(instr->temp());
Register reg = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
int true_block = instr->true_block_id();
int false_block = instr->false_block_id();
......@@ -1961,8 +1942,8 @@ void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
ASSERT(ToRegister(instr->left()).is(r0)); // Object is in r0.
ASSERT(ToRegister(instr->right()).is(r1)); // Function is in r1.
ASSERT(ToRegister(instr->InputAt(0)).is(r0)); // Object is in r0.
ASSERT(ToRegister(instr->InputAt(1)).is(r1)); // Function is in r1.
InstanceofStub stub(InstanceofStub::kArgsInRegisters);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
......@@ -2000,8 +1981,8 @@ void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
deferred = new DeferredInstanceOfKnownGlobal(this, instr);
Label done, false_result;
Register object = ToRegister(instr->input());
Register temp = ToRegister(instr->temp());
Register object = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
Register result = ToRegister(instr->result());
ASSERT(object.is(r0));
......@@ -2073,7 +2054,7 @@ void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
// Get the temp register reserved by the instruction. This needs to be r4 as
// its slot of the pushing of safepoint registers is used to communicate the
// offset to the location of the map check.
Register temp = ToRegister(instr->temp());
Register temp = ToRegister(instr->TempAt(0));
ASSERT(temp.is(r4));
__ mov(InstanceofStub::right(), Operand(instr->function()));
static const int kAdditionalDelta = 4;
......@@ -2169,7 +2150,7 @@ void LCodeGen::DoLoadGlobal(LLoadGlobal* instr) {
void LCodeGen::DoStoreGlobal(LStoreGlobal* instr) {
Register value = ToRegister(instr->input());
Register value = ToRegister(instr->InputAt(0));
__ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell())));
__ str(value, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
}
......@@ -2184,7 +2165,7 @@ void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
Register object = ToRegister(instr->input());
Register object = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
if (instr->hydrogen()->is_in_object()) {
__ ldr(result, FieldMemOperand(object, instr->hydrogen()->offset()));
......@@ -2251,8 +2232,8 @@ void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
void LCodeGen::DoLoadElements(LLoadElements* instr) {
ASSERT(instr->result()->Equals(instr->input()));
Register reg = ToRegister(instr->input());
ASSERT(instr->result()->Equals(instr->InputAt(0)));
Register reg = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
__ ldr(reg, FieldMemOperand(reg, JSObject::kElementsOffset));
......@@ -2333,7 +2314,7 @@ void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Register elem = ToRegister(instr->input());
Register elem = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Label done;
......@@ -2418,7 +2399,7 @@ void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->input();
LOperand* argument = instr->InputAt(0);
if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
Abort("DoPushArgument not implemented for double type.");
} else {
......@@ -2482,7 +2463,7 @@ void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
// Deoptimize if not a heap number.
......@@ -2546,7 +2527,7 @@ void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
Label is_positive;
uint32_t kSignMask = 0x80000000u;
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
__ tst(input, Operand(kSignMask));
__ b(eq, &is_positive);
__ rsb(input, input, Operand(0), SetCC);
......@@ -2570,10 +2551,10 @@ void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
LUnaryMathOperation* instr_;
};
ASSERT(instr->input()->Equals(instr->result()));
ASSERT(instr->InputAt(0)->Equals(instr->result()));
Representation r = instr->hydrogen()->value()->representation();
if (r.IsDouble()) {
DwVfpRegister input = ToDoubleRegister(instr->input());
DwVfpRegister input = ToDoubleRegister(instr->InputAt(0));
// __ vabs(input, input);
Abort("Double DoMathAbs unimplemented");
} else if (r.IsInteger32()) {
......@@ -2582,7 +2563,7 @@ void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
// Representation is tagged.
DeferredMathAbsTaggedHeapNumber* deferred =
new DeferredMathAbsTaggedHeapNumber(this, instr);
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
// Smi check.
__ BranchOnNotSmi(input, deferred->entry());
// If smi, handle it directly.
......@@ -2593,9 +2574,9 @@ void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->input());
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register prev_fpscr = ToRegister(instr->temp());
Register prev_fpscr = ToRegister(instr->TempAt(0));
SwVfpRegister single_scratch = double_scratch0().low();
Register scratch = scratch0();
......@@ -2637,7 +2618,7 @@ void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->input());
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
ASSERT(ToDoubleRegister(instr->result()).is(input));
__ vsqrt(input, input);
}
......@@ -2713,7 +2694,7 @@ void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
void LCodeGen::DoCallNew(LCallNew* instr) {
ASSERT(ToRegister(instr->input()).is(r1));
ASSERT(ToRegister(instr->InputAt(0)).is(r1));
ASSERT(ToRegister(instr->result()).is(r0));
Handle<Code> builtin(Builtins::builtin(Builtins::JSConstructCall));
......@@ -2955,14 +2936,14 @@ void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
void LCodeGen::DoStringLength(LStringLength* instr) {
Register string = ToRegister(instr->input());
Register string = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
__ ldr(result, FieldMemOperand(string, String::kLengthOffset));
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
LOperand* input = instr->input();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() || input->IsStackSlot());
LOperand* output = instr->result();
ASSERT(output->IsDoubleRegister());
......@@ -2988,7 +2969,7 @@ void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
LNumberTagI* instr_;
};
LOperand* input = instr->input();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
......@@ -3001,7 +2982,7 @@ void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
Label slow;
Register reg = ToRegister(instr->input());
Register reg = ToRegister(instr->InputAt(0));
DoubleRegister dbl_scratch = d0;
SwVfpRegister flt_scratch = s0;
......@@ -3058,11 +3039,11 @@ void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
LNumberTagD* instr_;
};
DoubleRegister input_reg = ToDoubleRegister(instr->input());
DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0));
Register scratch = scratch0();
Register reg = ToRegister(instr->result());
Register temp1 = ToRegister(instr->temp1());
Register temp2 = ToRegister(instr->temp2());
Register temp1 = ToRegister(instr->TempAt(0));
Register temp2 = ToRegister(instr->TempAt(1));
DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
if (FLAG_inline_new) {
......@@ -3095,7 +3076,7 @@ void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
void LCodeGen::DoSmiTag(LSmiTag* instr) {
LOperand* input = instr->input();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
__ SmiTag(ToRegister(input));
......@@ -3103,7 +3084,7 @@ void LCodeGen::DoSmiTag(LSmiTag* instr) {
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
LOperand* input = instr->input();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
if (instr->needs_check()) {
__ tst(ToRegister(input), Operand(kSmiTagMask));
......@@ -3170,11 +3151,11 @@ class DeferredTaggedToI: public LDeferredCode {
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
Label done;
Register input_reg = ToRegister(instr->input());
Register input_reg = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
DoubleRegister dbl_scratch = d0;
SwVfpRegister flt_scratch = s0;
DoubleRegister dbl_tmp = ToDoubleRegister(instr->temp());
DoubleRegister dbl_tmp = ToDoubleRegister(instr->TempAt(0));
// Heap number map check.
__ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
......@@ -3231,7 +3212,7 @@ void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
LOperand* input = instr->input();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
ASSERT(input->Equals(instr->result()));
......@@ -3251,7 +3232,7 @@ void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->input();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
LOperand* result = instr->result();
ASSERT(result->IsDoubleRegister());
......@@ -3269,7 +3250,7 @@ void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->input();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
__ tst(ToRegister(input), Operand(kSmiTagMask));
DeoptimizeIf(instr->condition(), instr->environment());
......@@ -3277,7 +3258,7 @@ void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
InstanceType first = instr->hydrogen()->first();
InstanceType last = instr->hydrogen()->last();
......@@ -3301,8 +3282,8 @@ void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
ASSERT(instr->input()->IsRegister());
Register reg = ToRegister(instr->input());
ASSERT(instr->InputAt(0)->IsRegister());
Register reg = ToRegister(instr->InputAt(0));
__ cmp(reg, Operand(instr->hydrogen()->target()));
DeoptimizeIf(ne, instr->environment());
}
......@@ -3310,7 +3291,7 @@ void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
void LCodeGen::DoCheckMap(LCheckMap* instr) {
Register scratch = scratch0();
LOperand* input = instr->input();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
Register reg = ToRegister(input);
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
......@@ -3333,8 +3314,8 @@ void LCodeGen::LoadHeapObject(Register result,
void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
Register temp1 = ToRegister(instr->temp1());
Register temp2 = ToRegister(instr->temp2());
Register temp1 = ToRegister(instr->TempAt(0));
Register temp2 = ToRegister(instr->TempAt(1));
Handle<JSObject> holder = instr->holder();
Handle<JSObject> current_prototype = instr->prototype();
......@@ -3482,14 +3463,14 @@ void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
void LCodeGen::DoTypeof(LTypeof* instr) {
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
__ push(input);
CallRuntime(Runtime::kTypeof, 1, instr);
}
void LCodeGen::DoTypeofIs(LTypeofIs* instr) {
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Label true_label;
Label false_label;
......@@ -3512,7 +3493,7 @@ void LCodeGen::DoTypeofIs(LTypeofIs* instr) {
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->input());
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
......
......@@ -93,7 +93,9 @@ class LCodeGen BASE_EMBEDDED {
void FinishCode(Handle<Code> code);
// Deferred code support.
void DoDeferredGenericBinaryStub(LBinaryOperation* instr, Token::Value op);
template<int T>
void DoDeferredGenericBinaryStub(LTemplateInstruction<1, 2, T>* instr,
Token::Value op);
void DoDeferredNumberTagD(LNumberTagD* instr);
void DoDeferredNumberTagI(LNumberTagI* instr);
void DoDeferredTaggedToI(LTaggedToI* instr);
......
......@@ -921,9 +921,6 @@ void LChunkBuilder::VisitInstruction(HInstruction* current) {
instr = AssignEnvironment(instr);
}
if (current->IsTest() && !instr->IsGoto()) {
// TODO(fschneider): Handle test instructions uniformly like
// other instructions. This requires us to generate the right
// branch instruction already at the HIR level.
ASSERT(instr->IsControl());
HTest* test = HTest::cast(current);
instr->set_hydrogen_value(test->value());
......
......@@ -339,32 +339,35 @@ class LInstruction: public ZoneObject {
};
template<typename T, int N>
template<typename ElementType, int NumElements>
class OperandContainer {
public:
OperandContainer() {
for (int i = 0; i < N; i++) elems_[i] = NULL;
for (int i = 0; i < NumElements; i++) elems_[i] = NULL;
}
int length() { return N; }
T& operator[](int i) {
int length() { return NumElements; }
ElementType& operator[](int i) {
ASSERT(i < length());
return elems_[i];
}
void PrintOperandsTo(StringStream* stream);
private:
T elems_[N];
ElementType elems_[NumElements];
};
template<typename T>
class OperandContainer<T, 0> {
template<typename ElementType>
class OperandContainer<ElementType, 0> {
public:
int length() { return 0; }
void PrintOperandsTo(StringStream* stream) { }
};
// R = number of result operands (0 or 1).
// I = number of input operands.
// T = number of temporary operands.
template<int R, int I, int T>
class LTemplateInstruction: public LInstruction {
public:
......@@ -1436,7 +1439,7 @@ class LNumberTagI: public LTemplateInstruction<1, 1, 0> {
class LNumberTagD: public LTemplateInstruction<1, 1, 1> {
public:
explicit LNumberTagD(LOperand* value, LOperand* temp) {
LNumberTagD(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
......
......@@ -848,9 +848,6 @@ void LChunkBuilder::VisitInstruction(HInstruction* current) {
instr = AssignEnvironment(instr);
}
if (current->IsTest() && !instr->IsGoto()) {
// TODO(fschneider): Handle test instructions uniformly like
// other instructions. This requires us to generate the right
// branch instruction already at the HIR level.
ASSERT(instr->IsControl());
HTest* test = HTest::cast(current);
instr->set_hydrogen_value(test->value());
......
......@@ -335,32 +335,35 @@ class LInstruction: public ZoneObject {
};
template<typename T, int N>
template<typename ElementType, int NumElements>
class OperandContainer {
public:
OperandContainer() {
for (int i = 0; i < N; i++) elems_[i] = NULL;
for (int i = 0; i < NumElements; i++) elems_[i] = NULL;
}
int length() { return N; }
T& operator[](int i) {
int length() { return NumElements; }
ElementType& operator[](int i) {
ASSERT(i < length());
return elems_[i];
}
void PrintOperandsTo(StringStream* stream);
private:
T elems_[N];
ElementType elems_[NumElements];
};
template<typename T>
class OperandContainer<T, 0> {
template<typename ElementType>
class OperandContainer<ElementType, 0> {
public:
int length() { return 0; }
void PrintOperandsTo(StringStream* stream) { }
};
// R = number of result operands (0 or 1).
// I = number of input operands.
// T = number of temporary operands.
template<int R, int I, int T>
class LTemplateInstruction: public LInstruction {
public:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment