Commit 639e8fa4 authored by balazs.kilvady's avatar balazs.kilvady Committed by Commit bot

MIPS: Improve performance of simulator in debug mode.

The running time of optdebug.quickcheck is improved by 8% while a more strict DCHECKing is kept in simulator.

Review-Url: https://codereview.chromium.org/1349403003
Cr-Commit-Position: refs/heads/master@{#39667}
parent 648ac440
......@@ -123,116 +123,6 @@ int FPURegisters::Number(const char* name) {
}
// -----------------------------------------------------------------------------
// Instructions.
bool Instruction::IsForbiddenAfterBranchInstr(Instr instr) {
Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
switch (opcode) {
case J:
case JAL:
case BEQ:
case BNE:
case BLEZ: // POP06 bgeuc/bleuc, blezalc, bgezalc
case BGTZ: // POP07 bltuc/bgtuc, bgtzalc, bltzalc
case BEQL:
case BNEL:
case BLEZL: // POP26 bgezc, blezc, bgec/blec
case BGTZL: // POP27 bgtzc, bltzc, bltc/bgtc
case BC:
case BALC:
case POP10: // beqzalc, bovc, beqc
case POP30: // bnezalc, bnvc, bnec
case POP66: // beqzc, jic
case POP76: // bnezc, jialc
return true;
case REGIMM:
switch (instr & kRtFieldMask) {
case BLTZ:
case BGEZ:
case BLTZAL:
case BGEZAL:
return true;
default:
return false;
}
break;
case SPECIAL:
switch (instr & kFunctionFieldMask) {
case JR:
case JALR:
return true;
default:
return false;
}
break;
case COP1:
switch (instr & kRsFieldMask) {
case BC1:
case BC1EQZ:
case BC1NEZ:
return true;
break;
default:
return false;
}
break;
default:
return false;
}
}
bool Instruction::IsLinkingInstruction() const {
switch (OpcodeFieldRaw()) {
case JAL:
return true;
case POP76:
if (RsFieldRawNoAssert() == JIALC)
return true; // JIALC
else
return false; // BNEZC
case REGIMM:
switch (RtFieldRaw()) {
case BGEZAL:
case BLTZAL:
return true;
default:
return false;
}
case SPECIAL:
switch (FunctionFieldRaw()) {
case JALR:
return true;
default:
return false;
}
default:
return false;
}
}
bool Instruction::IsTrap() const {
if (OpcodeFieldRaw() != SPECIAL) {
return false;
} else {
switch (FunctionFieldRaw()) {
case BREAK:
case TGE:
case TGEU:
case TLT:
case TLTU:
case TEQ:
case TNE:
return true;
default:
return false;
}
}
}
} // namespace internal
} // namespace v8
......
......@@ -866,8 +866,7 @@ static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
}
class Instruction {
class InstructionBase {
public:
enum {
kInstrSize = 4,
......@@ -877,6 +876,9 @@ class Instruction {
kPCReadOffset = 0
};
// Instruction type.
enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
// Get the raw instruction bits.
inline Instr InstructionBits() const {
return *reinterpret_cast<const Instr*>(this);
......@@ -896,15 +898,6 @@ class Instruction {
inline int Bits(int hi, int lo) const {
return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
}
// Instruction type.
enum Type {
kRegisterType,
kImmediateType,
kJumpType,
kUnsupported = -1
};
enum TypeChecks { NORMAL, EXTRA };
......@@ -951,122 +944,140 @@ class Instruction {
FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
// Get the encoding type of the instruction.
inline Type InstructionType(TypeChecks checks = NORMAL) const;
// Accessors for the different named fields used in the MIPS encoding.
inline Opcode OpcodeValue() const {
return static_cast<Opcode>(
Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
}
inline int FunctionFieldRaw() const {
return InstructionBits() & kFunctionFieldMask;
}
// Return the fields at their original place in the instruction encoding.
inline Opcode OpcodeFieldRaw() const {
return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
}
// Safe to call within InstructionType().
inline int RsFieldRawNoAssert() const {
return InstructionBits() & kRsFieldMask;
}
inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
// Get the encoding type of the instruction.
inline Type InstructionType(TypeChecks checks = NORMAL) const;
protected:
InstructionBase() {}
};
template <class T>
class InstructionGetters : public T {
public:
inline int RsValue() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return Bits(kRsShift + kRsBits - 1, kRsShift);
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return InstructionBase::Bits(kRsShift + kRsBits - 1, kRsShift);
}
inline int RtValue() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return Bits(kRtShift + kRtBits - 1, kRtShift);
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(kRtShift + kRtBits - 1, kRtShift);
}
inline int RdValue() const {
DCHECK(InstructionType() == kRegisterType);
return Bits(kRdShift + kRdBits - 1, kRdShift);
DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
return this->Bits(kRdShift + kRdBits - 1, kRdShift);
}
inline int SaValue() const {
DCHECK(InstructionType() == kRegisterType);
return Bits(kSaShift + kSaBits - 1, kSaShift);
DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
return this->Bits(kSaShift + kSaBits - 1, kSaShift);
}
inline int LsaSaValue() const {
DCHECK(InstructionType() == kRegisterType);
return Bits(kSaShift + kLsaSaBits - 1, kSaShift);
DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
}
inline int FunctionValue() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
}
inline int FdValue() const {
return Bits(kFdShift + kFdBits - 1, kFdShift);
return this->Bits(kFdShift + kFdBits - 1, kFdShift);
}
inline int FsValue() const {
return Bits(kFsShift + kFsBits - 1, kFsShift);
return this->Bits(kFsShift + kFsBits - 1, kFsShift);
}
inline int FtValue() const {
return Bits(kFtShift + kFtBits - 1, kFtShift);
return this->Bits(kFtShift + kFtBits - 1, kFtShift);
}
inline int FrValue() const {
return Bits(kFrShift + kFrBits -1, kFrShift);
return this->Bits(kFrShift + kFrBits - 1, kFrShift);
}
inline int Bp2Value() const {
DCHECK(InstructionType() == kRegisterType);
return Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
}
// Float Compare condition code instruction bits.
inline int FCccValue() const {
return Bits(kFCccShift + kFCccBits - 1, kFCccShift);
return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
}
// Float Branch condition code instruction bits.
inline int FBccValue() const {
return Bits(kFBccShift + kFBccBits - 1, kFBccShift);
return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
}
// Float Branch true/false instruction bit.
inline int FBtrueValue() const {
return Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
}
// Return the fields at their original place in the instruction encoding.
inline Opcode OpcodeFieldRaw() const {
return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
}
inline int RsFieldRaw() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return InstructionBits() & kRsFieldMask;
}
// Same as above function, but safe to call within InstructionType().
inline int RsFieldRawNoAssert() const {
return InstructionBits() & kRsFieldMask;
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return this->InstructionBits() & kRsFieldMask;
}
inline int RtFieldRaw() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return InstructionBits() & kRtFieldMask;
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return this->InstructionBits() & kRtFieldMask;
}
inline int RdFieldRaw() const {
DCHECK(InstructionType() == kRegisterType);
return InstructionBits() & kRdFieldMask;
DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
return this->InstructionBits() & kRdFieldMask;
}
inline int SaFieldRaw() const {
return InstructionBits() & kSaFieldMask;
return this->InstructionBits() & kSaFieldMask;
}
inline int FunctionFieldRaw() const {
return InstructionBits() & kFunctionFieldMask;
return this->InstructionBits() & kFunctionFieldMask;
}
// Get the secondary field according to the opcode.
inline int SecondaryValue() const {
Opcode op = OpcodeFieldRaw();
Opcode op = this->OpcodeFieldRaw();
switch (op) {
case SPECIAL:
case SPECIAL2:
......@@ -1081,34 +1092,34 @@ class Instruction {
}
inline int32_t ImmValue(int bits) const {
DCHECK(InstructionType() == kImmediateType);
return Bits(bits - 1, 0);
DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(bits - 1, 0);
}
inline int32_t Imm16Value() const {
DCHECK(InstructionType() == kImmediateType);
return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
}
inline int32_t Imm18Value() const {
DCHECK(InstructionType() == kImmediateType);
return Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
}
inline int32_t Imm19Value() const {
DCHECK(InstructionType() == kImmediateType);
return Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
}
inline int32_t Imm21Value() const {
DCHECK(InstructionType() == kImmediateType);
return Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
}
inline int32_t Imm26Value() const {
DCHECK((InstructionType() == kJumpType) ||
(InstructionType() == kImmediateType));
return Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
(this->InstructionType() == InstructionBase::kImmediateType));
return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
}
static bool IsForbiddenAfterBranchInstr(Instr instr);
......@@ -1116,7 +1127,7 @@ class Instruction {
// Say if the instruction should not be used in a branch delay slot or
// immediately after a compact branch.
inline bool IsForbiddenAfterBranch() const {
return IsForbiddenAfterBranchInstr(InstructionBits());
return IsForbiddenAfterBranchInstr(this->InstructionBits());
}
inline bool IsForbiddenInBranchDelay() const {
......@@ -1127,17 +1138,15 @@ class Instruction {
bool IsLinkingInstruction() const;
// Say if the instruction is a break or a trap.
bool IsTrap() const;
};
// Instructions are read of out a code stream. The only way to get a
// reference to an instruction is to convert a pointer. There is no way
// to allocate or create instances of class Instruction.
// Use the At(pc) function to create references to Instruction.
class Instruction : public InstructionGetters<InstructionBase> {
public:
static Instruction* At(byte* pc) {
return reinterpret_cast<Instruction*>(pc);
}
private:
// We need to prevent the creation of instances of class Instruction.
DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};
......@@ -1156,8 +1165,8 @@ const int kBArgsSlotsSize = 0 * Instruction::kInstrSize;
const int kBranchReturnOffset = 2 * Instruction::kInstrSize;
Instruction::Type Instruction::InstructionType(TypeChecks checks) const {
InstructionBase::Type InstructionBase::InstructionType(
TypeChecks checks) const {
if (checks == EXTRA) {
if (OpcodeToBitNumber(OpcodeFieldRaw()) & kOpcodeImmediateTypeMask) {
return kImmediateType;
......@@ -1240,6 +1249,118 @@ Instruction::Type Instruction::InstructionType(TypeChecks checks) const {
#undef OpcodeToBitNumber
#undef FunctionFieldToBitNumber
// -----------------------------------------------------------------------------
// Instructions.
template <class P>
bool InstructionGetters<P>::IsLinkingInstruction() const {
uint32_t op = this->OpcodeFieldRaw();
switch (op) {
case JAL:
return true;
case POP76:
if (this->RsFieldRawNoAssert() == JIALC)
return true; // JIALC
else
return false; // BNEZC
case REGIMM:
switch (this->RtFieldRaw()) {
case BGEZAL:
case BLTZAL:
return true;
default:
return false;
}
case SPECIAL:
switch (this->FunctionFieldRaw()) {
case JALR:
return true;
default:
return false;
}
default:
return false;
}
}
template <class P>
bool InstructionGetters<P>::IsTrap() const {
if (this->OpcodeFieldRaw() != SPECIAL) {
return false;
} else {
switch (this->FunctionFieldRaw()) {
case BREAK:
case TGE:
case TGEU:
case TLT:
case TLTU:
case TEQ:
case TNE:
return true;
default:
return false;
}
}
}
// static
template <class T>
bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
switch (opcode) {
case J:
case JAL:
case BEQ:
case BNE:
case BLEZ: // POP06 bgeuc/bleuc, blezalc, bgezalc
case BGTZ: // POP07 bltuc/bgtuc, bgtzalc, bltzalc
case BEQL:
case BNEL:
case BLEZL: // POP26 bgezc, blezc, bgec/blec
case BGTZL: // POP27 bgtzc, bltzc, bltc/bgtc
case BC:
case BALC:
case POP10: // beqzalc, bovc, beqc
case POP30: // bnezalc, bnvc, bnec
case POP66: // beqzc, jic
case POP76: // bnezc, jialc
return true;
case REGIMM:
switch (instr & kRtFieldMask) {
case BLTZ:
case BGEZ:
case BLTZAL:
case BGEZAL:
return true;
default:
return false;
}
break;
case SPECIAL:
switch (instr & kFunctionFieldMask) {
case JR:
case JALR:
return true;
default:
return false;
}
break;
case COP1:
switch (instr & kRsFieldMask) {
case BC1:
case BC1EQZ:
case BC1NEZ:
return true;
break;
default:
return false;
}
break;
default:
return false;
}
}
} // namespace internal
} // namespace v8
......
......@@ -1929,16 +1929,16 @@ typedef void (*SimulatorRuntimeProfilingGetterCall)(
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime. They are also used for debugging with simulator.
void Simulator::SoftwareInterrupt(Instruction* instr) {
void Simulator::SoftwareInterrupt() {
// There are several instructions that could get us here,
// the break_ instruction, or several variants of traps. All
// Are "SPECIAL" class opcode, and are distinuished by function.
int32_t func = instr->FunctionFieldRaw();
uint32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1;
int32_t func = instr_.FunctionFieldRaw();
uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1;
// We first check if we met a call_rt_redirected.
if (instr->InstructionBits() == rtCallRedirInstr) {
Redirection* redirection = Redirection::FromSwiInstruction(instr);
if (instr_.InstructionBits() == rtCallRedirInstr) {
Redirection* redirection = Redirection::FromSwiInstruction(instr_.instr());
int32_t arg0 = get_register(a0);
int32_t arg1 = get_register(a1);
int32_t arg2 = get_register(a2);
......@@ -2173,7 +2173,7 @@ void Simulator::SoftwareInterrupt(Instruction* instr) {
PrintWatchpoint(code);
} else {
IncreaseStopCounter(code);
HandleStop(code, instr);
HandleStop(code, instr_.instr());
}
} else {
// All remaining break_ codes, and all traps are handled here.
......@@ -2416,15 +2416,14 @@ void Simulator::DecodeTypeRegisterDRsType() {
uint32_t cc, fcsr_cc;
int64_t i64;
fs = get_fpu_register_double(fs_reg());
ft = (get_instr()->FunctionFieldRaw() != MOVF)
? get_fpu_register_double(ft_reg())
: 0.0;
ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg())
: 0.0;
fd = get_fpu_register_double(fd_reg());
int64_t ft_int = bit_cast<int64_t>(ft);
int64_t fd_int = bit_cast<int64_t>(fd);
cc = get_instr()->FCccValue();
cc = instr_.FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
switch (get_instr()->FunctionFieldRaw()) {
switch (instr_.FunctionFieldRaw()) {
case RINT: {
DCHECK(IsMipsArchVariant(kMips32r6));
double result, temp, temp_result;
......@@ -2483,7 +2482,7 @@ void Simulator::DecodeTypeRegisterDRsType() {
}
case MOVN_C: {
DCHECK(IsMipsArchVariant(kMips32r2));
int32_t rt_reg = get_instr()->RtValue();
int32_t rt_reg = instr_.RtValue();
int32_t rt = get_register(rt_reg);
if (rt != 0) {
set_fpu_register_double(fd_reg(), fs);
......@@ -2494,7 +2493,7 @@ void Simulator::DecodeTypeRegisterDRsType() {
// Same function field for MOVT.D and MOVF.D
uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
ft_cc = get_fcsr_condition_bit(ft_cc);
if (get_instr()->Bit(16)) { // Read Tf bit.
if (instr_.Bit(16)) { // Read Tf bit.
// MOVT.D
if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
} else {
......@@ -2809,7 +2808,7 @@ void Simulator::DecodeTypeRegisterWRsType() {
float fs = get_fpu_register_float(fs_reg());
float ft = get_fpu_register_float(ft_reg());
int32_t alu_out = 0x12345678;
switch (get_instr()->FunctionFieldRaw()) {
switch (instr_.FunctionFieldRaw()) {
case CVT_S_W: // Convert word to float (single).
alu_out = get_fpu_register_signed_word(fs_reg());
set_fpu_register_float(fd_reg(), static_cast<float>(alu_out));
......@@ -2905,9 +2904,9 @@ void Simulator::DecodeTypeRegisterSRsType() {
int32_t ft_int = bit_cast<int32_t>(ft);
int32_t fd_int = bit_cast<int32_t>(fd);
uint32_t cc, fcsr_cc;
cc = get_instr()->FCccValue();
cc = instr_.FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
switch (get_instr()->FunctionFieldRaw()) {
switch (instr_.FunctionFieldRaw()) {
case RINT: {
DCHECK(IsMipsArchVariant(kMips32r6));
float result, temp_result;
......@@ -3134,7 +3133,7 @@ void Simulator::DecodeTypeRegisterSRsType() {
uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
ft_cc = get_fcsr_condition_bit(ft_cc);
if (get_instr()->Bit(16)) { // Read Tf bit.
if (instr_.Bit(16)) { // Read Tf bit.
// MOVT.D
if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
} else {
......@@ -3296,7 +3295,7 @@ void Simulator::DecodeTypeRegisterSRsType() {
void Simulator::DecodeTypeRegisterLRsType() {
double fs = get_fpu_register_double(fs_reg());
double ft = get_fpu_register_double(ft_reg());
switch (get_instr()->FunctionFieldRaw()) {
switch (instr_.FunctionFieldRaw()) {
case CVT_D_L: // Mips32r2 instruction.
// Watch the signs here, we want 2 32-bit vals
// to make a sign-64.
......@@ -3398,7 +3397,7 @@ void Simulator::DecodeTypeRegisterLRsType() {
void Simulator::DecodeTypeRegisterCOP1() {
switch (get_instr()->RsFieldRaw()) {
switch (instr_.RsFieldRaw()) {
case CFC1:
// At the moment only FCSR is supported.
DCHECK(fs_reg() == kFCSRRegister);
......@@ -3461,7 +3460,7 @@ void Simulator::DecodeTypeRegisterCOP1() {
void Simulator::DecodeTypeRegisterCOP1X() {
switch (get_instr()->FunctionFieldRaw()) {
switch (instr_.FunctionFieldRaw()) {
case MADD_S: {
DCHECK(IsMipsArchVariant(kMips32r2));
float fr, ft, fs;
......@@ -3510,7 +3509,7 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
uint64_t u64hilo = 0;
bool do_interrupt = false;
switch (get_instr()->FunctionFieldRaw()) {
switch (instr_.FunctionFieldRaw()) {
case SELEQZ_S:
DCHECK(IsMipsArchVariant(kMips32r6));
set_register(rd_reg(), rt() == 0 ? rs() : 0);
......@@ -3650,7 +3649,7 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
break;
case DIV:
if (IsMipsArchVariant(kMips32r6)) {
switch (get_instr()->SaValue()) {
switch (sa()) {
case DIV_OP:
if (rs() == INT_MIN && rt() == -1) {
set_register(rd_reg(), INT_MIN);
......@@ -3685,7 +3684,7 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
break;
case DIVU:
if (IsMipsArchVariant(kMips32r6)) {
switch (get_instr()->SaValue()) {
switch (sa()) {
case DIV_OP:
if (rt_u() != 0) {
set_register(rd_reg(), rs_u() / rt_u());
......@@ -3792,9 +3791,9 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
}
break;
case MOVCI: {
uint32_t cc = get_instr()->FBccValue();
uint32_t cc = instr_.FBccValue();
uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
if (get_instr()->Bit(16)) { // Read Tf bit.
if (instr_.Bit(16)) { // Read Tf bit.
if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
} else {
if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
......@@ -3811,14 +3810,14 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
UNREACHABLE();
}
if (do_interrupt) {
SoftwareInterrupt(get_instr());
SoftwareInterrupt();
}
}
void Simulator::DecodeTypeRegisterSPECIAL2() {
int32_t alu_out;
switch (get_instr()->FunctionFieldRaw()) {
switch (instr_.FunctionFieldRaw()) {
case MUL:
// Only the lower 32 bits are kept.
alu_out = rs_u() * rt_u();
......@@ -3841,7 +3840,7 @@ void Simulator::DecodeTypeRegisterSPECIAL2() {
void Simulator::DecodeTypeRegisterSPECIAL3() {
int32_t alu_out;
switch (get_instr()->FunctionFieldRaw()) {
switch (instr_.FunctionFieldRaw()) {
case INS: { // Mips32r2 instruction.
// Interpret rd field as 5-bit msb of insert.
uint16_t msb = rd_reg();
......@@ -3866,7 +3865,7 @@ void Simulator::DecodeTypeRegisterSPECIAL3() {
break;
}
case BSHFL: {
int sa = get_instr()->SaFieldRaw() >> kSaShift;
int sa = instr_.SaFieldRaw() >> kSaShift;
switch (sa) {
case BITSWAP: {
uint32_t input = static_cast<uint32_t>(rt());
......@@ -3938,7 +3937,7 @@ void Simulator::DecodeTypeRegisterSPECIAL3() {
break;
}
default: {
const uint8_t bp = get_instr()->Bp2Value();
const uint8_t bp = instr_.Bp2Value();
sa >>= kBp2Bits;
switch (sa) {
case ALIGN: {
......@@ -3966,16 +3965,9 @@ void Simulator::DecodeTypeRegisterSPECIAL3() {
}
}
void Simulator::DecodeTypeRegister(Instruction* instr) {
const Opcode op = instr->OpcodeFieldRaw();
// Set up the variables if needed before executing the instruction.
// ConfigureTypeRegister(instr);
set_instr(instr);
void Simulator::DecodeTypeRegister() {
// ---------- Execution.
switch (op) {
switch (instr_.OpcodeFieldRaw()) {
case COP1:
DecodeTypeRegisterCOP1();
break;
......@@ -3998,17 +3990,17 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
// Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc).
void Simulator::DecodeTypeImmediate(Instruction* instr) {
void Simulator::DecodeTypeImmediate() {
// Instruction fields.
Opcode op = instr->OpcodeFieldRaw();
int32_t rs_reg = instr->RsValue();
int32_t rs = get_register(instr->RsValue());
Opcode op = instr_.OpcodeFieldRaw();
int32_t rs_reg = instr_.RsValue();
int32_t rs = get_register(instr_.RsValue());
uint32_t rs_u = static_cast<uint32_t>(rs);
int32_t rt_reg = instr->RtValue(); // Destination register.
int32_t rt_reg = instr_.RtValue(); // Destination register.
int32_t rt = get_register(rt_reg);
int16_t imm16 = instr->Imm16Value();
int16_t imm16 = instr_.Imm16Value();
int32_t ft_reg = instr->FtValue(); // Destination register.
int32_t ft_reg = instr_.FtValue(); // Destination register.
// Zero extended immediate.
uint32_t oe_imm16 = 0xffff & imm16;
......@@ -4028,38 +4020,36 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
int32_t addr = 0x0;
// Branch instructions common part.
auto BranchAndLinkHelper = [this, instr, &next_pc,
&execute_branch_delay_instruction](
bool do_branch) {
execute_branch_delay_instruction = true;
int32_t current_pc = get_pc();
if (do_branch) {
int16_t imm16 = instr->Imm16Value();
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
set_register(31, current_pc + 2 * Instruction::kInstrSize);
} else {
next_pc = current_pc + 2 * Instruction::kInstrSize;
}
};
auto BranchAndLinkHelper =
[this, &next_pc, &execute_branch_delay_instruction](bool do_branch) {
execute_branch_delay_instruction = true;
int32_t current_pc = get_pc();
if (do_branch) {
int16_t imm16 = this->instr_.Imm16Value();
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
set_register(31, current_pc + 2 * Instruction::kInstrSize);
} else {
next_pc = current_pc + 2 * Instruction::kInstrSize;
}
};
auto BranchHelper = [this, instr, &next_pc,
auto BranchHelper = [this, &next_pc,
&execute_branch_delay_instruction](bool do_branch) {
execute_branch_delay_instruction = true;
int32_t current_pc = get_pc();
if (do_branch) {
int16_t imm16 = instr->Imm16Value();
int16_t imm16 = this->instr_.Imm16Value();
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
} else {
next_pc = current_pc + 2 * Instruction::kInstrSize;
}
};
auto BranchAndLinkCompactHelper = [this, instr, &next_pc](bool do_branch,
int bits) {
auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) {
int32_t current_pc = get_pc();
CheckForbiddenSlot(current_pc);
if (do_branch) {
int32_t imm = instr->ImmValue(bits);
int32_t imm = this->instr_.ImmValue(bits);
imm <<= 32 - bits;
imm >>= 32 - bits;
next_pc = current_pc + (imm << 2) + Instruction::kInstrSize;
......@@ -4067,28 +4057,27 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
}
};
auto BranchCompactHelper = [&next_pc, this, instr](bool do_branch, int bits) {
auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) {
int32_t current_pc = get_pc();
CheckForbiddenSlot(current_pc);
if (do_branch) {
int32_t imm = instr->ImmValue(bits);
int32_t imm = this->instr_.ImmValue(bits);
imm <<= 32 - bits;
imm >>= 32 - bits;
next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize;
}
};
switch (op) {
// ------------- COP1. Coprocessor instructions.
case COP1:
switch (instr->RsFieldRaw()) {
switch (instr_.RsFieldRaw()) {
case BC1: { // Branch on coprocessor condition.
// Floating point.
uint32_t cc = instr->FBccValue();
uint32_t cc = instr_.FBccValue();
uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
uint32_t cc_value = test_fcsr_bit(fcsr_cc);
bool do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value;
BranchHelper(do_branch);
break;
}
......@@ -4104,7 +4093,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
break;
// ------------- REGIMM class.
case REGIMM:
switch (instr->RtFieldRaw()) {
switch (instr_.RtFieldRaw()) {
case BLTZ:
BranchHelper(rs < 0);
break;
......@@ -4312,7 +4301,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
set_register(rt_reg, ReadB(rs + se_imm16));
break;
case LH:
set_register(rt_reg, ReadH(rs + se_imm16, instr));
set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr()));
break;
case LWL: {
// al_offset is offset of the effective address within an aligned word.
......@@ -4320,20 +4309,20 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
uint8_t byte_shift = kPointerAlignmentMask - al_offset;
uint32_t mask = (1 << byte_shift * 8) - 1;
addr = rs + se_imm16 - al_offset;
alu_out = ReadW(addr, instr);
alu_out = ReadW(addr, instr_.instr());
alu_out <<= byte_shift * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
break;
}
case LW:
set_register(rt_reg, ReadW(rs + se_imm16, instr));
set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr()));
break;
case LBU:
set_register(rt_reg, ReadBU(rs + se_imm16));
break;
case LHU:
set_register(rt_reg, ReadHU(rs + se_imm16, instr));
set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr()));
break;
case LWR: {
// al_offset is offset of the effective address within an aligned word.
......@@ -4341,7 +4330,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
uint8_t byte_shift = kPointerAlignmentMask - al_offset;
uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
alu_out = ReadW(addr, instr);
alu_out = ReadW(addr, instr_.instr());
alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
......@@ -4351,7 +4340,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
WriteB(rs + se_imm16, static_cast<int8_t>(rt));
break;
case SH:
WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr);
WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr());
break;
case SWL: {
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
......@@ -4359,40 +4348,40 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
// Value to be written in memory.
uint32_t mem_value = ReadW(addr, instr) & mask;
uint32_t mem_value = ReadW(addr, instr_.instr()) & mask;
mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
WriteW(addr, mem_value, instr);
WriteW(addr, mem_value, instr_.instr());
break;
}
case SW:
WriteW(rs + se_imm16, rt, instr);
WriteW(rs + se_imm16, rt, instr_.instr());
break;
case SWR: {
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
uint32_t mask = (1 << al_offset * 8) - 1;
addr = rs + se_imm16 - al_offset;
uint32_t mem_value = ReadW(addr, instr);
uint32_t mem_value = ReadW(addr, instr_.instr());
mem_value = (rt << al_offset * 8) | (mem_value & mask);
WriteW(addr, mem_value, instr);
WriteW(addr, mem_value, instr_.instr());
break;
}
case LWC1:
set_fpu_register_hi_word(ft_reg, 0);
set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr));
set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr_.instr()));
break;
case LDC1:
set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr));
set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr()));
break;
case SWC1:
WriteW(rs + se_imm16, get_fpu_register_word(ft_reg), instr);
WriteW(rs + se_imm16, get_fpu_register_word(ft_reg), instr_.instr());
break;
case SDC1:
WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr);
WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr());
break;
// ------------- PC-Relative instructions.
case PCREL: {
// rt field: checking 5-bits.
int32_t imm21 = instr->Imm21Value();
int32_t imm21 = instr_.Imm21Value();
int32_t current_pc = get_pc();
uint8_t rt = (imm21 >> kImm16Bits);
switch (rt) {
......@@ -4404,7 +4393,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
alu_out = current_pc + (se_imm16 << 16);
break;
default: {
int32_t imm19 = instr->Imm19Value();
int32_t imm19 = instr_.Imm19Value();
// rt field: checking the most significant 2-bits.
rt = (imm21 >> kImm19Bits);
switch (rt) {
......@@ -4452,13 +4441,15 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
// Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
void Simulator::DecodeTypeJump(Instruction* instr) {
void Simulator::DecodeTypeJump() {
SimInstruction simInstr = instr_;
// Get current pc.
int32_t current_pc = get_pc();
// Get unchanged bits of pc.
int32_t pc_high_bits = current_pc & 0xf0000000;
// Next pc.
int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);
int32_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2);
// Execute branch delay slot.
// We don't check for end_sim_pc. First it should not be met as the current pc
......@@ -4469,7 +4460,7 @@ void Simulator::DecodeTypeJump(Instruction* instr) {
// Update pc and ra if necessary.
// Do this after the branch delay execution.
if (instr->IsLinkingInstruction()) {
if (simInstr.IsLinkingInstruction()) {
set_register(31, current_pc + 2 * Instruction::kInstrSize);
}
set_pc(next_pc);
......@@ -4491,15 +4482,16 @@ void Simulator::InstructionDecode(Instruction* instr) {
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
}
switch (instr->InstructionType(Instruction::TypeChecks::EXTRA)) {
instr_ = instr;
switch (instr_.InstructionType()) {
case Instruction::kRegisterType:
DecodeTypeRegister(instr);
DecodeTypeRegister();
break;
case Instruction::kImmediateType:
DecodeTypeImmediate(instr);
DecodeTypeImmediate();
break;
case Instruction::kJumpType:
DecodeTypeJump(instr);
DecodeTypeJump();
break;
default:
UNSUPPORTED();
......
......@@ -113,6 +113,39 @@ class CachePage {
char validity_map_[kValidityMapSize]; // One byte per line.
};
class SimInstructionBase : public InstructionBase {
public:
Type InstructionType() const { return type_; }
inline Instruction* instr() const { return instr_; }
inline int32_t operand() const { return operand_; }
protected:
SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {}
explicit SimInstructionBase(Instruction* instr) {}
int32_t operand_;
Instruction* instr_;
Type type_;
private:
DISALLOW_ASSIGN(SimInstructionBase);
};
class SimInstruction : public InstructionGetters<SimInstructionBase> {
public:
SimInstruction() {}
explicit SimInstruction(Instruction* instr) { *this = instr; }
SimInstruction& operator=(Instruction* instr) {
operand_ = *reinterpret_cast<const int32_t*>(instr);
instr_ = instr;
type_ = InstructionBase::InstructionType(EXTRA);
DCHECK(reinterpret_cast<void*>(&operand_) == this);
return *this;
}
};
class Simulator {
public:
friend class MipsDebugger;
......@@ -299,8 +332,10 @@ class Simulator {
inline int32_t SetDoubleHIW(double* addr);
inline int32_t SetDoubleLOW(double* addr);
SimInstruction instr_;
// Executing is handled based on the instruction type.
void DecodeTypeRegister(Instruction* instr);
void DecodeTypeRegister();
// Functions called from DecodeTypeRegister.
void DecodeTypeRegisterCOP1();
......@@ -322,39 +357,34 @@ class Simulator {
void DecodeTypeRegisterLRsType();
Instruction* currentInstr_;
inline Instruction* get_instr() const { return currentInstr_; }
inline void set_instr(Instruction* instr) { currentInstr_ = instr; }
inline int32_t rs_reg() const { return currentInstr_->RsValue(); }
inline int32_t rs_reg() const { return instr_.RsValue(); }
inline int32_t rs() const { return get_register(rs_reg()); }
inline uint32_t rs_u() const {
return static_cast<uint32_t>(get_register(rs_reg()));
}
inline int32_t rt_reg() const { return currentInstr_->RtValue(); }
inline int32_t rt_reg() const { return instr_.RtValue(); }
inline int32_t rt() const { return get_register(rt_reg()); }
inline uint32_t rt_u() const {
return static_cast<uint32_t>(get_register(rt_reg()));
}
inline int32_t rd_reg() const { return currentInstr_->RdValue(); }
inline int32_t fr_reg() const { return currentInstr_->FrValue(); }
inline int32_t fs_reg() const { return currentInstr_->FsValue(); }
inline int32_t ft_reg() const { return currentInstr_->FtValue(); }
inline int32_t fd_reg() const { return currentInstr_->FdValue(); }
inline int32_t sa() const { return currentInstr_->SaValue(); }
inline int32_t lsa_sa() const { return currentInstr_->LsaSaValue(); }
inline int32_t rd_reg() const { return instr_.RdValue(); }
inline int32_t fr_reg() const { return instr_.FrValue(); }
inline int32_t fs_reg() const { return instr_.FsValue(); }
inline int32_t ft_reg() const { return instr_.FtValue(); }
inline int32_t fd_reg() const { return instr_.FdValue(); }
inline int32_t sa() const { return instr_.SaValue(); }
inline int32_t lsa_sa() const { return instr_.LsaSaValue(); }
inline void SetResult(int32_t rd_reg, int32_t alu_out) {
set_register(rd_reg, alu_out);
TraceRegWr(alu_out);
}
void DecodeTypeImmediate(Instruction* instr);
void DecodeTypeJump(Instruction* instr);
void DecodeTypeImmediate();
void DecodeTypeJump();
// Used for breakpoints and traps.
void SoftwareInterrupt(Instruction* instr);
void SoftwareInterrupt();
// Compact branch guard.
void CheckForbiddenSlot(int32_t current_pc) {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment