Commit 597a4b4d authored by jochen@chromium.org's avatar jochen@chromium.org

A64: Make the Decoder a template

This will allow for replacing the dispatcher with a concrete decoder
visitor.

BUG=none
R=ulan@chromium.org, rodolph.perfetta@arm.com
LOG=n

Review URL: https://codereview.chromium.org/181253002

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19562 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 662bb0cc
......@@ -41,7 +41,7 @@ namespace internal {
class Debugger : public Simulator {
public:
Debugger(Decoder* decoder, FILE* stream = stderr)
Debugger(Decoder<DispatchingDecoderVisitor>* decoder, FILE* stream = stderr)
: Simulator(decoder, NULL, stream) {}
// Functions overloading.
......
// Copyright 2014 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_A64_DECODER_A64_INL_H_
#define V8_A64_DECODER_A64_INL_H_
#include "a64/decoder-a64.h"
#include "globals.h"
#include "utils.h"
namespace v8 {
namespace internal {
// Top-level instruction decode function.
template<typename V>
void Decoder<V>::Decode(Instruction *instr) {
if (instr->Bits(28, 27) == 0) {
V::VisitUnallocated(instr);
} else {
switch (instr->Bits(27, 24)) {
// 0: PC relative addressing.
case 0x0: DecodePCRelAddressing(instr); break;
// 1: Add/sub immediate.
case 0x1: DecodeAddSubImmediate(instr); break;
// A: Logical shifted register.
// Add/sub with carry.
// Conditional compare register.
// Conditional compare immediate.
// Conditional select.
// Data processing 1 source.
// Data processing 2 source.
// B: Add/sub shifted register.
// Add/sub extended register.
// Data processing 3 source.
case 0xA:
case 0xB: DecodeDataProcessing(instr); break;
// 2: Logical immediate.
// Move wide immediate.
case 0x2: DecodeLogical(instr); break;
// 3: Bitfield.
// Extract.
case 0x3: DecodeBitfieldExtract(instr); break;
// 4: Unconditional branch immediate.
// Exception generation.
// Compare and branch immediate.
// 5: Compare and branch immediate.
// Conditional branch.
// System.
// 6,7: Unconditional branch.
// Test and branch immediate.
case 0x4:
case 0x5:
case 0x6:
case 0x7: DecodeBranchSystemException(instr); break;
// 8,9: Load/store register pair post-index.
// Load register literal.
// Load/store register unscaled immediate.
// Load/store register immediate post-index.
// Load/store register immediate pre-index.
// Load/store register offset.
// C,D: Load/store register pair offset.
// Load/store register pair pre-index.
// Load/store register unsigned immediate.
// Advanced SIMD.
case 0x8:
case 0x9:
case 0xC:
case 0xD: DecodeLoadStore(instr); break;
// E: FP fixed point conversion.
// FP integer conversion.
// FP data processing 1 source.
// FP compare.
// FP immediate.
// FP data processing 2 source.
// FP conditional compare.
// FP conditional select.
// Advanced SIMD.
// F: FP data processing 3 source.
// Advanced SIMD.
case 0xE:
case 0xF: DecodeFP(instr); break;
}
}
}
template<typename V>
void Decoder<V>::DecodePCRelAddressing(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x0);
// We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
// decode.
ASSERT(instr->Bit(28) == 0x1);
V::VisitPCRelAddressing(instr);
}
template<typename V>
void Decoder<V>::DecodeBranchSystemException(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0x4) ||
(instr->Bits(27, 24) == 0x5) ||
(instr->Bits(27, 24) == 0x6) ||
(instr->Bits(27, 24) == 0x7) );
switch (instr->Bits(31, 29)) {
case 0:
case 4: {
V::VisitUnconditionalBranch(instr);
break;
}
case 1:
case 5: {
if (instr->Bit(25) == 0) {
V::VisitCompareBranch(instr);
} else {
V::VisitTestBranch(instr);
}
break;
}
case 2: {
if (instr->Bit(25) == 0) {
if ((instr->Bit(24) == 0x1) ||
(instr->Mask(0x01000010) == 0x00000010)) {
V::VisitUnallocated(instr);
} else {
V::VisitConditionalBranch(instr);
}
} else {
V::VisitUnallocated(instr);
}
break;
}
case 6: {
if (instr->Bit(25) == 0) {
if (instr->Bit(24) == 0) {
if ((instr->Bits(4, 2) != 0) ||
(instr->Mask(0x00E0001D) == 0x00200001) ||
(instr->Mask(0x00E0001D) == 0x00400001) ||
(instr->Mask(0x00E0001E) == 0x00200002) ||
(instr->Mask(0x00E0001E) == 0x00400002) ||
(instr->Mask(0x00E0001C) == 0x00600000) ||
(instr->Mask(0x00E0001C) == 0x00800000) ||
(instr->Mask(0x00E0001F) == 0x00A00000) ||
(instr->Mask(0x00C0001C) == 0x00C00000)) {
V::VisitUnallocated(instr);
} else {
V::VisitException(instr);
}
} else {
if (instr->Bits(23, 22) == 0) {
const Instr masked_003FF0E0 = instr->Mask(0x003FF0E0);
if ((instr->Bits(21, 19) == 0x4) ||
(masked_003FF0E0 == 0x00033000) ||
(masked_003FF0E0 == 0x003FF020) ||
(masked_003FF0E0 == 0x003FF060) ||
(masked_003FF0E0 == 0x003FF0E0) ||
(instr->Mask(0x00388000) == 0x00008000) ||
(instr->Mask(0x0038E000) == 0x00000000) ||
(instr->Mask(0x0039E000) == 0x00002000) ||
(instr->Mask(0x003AE000) == 0x00002000) ||
(instr->Mask(0x003CE000) == 0x00042000) ||
(instr->Mask(0x003FFFC0) == 0x000320C0) ||
(instr->Mask(0x003FF100) == 0x00032100) ||
(instr->Mask(0x003FF200) == 0x00032200) ||
(instr->Mask(0x003FF400) == 0x00032400) ||
(instr->Mask(0x003FF800) == 0x00032800) ||
(instr->Mask(0x0038F000) == 0x00005000) ||
(instr->Mask(0x0038E000) == 0x00006000)) {
V::VisitUnallocated(instr);
} else {
V::VisitSystem(instr);
}
} else {
V::VisitUnallocated(instr);
}
}
} else {
if ((instr->Bit(24) == 0x1) ||
(instr->Bits(20, 16) != 0x1F) ||
(instr->Bits(15, 10) != 0) ||
(instr->Bits(4, 0) != 0) ||
(instr->Bits(24, 21) == 0x3) ||
(instr->Bits(24, 22) == 0x3)) {
V::VisitUnallocated(instr);
} else {
V::VisitUnconditionalBranchToRegister(instr);
}
}
break;
}
case 3:
case 7: {
V::VisitUnallocated(instr);
break;
}
}
}
template<typename V>
void Decoder<V>::DecodeLoadStore(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0x8) ||
(instr->Bits(27, 24) == 0x9) ||
(instr->Bits(27, 24) == 0xC) ||
(instr->Bits(27, 24) == 0xD) );
if (instr->Bit(24) == 0) {
if (instr->Bit(28) == 0) {
if (instr->Bit(29) == 0) {
if (instr->Bit(26) == 0) {
// TODO(all): VisitLoadStoreExclusive.
V::VisitUnimplemented(instr);
} else {
DecodeAdvSIMDLoadStore(instr);
}
} else {
if ((instr->Bits(31, 30) == 0x3) ||
(instr->Mask(0xC4400000) == 0x40000000)) {
V::VisitUnallocated(instr);
} else {
if (instr->Bit(23) == 0) {
if (instr->Mask(0xC4400000) == 0xC0400000) {
V::VisitUnallocated(instr);
} else {
V::VisitLoadStorePairNonTemporal(instr);
}
} else {
V::VisitLoadStorePairPostIndex(instr);
}
}
}
} else {
if (instr->Bit(29) == 0) {
if (instr->Mask(0xC4000000) == 0xC4000000) {
V::VisitUnallocated(instr);
} else {
V::VisitLoadLiteral(instr);
}
} else {
if ((instr->Mask(0x84C00000) == 0x80C00000) ||
(instr->Mask(0x44800000) == 0x44800000) ||
(instr->Mask(0x84800000) == 0x84800000)) {
V::VisitUnallocated(instr);
} else {
if (instr->Bit(21) == 0) {
switch (instr->Bits(11, 10)) {
case 0: {
V::VisitLoadStoreUnscaledOffset(instr);
break;
}
case 1: {
if (instr->Mask(0xC4C00000) == 0xC0800000) {
V::VisitUnallocated(instr);
} else {
V::VisitLoadStorePostIndex(instr);
}
break;
}
case 2: {
// TODO(all): VisitLoadStoreRegisterOffsetUnpriv.
V::VisitUnimplemented(instr);
break;
}
case 3: {
if (instr->Mask(0xC4C00000) == 0xC0800000) {
V::VisitUnallocated(instr);
} else {
V::VisitLoadStorePreIndex(instr);
}
break;
}
}
} else {
if (instr->Bits(11, 10) == 0x2) {
if (instr->Bit(14) == 0) {
V::VisitUnallocated(instr);
} else {
V::VisitLoadStoreRegisterOffset(instr);
}
} else {
V::VisitUnallocated(instr);
}
}
}
}
}
} else {
if (instr->Bit(28) == 0) {
if (instr->Bit(29) == 0) {
V::VisitUnallocated(instr);
} else {
if ((instr->Bits(31, 30) == 0x3) ||
(instr->Mask(0xC4400000) == 0x40000000)) {
V::VisitUnallocated(instr);
} else {
if (instr->Bit(23) == 0) {
V::VisitLoadStorePairOffset(instr);
} else {
V::VisitLoadStorePairPreIndex(instr);
}
}
}
} else {
if (instr->Bit(29) == 0) {
V::VisitUnallocated(instr);
} else {
if ((instr->Mask(0x84C00000) == 0x80C00000) ||
(instr->Mask(0x44800000) == 0x44800000) ||
(instr->Mask(0x84800000) == 0x84800000)) {
V::VisitUnallocated(instr);
} else {
V::VisitLoadStoreUnsignedOffset(instr);
}
}
}
}
}
template<typename V>
void Decoder<V>::DecodeLogical(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x2);
if (instr->Mask(0x80400000) == 0x00400000) {
V::VisitUnallocated(instr);
} else {
if (instr->Bit(23) == 0) {
V::VisitLogicalImmediate(instr);
} else {
if (instr->Bits(30, 29) == 0x1) {
V::VisitUnallocated(instr);
} else {
V::VisitMoveWideImmediate(instr);
}
}
}
}
template<typename V>
void Decoder<V>::DecodeBitfieldExtract(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x3);
if ((instr->Mask(0x80400000) == 0x80000000) ||
(instr->Mask(0x80400000) == 0x00400000) ||
(instr->Mask(0x80008000) == 0x00008000)) {
V::VisitUnallocated(instr);
} else if (instr->Bit(23) == 0) {
if ((instr->Mask(0x80200000) == 0x00200000) ||
(instr->Mask(0x60000000) == 0x60000000)) {
V::VisitUnallocated(instr);
} else {
V::VisitBitfield(instr);
}
} else {
if ((instr->Mask(0x60200000) == 0x00200000) ||
(instr->Mask(0x60000000) != 0x00000000)) {
V::VisitUnallocated(instr);
} else {
V::VisitExtract(instr);
}
}
}
template<typename V>
void Decoder<V>::DecodeAddSubImmediate(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x1);
if (instr->Bit(23) == 1) {
V::VisitUnallocated(instr);
} else {
V::VisitAddSubImmediate(instr);
}
}
template<typename V>
void Decoder<V>::DecodeDataProcessing(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0xA) ||
(instr->Bits(27, 24) == 0xB) );
if (instr->Bit(24) == 0) {
if (instr->Bit(28) == 0) {
if (instr->Mask(0x80008000) == 0x00008000) {
V::VisitUnallocated(instr);
} else {
V::VisitLogicalShifted(instr);
}
} else {
switch (instr->Bits(23, 21)) {
case 0: {
if (instr->Mask(0x0000FC00) != 0) {
V::VisitUnallocated(instr);
} else {
V::VisitAddSubWithCarry(instr);
}
break;
}
case 2: {
if ((instr->Bit(29) == 0) ||
(instr->Mask(0x00000410) != 0)) {
V::VisitUnallocated(instr);
} else {
if (instr->Bit(11) == 0) {
V::VisitConditionalCompareRegister(instr);
} else {
V::VisitConditionalCompareImmediate(instr);
}
}
break;
}
case 4: {
if (instr->Mask(0x20000800) != 0x00000000) {
V::VisitUnallocated(instr);
} else {
V::VisitConditionalSelect(instr);
}
break;
}
case 6: {
if (instr->Bit(29) == 0x1) {
V::VisitUnallocated(instr);
} else {
if (instr->Bit(30) == 0) {
if ((instr->Bit(15) == 0x1) ||
(instr->Bits(15, 11) == 0) ||
(instr->Bits(15, 12) == 0x1) ||
(instr->Bits(15, 12) == 0x3) ||
(instr->Bits(15, 13) == 0x3) ||
(instr->Mask(0x8000EC00) == 0x00004C00) ||
(instr->Mask(0x8000E800) == 0x80004000) ||
(instr->Mask(0x8000E400) == 0x80004000)) {
V::VisitUnallocated(instr);
} else {
V::VisitDataProcessing2Source(instr);
}
} else {
if ((instr->Bit(13) == 1) ||
(instr->Bits(20, 16) != 0) ||
(instr->Bits(15, 14) != 0) ||
(instr->Mask(0xA01FFC00) == 0x00000C00) ||
(instr->Mask(0x201FF800) == 0x00001800)) {
V::VisitUnallocated(instr);
} else {
V::VisitDataProcessing1Source(instr);
}
}
break;
}
}
case 1:
case 3:
case 5:
case 7: V::VisitUnallocated(instr); break;
}
}
} else {
if (instr->Bit(28) == 0) {
if (instr->Bit(21) == 0) {
if ((instr->Bits(23, 22) == 0x3) ||
(instr->Mask(0x80008000) == 0x00008000)) {
V::VisitUnallocated(instr);
} else {
V::VisitAddSubShifted(instr);
}
} else {
if ((instr->Mask(0x00C00000) != 0x00000000) ||
(instr->Mask(0x00001400) == 0x00001400) ||
(instr->Mask(0x00001800) == 0x00001800)) {
V::VisitUnallocated(instr);
} else {
V::VisitAddSubExtended(instr);
}
}
} else {
if ((instr->Bit(30) == 0x1) ||
(instr->Bits(30, 29) == 0x1) ||
(instr->Mask(0xE0600000) == 0x00200000) ||
(instr->Mask(0xE0608000) == 0x00400000) ||
(instr->Mask(0x60608000) == 0x00408000) ||
(instr->Mask(0x60E00000) == 0x00E00000) ||
(instr->Mask(0x60E00000) == 0x00800000) ||
(instr->Mask(0x60E00000) == 0x00600000)) {
V::VisitUnallocated(instr);
} else {
V::VisitDataProcessing3Source(instr);
}
}
}
}
template<typename V>
void Decoder<V>::DecodeFP(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0xE) ||
(instr->Bits(27, 24) == 0xF) );
if (instr->Bit(28) == 0) {
DecodeAdvSIMDDataProcessing(instr);
} else {
if (instr->Bit(29) == 1) {
V::VisitUnallocated(instr);
} else {
if (instr->Bits(31, 30) == 0x3) {
V::VisitUnallocated(instr);
} else if (instr->Bits(31, 30) == 0x1) {
DecodeAdvSIMDDataProcessing(instr);
} else {
if (instr->Bit(24) == 0) {
if (instr->Bit(21) == 0) {
if ((instr->Bit(23) == 1) ||
(instr->Bit(18) == 1) ||
(instr->Mask(0x80008000) == 0x00000000) ||
(instr->Mask(0x000E0000) == 0x00000000) ||
(instr->Mask(0x000E0000) == 0x000A0000) ||
(instr->Mask(0x00160000) == 0x00000000) ||
(instr->Mask(0x00160000) == 0x00120000)) {
V::VisitUnallocated(instr);
} else {
V::VisitFPFixedPointConvert(instr);
}
} else {
if (instr->Bits(15, 10) == 32) {
V::VisitUnallocated(instr);
} else if (instr->Bits(15, 10) == 0) {
if ((instr->Bits(23, 22) == 0x3) ||
(instr->Mask(0x000E0000) == 0x000A0000) ||
(instr->Mask(0x000E0000) == 0x000C0000) ||
(instr->Mask(0x00160000) == 0x00120000) ||
(instr->Mask(0x00160000) == 0x00140000) ||
(instr->Mask(0x20C40000) == 0x00800000) ||
(instr->Mask(0x20C60000) == 0x00840000) ||
(instr->Mask(0xA0C60000) == 0x80060000) ||
(instr->Mask(0xA0C60000) == 0x00860000) ||
(instr->Mask(0xA0C60000) == 0x00460000) ||
(instr->Mask(0xA0CE0000) == 0x80860000) ||
(instr->Mask(0xA0CE0000) == 0x804E0000) ||
(instr->Mask(0xA0CE0000) == 0x000E0000) ||
(instr->Mask(0xA0D60000) == 0x00160000) ||
(instr->Mask(0xA0D60000) == 0x80560000) ||
(instr->Mask(0xA0D60000) == 0x80960000)) {
V::VisitUnallocated(instr);
} else {
V::VisitFPIntegerConvert(instr);
}
} else if (instr->Bits(14, 10) == 16) {
const Instr masked_A0DF8000 = instr->Mask(0xA0DF8000);
if ((instr->Mask(0x80180000) != 0) ||
(masked_A0DF8000 == 0x00020000) ||
(masked_A0DF8000 == 0x00030000) ||
(masked_A0DF8000 == 0x00068000) ||
(masked_A0DF8000 == 0x00428000) ||
(masked_A0DF8000 == 0x00430000) ||
(masked_A0DF8000 == 0x00468000) ||
(instr->Mask(0xA0D80000) == 0x00800000) ||
(instr->Mask(0xA0DE0000) == 0x00C00000) ||
(instr->Mask(0xA0DF0000) == 0x00C30000) ||
(instr->Mask(0xA0DC0000) == 0x00C40000)) {
V::VisitUnallocated(instr);
} else {
V::VisitFPDataProcessing1Source(instr);
}
} else if (instr->Bits(13, 10) == 8) {
if ((instr->Bits(15, 14) != 0) ||
(instr->Bits(2, 0) != 0) ||
(instr->Mask(0x80800000) != 0x00000000)) {
V::VisitUnallocated(instr);
} else {
V::VisitFPCompare(instr);
}
} else if (instr->Bits(12, 10) == 4) {
if ((instr->Bits(9, 5) != 0) ||
(instr->Mask(0x80800000) != 0x00000000)) {
V::VisitUnallocated(instr);
} else {
V::VisitFPImmediate(instr);
}
} else {
if (instr->Mask(0x80800000) != 0x00000000) {
V::VisitUnallocated(instr);
} else {
switch (instr->Bits(11, 10)) {
case 1: {
V::VisitFPConditionalCompare(instr);
break;
}
case 2: {
if ((instr->Bits(15, 14) == 0x3) ||
(instr->Mask(0x00009000) == 0x00009000) ||
(instr->Mask(0x0000A000) == 0x0000A000)) {
V::VisitUnallocated(instr);
} else {
V::VisitFPDataProcessing2Source(instr);
}
break;
}
case 3: {
V::VisitFPConditionalSelect(instr);
break;
}
default: UNREACHABLE();
}
}
}
}
} else {
// Bit 30 == 1 has been handled earlier.
ASSERT(instr->Bit(30) == 0);
if (instr->Mask(0xA0800000) != 0) {
V::VisitUnallocated(instr);
} else {
V::VisitFPDataProcessing3Source(instr);
}
}
}
}
}
}
template<typename V>
void Decoder<V>::DecodeAdvSIMDLoadStore(Instruction* instr) {
// TODO(all): Implement Advanced SIMD load/store instruction decode.
ASSERT(instr->Bits(29, 25) == 0x6);
V::VisitUnimplemented(instr);
}
template<typename V>
void Decoder<V>::DecodeAdvSIMDDataProcessing(Instruction* instr) {
// TODO(all): Implement Advanced SIMD data processing instruction decode.
ASSERT(instr->Bits(27, 25) == 0x7);
V::VisitUnimplemented(instr);
}
} } // namespace v8::internal
#endif // V8_A64_DECODER_A64_INL_H_
......@@ -104,624 +104,6 @@ VISITOR_LIST(DEFINE_VISITOR_CALLERS)
#undef DEFINE_VISITOR_CALLERS
// Top-level instruction decode function.
void Decoder::Decode(Instruction *instr) {
if (instr->Bits(28, 27) == 0) {
VisitUnallocated(instr);
} else {
switch (instr->Bits(27, 24)) {
// 0: PC relative addressing.
case 0x0: DecodePCRelAddressing(instr); break;
// 1: Add/sub immediate.
case 0x1: DecodeAddSubImmediate(instr); break;
// A: Logical shifted register.
// Add/sub with carry.
// Conditional compare register.
// Conditional compare immediate.
// Conditional select.
// Data processing 1 source.
// Data processing 2 source.
// B: Add/sub shifted register.
// Add/sub extended register.
// Data processing 3 source.
case 0xA:
case 0xB: DecodeDataProcessing(instr); break;
// 2: Logical immediate.
// Move wide immediate.
case 0x2: DecodeLogical(instr); break;
// 3: Bitfield.
// Extract.
case 0x3: DecodeBitfieldExtract(instr); break;
// 4: Unconditional branch immediate.
// Exception generation.
// Compare and branch immediate.
// 5: Compare and branch immediate.
// Conditional branch.
// System.
// 6,7: Unconditional branch.
// Test and branch immediate.
case 0x4:
case 0x5:
case 0x6:
case 0x7: DecodeBranchSystemException(instr); break;
// 8,9: Load/store register pair post-index.
// Load register literal.
// Load/store register unscaled immediate.
// Load/store register immediate post-index.
// Load/store register immediate pre-index.
// Load/store register offset.
// C,D: Load/store register pair offset.
// Load/store register pair pre-index.
// Load/store register unsigned immediate.
// Advanced SIMD.
case 0x8:
case 0x9:
case 0xC:
case 0xD: DecodeLoadStore(instr); break;
// E: FP fixed point conversion.
// FP integer conversion.
// FP data processing 1 source.
// FP compare.
// FP immediate.
// FP data processing 2 source.
// FP conditional compare.
// FP conditional select.
// Advanced SIMD.
// F: FP data processing 3 source.
// Advanced SIMD.
case 0xE:
case 0xF: DecodeFP(instr); break;
}
}
}
void Decoder::DecodePCRelAddressing(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x0);
// We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
// decode.
ASSERT(instr->Bit(28) == 0x1);
VisitPCRelAddressing(instr);
}
void Decoder::DecodeBranchSystemException(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0x4) ||
(instr->Bits(27, 24) == 0x5) ||
(instr->Bits(27, 24) == 0x6) ||
(instr->Bits(27, 24) == 0x7) );
switch (instr->Bits(31, 29)) {
case 0:
case 4: {
VisitUnconditionalBranch(instr);
break;
}
case 1:
case 5: {
if (instr->Bit(25) == 0) {
VisitCompareBranch(instr);
} else {
VisitTestBranch(instr);
}
break;
}
case 2: {
if (instr->Bit(25) == 0) {
if ((instr->Bit(24) == 0x1) ||
(instr->Mask(0x01000010) == 0x00000010)) {
VisitUnallocated(instr);
} else {
VisitConditionalBranch(instr);
}
} else {
VisitUnallocated(instr);
}
break;
}
case 6: {
if (instr->Bit(25) == 0) {
if (instr->Bit(24) == 0) {
if ((instr->Bits(4, 2) != 0) ||
(instr->Mask(0x00E0001D) == 0x00200001) ||
(instr->Mask(0x00E0001D) == 0x00400001) ||
(instr->Mask(0x00E0001E) == 0x00200002) ||
(instr->Mask(0x00E0001E) == 0x00400002) ||
(instr->Mask(0x00E0001C) == 0x00600000) ||
(instr->Mask(0x00E0001C) == 0x00800000) ||
(instr->Mask(0x00E0001F) == 0x00A00000) ||
(instr->Mask(0x00C0001C) == 0x00C00000)) {
VisitUnallocated(instr);
} else {
VisitException(instr);
}
} else {
if (instr->Bits(23, 22) == 0) {
const Instr masked_003FF0E0 = instr->Mask(0x003FF0E0);
if ((instr->Bits(21, 19) == 0x4) ||
(masked_003FF0E0 == 0x00033000) ||
(masked_003FF0E0 == 0x003FF020) ||
(masked_003FF0E0 == 0x003FF060) ||
(masked_003FF0E0 == 0x003FF0E0) ||
(instr->Mask(0x00388000) == 0x00008000) ||
(instr->Mask(0x0038E000) == 0x00000000) ||
(instr->Mask(0x0039E000) == 0x00002000) ||
(instr->Mask(0x003AE000) == 0x00002000) ||
(instr->Mask(0x003CE000) == 0x00042000) ||
(instr->Mask(0x003FFFC0) == 0x000320C0) ||
(instr->Mask(0x003FF100) == 0x00032100) ||
(instr->Mask(0x003FF200) == 0x00032200) ||
(instr->Mask(0x003FF400) == 0x00032400) ||
(instr->Mask(0x003FF800) == 0x00032800) ||
(instr->Mask(0x0038F000) == 0x00005000) ||
(instr->Mask(0x0038E000) == 0x00006000)) {
VisitUnallocated(instr);
} else {
VisitSystem(instr);
}
} else {
VisitUnallocated(instr);
}
}
} else {
if ((instr->Bit(24) == 0x1) ||
(instr->Bits(20, 16) != 0x1F) ||
(instr->Bits(15, 10) != 0) ||
(instr->Bits(4, 0) != 0) ||
(instr->Bits(24, 21) == 0x3) ||
(instr->Bits(24, 22) == 0x3)) {
VisitUnallocated(instr);
} else {
VisitUnconditionalBranchToRegister(instr);
}
}
break;
}
case 3:
case 7: {
VisitUnallocated(instr);
break;
}
}
}
void Decoder::DecodeLoadStore(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0x8) ||
(instr->Bits(27, 24) == 0x9) ||
(instr->Bits(27, 24) == 0xC) ||
(instr->Bits(27, 24) == 0xD) );
if (instr->Bit(24) == 0) {
if (instr->Bit(28) == 0) {
if (instr->Bit(29) == 0) {
if (instr->Bit(26) == 0) {
// TODO(all): VisitLoadStoreExclusive.
VisitUnimplemented(instr);
} else {
DecodeAdvSIMDLoadStore(instr);
}
} else {
if ((instr->Bits(31, 30) == 0x3) ||
(instr->Mask(0xC4400000) == 0x40000000)) {
VisitUnallocated(instr);
} else {
if (instr->Bit(23) == 0) {
if (instr->Mask(0xC4400000) == 0xC0400000) {
VisitUnallocated(instr);
} else {
VisitLoadStorePairNonTemporal(instr);
}
} else {
VisitLoadStorePairPostIndex(instr);
}
}
}
} else {
if (instr->Bit(29) == 0) {
if (instr->Mask(0xC4000000) == 0xC4000000) {
VisitUnallocated(instr);
} else {
VisitLoadLiteral(instr);
}
} else {
if ((instr->Mask(0x84C00000) == 0x80C00000) ||
(instr->Mask(0x44800000) == 0x44800000) ||
(instr->Mask(0x84800000) == 0x84800000)) {
VisitUnallocated(instr);
} else {
if (instr->Bit(21) == 0) {
switch (instr->Bits(11, 10)) {
case 0: {
VisitLoadStoreUnscaledOffset(instr);
break;
}
case 1: {
if (instr->Mask(0xC4C00000) == 0xC0800000) {
VisitUnallocated(instr);
} else {
VisitLoadStorePostIndex(instr);
}
break;
}
case 2: {
// TODO(all): VisitLoadStoreRegisterOffsetUnpriv.
VisitUnimplemented(instr);
break;
}
case 3: {
if (instr->Mask(0xC4C00000) == 0xC0800000) {
VisitUnallocated(instr);
} else {
VisitLoadStorePreIndex(instr);
}
break;
}
}
} else {
if (instr->Bits(11, 10) == 0x2) {
if (instr->Bit(14) == 0) {
VisitUnallocated(instr);
} else {
VisitLoadStoreRegisterOffset(instr);
}
} else {
VisitUnallocated(instr);
}
}
}
}
}
} else {
if (instr->Bit(28) == 0) {
if (instr->Bit(29) == 0) {
VisitUnallocated(instr);
} else {
if ((instr->Bits(31, 30) == 0x3) ||
(instr->Mask(0xC4400000) == 0x40000000)) {
VisitUnallocated(instr);
} else {
if (instr->Bit(23) == 0) {
VisitLoadStorePairOffset(instr);
} else {
VisitLoadStorePairPreIndex(instr);
}
}
}
} else {
if (instr->Bit(29) == 0) {
VisitUnallocated(instr);
} else {
if ((instr->Mask(0x84C00000) == 0x80C00000) ||
(instr->Mask(0x44800000) == 0x44800000) ||
(instr->Mask(0x84800000) == 0x84800000)) {
VisitUnallocated(instr);
} else {
VisitLoadStoreUnsignedOffset(instr);
}
}
}
}
}
void Decoder::DecodeLogical(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x2);
if (instr->Mask(0x80400000) == 0x00400000) {
VisitUnallocated(instr);
} else {
if (instr->Bit(23) == 0) {
VisitLogicalImmediate(instr);
} else {
if (instr->Bits(30, 29) == 0x1) {
VisitUnallocated(instr);
} else {
VisitMoveWideImmediate(instr);
}
}
}
}
void Decoder::DecodeBitfieldExtract(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x3);
if ((instr->Mask(0x80400000) == 0x80000000) ||
(instr->Mask(0x80400000) == 0x00400000) ||
(instr->Mask(0x80008000) == 0x00008000)) {
VisitUnallocated(instr);
} else if (instr->Bit(23) == 0) {
if ((instr->Mask(0x80200000) == 0x00200000) ||
(instr->Mask(0x60000000) == 0x60000000)) {
VisitUnallocated(instr);
} else {
VisitBitfield(instr);
}
} else {
if ((instr->Mask(0x60200000) == 0x00200000) ||
(instr->Mask(0x60000000) != 0x00000000)) {
VisitUnallocated(instr);
} else {
VisitExtract(instr);
}
}
}
void Decoder::DecodeAddSubImmediate(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x1);
if (instr->Bit(23) == 1) {
VisitUnallocated(instr);
} else {
VisitAddSubImmediate(instr);
}
}
void Decoder::DecodeDataProcessing(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0xA) ||
(instr->Bits(27, 24) == 0xB) );
if (instr->Bit(24) == 0) {
if (instr->Bit(28) == 0) {
if (instr->Mask(0x80008000) == 0x00008000) {
VisitUnallocated(instr);
} else {
VisitLogicalShifted(instr);
}
} else {
switch (instr->Bits(23, 21)) {
case 0: {
if (instr->Mask(0x0000FC00) != 0) {
VisitUnallocated(instr);
} else {
VisitAddSubWithCarry(instr);
}
break;
}
case 2: {
if ((instr->Bit(29) == 0) ||
(instr->Mask(0x00000410) != 0)) {
VisitUnallocated(instr);
} else {
if (instr->Bit(11) == 0) {
VisitConditionalCompareRegister(instr);
} else {
VisitConditionalCompareImmediate(instr);
}
}
break;
}
case 4: {
if (instr->Mask(0x20000800) != 0x00000000) {
VisitUnallocated(instr);
} else {
VisitConditionalSelect(instr);
}
break;
}
case 6: {
if (instr->Bit(29) == 0x1) {
VisitUnallocated(instr);
} else {
if (instr->Bit(30) == 0) {
if ((instr->Bit(15) == 0x1) ||
(instr->Bits(15, 11) == 0) ||
(instr->Bits(15, 12) == 0x1) ||
(instr->Bits(15, 12) == 0x3) ||
(instr->Bits(15, 13) == 0x3) ||
(instr->Mask(0x8000EC00) == 0x00004C00) ||
(instr->Mask(0x8000E800) == 0x80004000) ||
(instr->Mask(0x8000E400) == 0x80004000)) {
VisitUnallocated(instr);
} else {
VisitDataProcessing2Source(instr);
}
} else {
if ((instr->Bit(13) == 1) ||
(instr->Bits(20, 16) != 0) ||
(instr->Bits(15, 14) != 0) ||
(instr->Mask(0xA01FFC00) == 0x00000C00) ||
(instr->Mask(0x201FF800) == 0x00001800)) {
VisitUnallocated(instr);
} else {
VisitDataProcessing1Source(instr);
}
}
break;
}
}
case 1:
case 3:
case 5:
case 7: VisitUnallocated(instr); break;
}
}
} else {
if (instr->Bit(28) == 0) {
if (instr->Bit(21) == 0) {
if ((instr->Bits(23, 22) == 0x3) ||
(instr->Mask(0x80008000) == 0x00008000)) {
VisitUnallocated(instr);
} else {
VisitAddSubShifted(instr);
}
} else {
if ((instr->Mask(0x00C00000) != 0x00000000) ||
(instr->Mask(0x00001400) == 0x00001400) ||
(instr->Mask(0x00001800) == 0x00001800)) {
VisitUnallocated(instr);
} else {
VisitAddSubExtended(instr);
}
}
} else {
if ((instr->Bit(30) == 0x1) ||
(instr->Bits(30, 29) == 0x1) ||
(instr->Mask(0xE0600000) == 0x00200000) ||
(instr->Mask(0xE0608000) == 0x00400000) ||
(instr->Mask(0x60608000) == 0x00408000) ||
(instr->Mask(0x60E00000) == 0x00E00000) ||
(instr->Mask(0x60E00000) == 0x00800000) ||
(instr->Mask(0x60E00000) == 0x00600000)) {
VisitUnallocated(instr);
} else {
VisitDataProcessing3Source(instr);
}
}
}
}
void Decoder::DecodeFP(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0xE) ||
(instr->Bits(27, 24) == 0xF) );
if (instr->Bit(28) == 0) {
DecodeAdvSIMDDataProcessing(instr);
} else {
if (instr->Bit(29) == 1) {
VisitUnallocated(instr);
} else {
if (instr->Bits(31, 30) == 0x3) {
VisitUnallocated(instr);
} else if (instr->Bits(31, 30) == 0x1) {
DecodeAdvSIMDDataProcessing(instr);
} else {
if (instr->Bit(24) == 0) {
if (instr->Bit(21) == 0) {
if ((instr->Bit(23) == 1) ||
(instr->Bit(18) == 1) ||
(instr->Mask(0x80008000) == 0x00000000) ||
(instr->Mask(0x000E0000) == 0x00000000) ||
(instr->Mask(0x000E0000) == 0x000A0000) ||
(instr->Mask(0x00160000) == 0x00000000) ||
(instr->Mask(0x00160000) == 0x00120000)) {
VisitUnallocated(instr);
} else {
VisitFPFixedPointConvert(instr);
}
} else {
if (instr->Bits(15, 10) == 32) {
VisitUnallocated(instr);
} else if (instr->Bits(15, 10) == 0) {
if ((instr->Bits(23, 22) == 0x3) ||
(instr->Mask(0x000E0000) == 0x000A0000) ||
(instr->Mask(0x000E0000) == 0x000C0000) ||
(instr->Mask(0x00160000) == 0x00120000) ||
(instr->Mask(0x00160000) == 0x00140000) ||
(instr->Mask(0x20C40000) == 0x00800000) ||
(instr->Mask(0x20C60000) == 0x00840000) ||
(instr->Mask(0xA0C60000) == 0x80060000) ||
(instr->Mask(0xA0C60000) == 0x00860000) ||
(instr->Mask(0xA0C60000) == 0x00460000) ||
(instr->Mask(0xA0CE0000) == 0x80860000) ||
(instr->Mask(0xA0CE0000) == 0x804E0000) ||
(instr->Mask(0xA0CE0000) == 0x000E0000) ||
(instr->Mask(0xA0D60000) == 0x00160000) ||
(instr->Mask(0xA0D60000) == 0x80560000) ||
(instr->Mask(0xA0D60000) == 0x80960000)) {
VisitUnallocated(instr);
} else {
VisitFPIntegerConvert(instr);
}
} else if (instr->Bits(14, 10) == 16) {
const Instr masked_A0DF8000 = instr->Mask(0xA0DF8000);
if ((instr->Mask(0x80180000) != 0) ||
(masked_A0DF8000 == 0x00020000) ||
(masked_A0DF8000 == 0x00030000) ||
(masked_A0DF8000 == 0x00068000) ||
(masked_A0DF8000 == 0x00428000) ||
(masked_A0DF8000 == 0x00430000) ||
(masked_A0DF8000 == 0x00468000) ||
(instr->Mask(0xA0D80000) == 0x00800000) ||
(instr->Mask(0xA0DE0000) == 0x00C00000) ||
(instr->Mask(0xA0DF0000) == 0x00C30000) ||
(instr->Mask(0xA0DC0000) == 0x00C40000)) {
VisitUnallocated(instr);
} else {
VisitFPDataProcessing1Source(instr);
}
} else if (instr->Bits(13, 10) == 8) {
if ((instr->Bits(15, 14) != 0) ||
(instr->Bits(2, 0) != 0) ||
(instr->Mask(0x80800000) != 0x00000000)) {
VisitUnallocated(instr);
} else {
VisitFPCompare(instr);
}
} else if (instr->Bits(12, 10) == 4) {
if ((instr->Bits(9, 5) != 0) ||
(instr->Mask(0x80800000) != 0x00000000)) {
VisitUnallocated(instr);
} else {
VisitFPImmediate(instr);
}
} else {
if (instr->Mask(0x80800000) != 0x00000000) {
VisitUnallocated(instr);
} else {
switch (instr->Bits(11, 10)) {
case 1: {
VisitFPConditionalCompare(instr);
break;
}
case 2: {
if ((instr->Bits(15, 14) == 0x3) ||
(instr->Mask(0x00009000) == 0x00009000) ||
(instr->Mask(0x0000A000) == 0x0000A000)) {
VisitUnallocated(instr);
} else {
VisitFPDataProcessing2Source(instr);
}
break;
}
case 3: {
VisitFPConditionalSelect(instr);
break;
}
default: UNREACHABLE();
}
}
}
}
} else {
// Bit 30 == 1 has been handled earlier.
ASSERT(instr->Bit(30) == 0);
if (instr->Mask(0xA0800000) != 0) {
VisitUnallocated(instr);
} else {
VisitFPDataProcessing3Source(instr);
}
}
}
}
}
}
void Decoder::DecodeAdvSIMDLoadStore(Instruction* instr) {
// TODO(all): Implement Advanced SIMD load/store instruction decode.
ASSERT(instr->Bits(29, 25) == 0x6);
VisitUnimplemented(instr);
}
void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) {
// TODO(all): Implement Advanced SIMD data processing instruction decode.
ASSERT(instr->Bits(27, 25) == 0x7);
VisitUnimplemented(instr);
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_A64
......@@ -142,7 +142,8 @@ class DispatchingDecoderVisitor : public DecoderVisitor {
};
class Decoder : public DispatchingDecoderVisitor {
template<typename V>
class Decoder : public V {
public:
Decoder() {}
......
......@@ -35,6 +35,7 @@
#if V8_TARGET_ARCH_A64
#include "disasm.h"
#include "a64/decoder-a64-inl.h"
#include "a64/disasm-a64.h"
#include "macro-assembler.h"
#include "platform.h"
......@@ -1824,7 +1825,7 @@ Disassembler::~Disassembler() {}
int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
byte* instr) {
v8::internal::Decoder decoder;
v8::internal::Decoder<v8::internal::DispatchingDecoderVisitor> decoder;
BufferDisassembler disasm(buffer);
decoder.AppendVisitor(&disasm);
......@@ -1840,7 +1841,7 @@ int Disassembler::ConstantPoolSizeAt(byte* instr) {
void Disassembler::Disassemble(FILE* file, byte* start, byte* end) {
v8::internal::Decoder decoder;
v8::internal::Decoder<v8::internal::DispatchingDecoderVisitor> decoder;
v8::internal::PrintDisassembler disasm(file);
decoder.AppendVisitor(&disasm);
......
......@@ -34,6 +34,7 @@
#include "disasm.h"
#include "assembler.h"
#include "a64/decoder-a64-inl.h"
#include "a64/simulator-a64.h"
#include "macro-assembler.h"
......@@ -105,7 +106,7 @@ Simulator* Simulator::current(Isolate* isolate) {
Simulator* sim = isolate_data->simulator();
if (sim == NULL) {
// TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator(new Decoder(), isolate);
sim = new Simulator(new Decoder<DispatchingDecoderVisitor>(), isolate);
isolate_data->set_simulator(sim);
}
return sim;
......@@ -333,8 +334,11 @@ uintptr_t Simulator::StackLimit() const {
}
Simulator::Simulator(Decoder* decoder, Isolate* isolate, FILE* stream)
: decoder_(decoder), last_debugger_input_(NULL), log_parameters_(NO_PARAM),
Simulator::Simulator(Decoder<DispatchingDecoderVisitor>* decoder,
Isolate* isolate, FILE* stream)
: decoder_(decoder),
last_debugger_input_(NULL),
log_parameters_(NO_PARAM),
isolate_(isolate) {
// Setup the decoder.
decoder_->AppendVisitor(this);
......@@ -359,7 +363,7 @@ Simulator::Simulator(Decoder* decoder, Isolate* isolate, FILE* stream)
// The debugger needs to disassemble code without the simulator executing an
// instruction, so we create a dedicated decoder.
disassembler_decoder_ = new Decoder();
disassembler_decoder_ = new Decoder<DispatchingDecoderVisitor>();
disassembler_decoder_->AppendVisitor(print_disasm_);
if (FLAG_log_instruction_stats) {
......
......@@ -192,7 +192,7 @@ typedef SimRegisterBase<kDRegSizeInBytes> SimFPRegister; // v0-v31
class Simulator : public DecoderVisitor {
public:
explicit Simulator(Decoder* decoder,
explicit Simulator(Decoder<DispatchingDecoderVisitor>* decoder,
Isolate* isolate = NULL,
FILE* stream = stderr);
~Simulator();
......@@ -796,8 +796,8 @@ class Simulator : public DecoderVisitor {
byte* stack_limit_;
// TODO(aleram): protect the stack.
Decoder* decoder_;
Decoder* disassembler_decoder_;
Decoder<DispatchingDecoderVisitor>* decoder_;
Decoder<DispatchingDecoderVisitor>* disassembler_decoder_;
// Indicates if the pc has been modified by the instruction and should not be
// automatically incremented.
......
......@@ -35,6 +35,7 @@
#include "macro-assembler.h"
#include "a64/simulator-a64.h"
#include "a64/decoder-a64-inl.h"
#include "a64/disasm-a64.h"
#include "a64/utils-a64.h"
#include "cctest.h"
......@@ -112,15 +113,15 @@ static void InitializeVM() {
#ifdef USE_SIMULATOR
// Run tests with the simulator.
#define SETUP_SIZE(buf_size) \
Isolate* isolate = Isolate::Current(); \
HandleScope scope(isolate); \
ASSERT(isolate != NULL); \
byte* buf = new byte[buf_size]; \
MacroAssembler masm(isolate, buf, buf_size); \
Decoder decoder; \
Simulator simulator(&decoder); \
PrintDisassembler* pdis = NULL; \
#define SETUP_SIZE(buf_size) \
Isolate* isolate = Isolate::Current(); \
HandleScope scope(isolate); \
ASSERT(isolate != NULL); \
byte* buf = new byte[buf_size]; \
MacroAssembler masm(isolate, buf, buf_size); \
Decoder<DispatchingDecoderVisitor> decoder; \
Simulator simulator(&decoder); \
PrintDisassembler* pdis = NULL; \
RegisterDump core;
/* if (Cctest::trace_sim()) { \
......
......@@ -34,6 +34,7 @@
#include "macro-assembler.h"
#include "a64/assembler-a64.h"
#include "a64/macro-assembler-a64.h"
#include "a64/decoder-a64-inl.h"
#include "a64/disasm-a64.h"
#include "a64/utils-a64.h"
......@@ -43,15 +44,16 @@ using namespace v8::internal;
#define EXP_SIZE (256)
#define INSTR_SIZE (1024)
#define SET_UP_CLASS(ASMCLASS) \
InitializeVM(); \
Isolate* isolate = Isolate::Current(); \
HandleScope scope(isolate); \
byte* buf = static_cast<byte*>(malloc(INSTR_SIZE)); \
uint32_t encoding = 0; \
ASMCLASS* assm = new ASMCLASS(isolate, buf, INSTR_SIZE); \
Decoder* decoder = new Decoder(); \
Disassembler* disasm = new Disassembler(); \
#define SET_UP_CLASS(ASMCLASS) \
InitializeVM(); \
Isolate* isolate = Isolate::Current(); \
HandleScope scope(isolate); \
byte* buf = static_cast<byte*>(malloc(INSTR_SIZE)); \
uint32_t encoding = 0; \
ASMCLASS* assm = new ASMCLASS(isolate, buf, INSTR_SIZE); \
Decoder<DispatchingDecoderVisitor>* decoder = \
new Decoder<DispatchingDecoderVisitor>(); \
Disassembler* disasm = new Disassembler(); \
decoder->AppendVisitor(disasm)
#define SET_UP() SET_UP_CLASS(Assembler)
......
......@@ -26,6 +26,7 @@
#include "cctest.h"
#include "a64/decoder-a64.h"
#include "a64/decoder-a64-inl.h"
#include "a64/disasm-a64.h"
using namespace v8::internal;
......@@ -38,7 +39,7 @@ TEST(FUZZ_decoder) {
uint16_t seed[3] = {1, 2, 3};
seed48(seed);
Decoder decoder;
Decoder<DispatchingDecoderVisitor> decoder;
Instruction buffer[kInstructionSize];
for (int i = 0; i < instruction_count; i++) {
......@@ -57,7 +58,7 @@ TEST(FUZZ_disasm) {
uint16_t seed[3] = {42, 43, 44};
seed48(seed);
Decoder decoder;
Decoder<DispatchingDecoderVisitor> decoder;
Disassembler disasm;
Instruction buffer[kInstructionSize];
......
......@@ -664,6 +664,7 @@
'../../src/a64/debugger-a64.h',
'../../src/a64/decoder-a64.cc',
'../../src/a64/decoder-a64.h',
'../../src/a64/decoder-a64-inl.h',
'../../src/a64/deoptimizer-a64.cc',
'../../src/a64/disasm-a64.cc',
'../../src/a64/disasm-a64.h',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment