Commit 59753fb9 authored by dcarney's avatar dcarney Committed by Commit bot

[turbofan] update register allocator with auto, nullptr and ZoneVector

BUG=

Review URL: https://codereview.chromium.org/789083005

Cr-Commit-Position: refs/heads/master@{#25742}
parent 7cff32a9
......@@ -30,15 +30,22 @@ static void TraceAlloc(const char* msg, ...) {
}
static void RemoveElement(ZoneVector<LiveRange*>* v, LiveRange* range) {
auto it = std::find(v->begin(), v->end(), range);
DCHECK(it != v->end());
v->erase(it);
}
UsePosition::UsePosition(LifetimePosition pos, InstructionOperand* operand,
InstructionOperand* hint)
: operand_(operand),
hint_(hint),
pos_(pos),
next_(NULL),
next_(nullptr),
requires_reg_(false),
register_beneficial_(true) {
if (operand_ != NULL && operand_->IsUnallocated()) {
if (operand_ != nullptr && operand_->IsUnallocated()) {
const UnallocatedOperand* unalloc = UnallocatedOperand::cast(operand_);
requires_reg_ = unalloc->HasRegisterPolicy();
register_beneficial_ = !unalloc->HasAnyPolicy();
......@@ -48,7 +55,7 @@ UsePosition::UsePosition(LifetimePosition pos, InstructionOperand* operand,
bool UsePosition::HasHint() const {
return hint_ != NULL && !hint_->IsUnallocated();
return hint_ != nullptr && !hint_->IsUnallocated();
}
......@@ -60,7 +67,7 @@ bool UsePosition::RegisterIsBeneficial() const { return register_beneficial_; }
void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
DCHECK(Contains(pos) && pos.Value() != start().Value());
UseInterval* after = new (zone) UseInterval(pos, end_);
auto after = new (zone) UseInterval(pos, end_);
after->next_ = next_;
next_ = after;
end_ = pos;
......@@ -82,7 +89,7 @@ struct LiveRange::SpillAtDefinitionList : ZoneObject {
void LiveRange::Verify() const {
UsePosition* cur = first_pos_;
while (cur != NULL) {
while (cur != nullptr) {
DCHECK(Start().Value() <= cur->pos().Value() &&
cur->pos().Value() <= End().Value());
cur = cur->next();
......@@ -92,7 +99,7 @@ void LiveRange::Verify() const {
bool LiveRange::HasOverlap(UseInterval* target) const {
UseInterval* current_interval = first_interval_;
while (current_interval != NULL) {
while (current_interval != nullptr) {
// Intervals overlap if the start of one is contained in the other.
if (current_interval->Contains(target->start()) ||
target->Contains(current_interval->start())) {
......@@ -154,7 +161,7 @@ void LiveRange::CommitSpillsAtDefinition(InstructionSequence* sequence,
InstructionOperand* op) {
auto to_spill = TopLevel()->spills_at_definition_;
if (to_spill == nullptr) return;
Zone* zone = sequence->zone();
auto zone = sequence->zone();
for (; to_spill != nullptr; to_spill = to_spill->next) {
auto gap = sequence->GapAt(to_spill->gap_index);
auto move = gap->GetOrCreateParallelMove(GapInstruction::START, zone);
......@@ -191,8 +198,8 @@ void LiveRange::CommitSpillOperand(InstructionOperand* operand) {
UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
UsePosition* use_pos = last_processed_use_;
if (use_pos == NULL) use_pos = first_pos();
while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
if (use_pos == nullptr) use_pos = first_pos();
while (use_pos != nullptr && use_pos->pos().Value() < start.Value()) {
use_pos = use_pos->next();
}
last_processed_use_ = use_pos;
......@@ -203,7 +210,7 @@ UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
LifetimePosition start) {
UsePosition* pos = NextUsePosition(start);
while (pos != NULL && !pos->RegisterIsBeneficial()) {
while (pos != nullptr && !pos->RegisterIsBeneficial()) {
pos = pos->next();
}
return pos;
......@@ -212,9 +219,9 @@ UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
LifetimePosition start) {
UsePosition* pos = first_pos();
UsePosition* prev = NULL;
while (pos != NULL && pos->pos().Value() < start.Value()) {
auto pos = first_pos();
UsePosition* prev = nullptr;
while (pos != nullptr && pos->pos().Value() < start.Value()) {
if (pos->RegisterIsBeneficial()) prev = pos;
pos = pos->next();
}
......@@ -224,7 +231,7 @@ UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
UsePosition* pos = NextUsePosition(start);
while (pos != NULL && !pos->RequiresRegister()) {
while (pos != nullptr && !pos->RequiresRegister()) {
pos = pos->next();
}
return pos;
......@@ -234,8 +241,8 @@ UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
bool LiveRange::CanBeSpilled(LifetimePosition pos) {
// We cannot spill a live range that has a use requiring a register
// at the current or the immediate next position.
UsePosition* use_pos = NextRegisterPosition(pos);
if (use_pos == NULL) return true;
auto use_pos = NextRegisterPosition(pos);
if (use_pos == nullptr) return true;
return use_pos->pos().Value() >
pos.NextInstruction().InstructionEnd().Value();
}
......@@ -267,9 +274,9 @@ InstructionOperand* LiveRange::CreateAssignedOperand(Zone* zone) const {
UseInterval* LiveRange::FirstSearchIntervalForPosition(
LifetimePosition position) const {
if (current_interval_ == NULL) return first_interval_;
if (current_interval_ == nullptr) return first_interval_;
if (current_interval_->start().Value() > position.Value()) {
current_interval_ = NULL;
current_interval_ = nullptr;
return first_interval_;
}
return current_interval_;
......@@ -278,11 +285,10 @@ UseInterval* LiveRange::FirstSearchIntervalForPosition(
void LiveRange::AdvanceLastProcessedMarker(
UseInterval* to_start_of, LifetimePosition but_not_past) const {
if (to_start_of == NULL) return;
if (to_start_of == nullptr) return;
if (to_start_of->start().Value() > but_not_past.Value()) return;
LifetimePosition start = current_interval_ == NULL
? LifetimePosition::Invalid()
: current_interval_->start();
auto start = current_interval_ == nullptr ? LifetimePosition::Invalid()
: current_interval_->start();
if (to_start_of->start().Value() > start.Value()) {
current_interval_ = to_start_of;
}
......@@ -296,7 +302,7 @@ void LiveRange::SplitAt(LifetimePosition position, LiveRange* result,
// Find the last interval that ends before the position. If the
// position is contained in one of the intervals in the chain, we
// split that interval and use the first part.
UseInterval* current = FirstSearchIntervalForPosition(position);
auto current = FirstSearchIntervalForPosition(position);
// If the split position coincides with the beginning of a use interval
// we need to split use positons in a special way.
......@@ -307,12 +313,12 @@ void LiveRange::SplitAt(LifetimePosition position, LiveRange* result,
current = first_interval_;
}
while (current != NULL) {
while (current != nullptr) {
if (current->Contains(position)) {
current->SplitAt(position, zone);
break;
}
UseInterval* next = current->next();
auto next = current->next();
if (next->start().Value() >= position.Value()) {
split_at_start = (next->start().Value() == position.Value());
break;
......@@ -321,8 +327,8 @@ void LiveRange::SplitAt(LifetimePosition position, LiveRange* result,
}
// Partition original use intervals to the two live ranges.
UseInterval* before = current;
UseInterval* after = before->next();
auto before = current;
auto after = before->next();
result->last_interval_ =
(last_interval_ == before)
? after // Only interval in the range after split.
......@@ -332,39 +338,41 @@ void LiveRange::SplitAt(LifetimePosition position, LiveRange* result,
// Find the last use position before the split and the first use
// position after it.
UsePosition* use_after = first_pos_;
UsePosition* use_before = NULL;
auto use_after = first_pos_;
UsePosition* use_before = nullptr;
if (split_at_start) {
// The split position coincides with the beginning of a use interval (the
// end of a lifetime hole). Use at this position should be attributed to
// the split child because split child owns use interval covering it.
while (use_after != NULL && use_after->pos().Value() < position.Value()) {
while (use_after != nullptr &&
use_after->pos().Value() < position.Value()) {
use_before = use_after;
use_after = use_after->next();
}
} else {
while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
while (use_after != nullptr &&
use_after->pos().Value() <= position.Value()) {
use_before = use_after;
use_after = use_after->next();
}
}
// Partition original use positions to the two live ranges.
if (use_before != NULL) {
use_before->next_ = NULL;
if (use_before != nullptr) {
use_before->next_ = nullptr;
} else {
first_pos_ = NULL;
first_pos_ = nullptr;
}
result->first_pos_ = use_after;
// Discard cached iteration state. It might be pointing
// to the use that no longer belongs to this live range.
last_processed_use_ = NULL;
current_interval_ = NULL;
last_processed_use_ = nullptr;
current_interval_ = nullptr;
// Link the new live range in the chain before any of the other
// ranges linked from the range before the split.
result->parent_ = (parent_ == NULL) ? this : parent_;
result->parent_ = (parent_ == nullptr) ? this : parent_;
result->kind_ = result->parent_->kind_;
result->next_ = next_;
next_ = result;
......@@ -386,9 +394,9 @@ bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
LifetimePosition other_start = other->Start();
if (start.Value() == other_start.Value()) {
UsePosition* pos = first_pos();
if (pos == NULL) return false;
if (pos == nullptr) return false;
UsePosition* other_pos = other->first_pos();
if (other_pos == NULL) return true;
if (other_pos == nullptr) return true;
return pos->pos().Value() < other_pos->pos().Value();
}
return start.Value() < other_start.Value();
......@@ -397,7 +405,7 @@ bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
void LiveRange::ShortenTo(LifetimePosition start) {
TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
DCHECK(first_interval_ != NULL);
DCHECK(first_interval_ != nullptr);
DCHECK(first_interval_->start().Value() <= start.Value());
DCHECK(start.Value() < first_interval_->end().Value());
first_interval_->set_start(start);
......@@ -408,8 +416,8 @@ void LiveRange::EnsureInterval(LifetimePosition start, LifetimePosition end,
Zone* zone) {
TraceAlloc("Ensure live range %d in interval [%d %d[\n", id_, start.Value(),
end.Value());
LifetimePosition new_end = end;
while (first_interval_ != NULL &&
auto new_end = end;
while (first_interval_ != nullptr &&
first_interval_->start().Value() <= end.Value()) {
if (first_interval_->end().Value() > end.Value()) {
new_end = first_interval_->end();
......@@ -417,10 +425,10 @@ void LiveRange::EnsureInterval(LifetimePosition start, LifetimePosition end,
first_interval_ = first_interval_->next();
}
UseInterval* new_interval = new (zone) UseInterval(start, new_end);
auto new_interval = new (zone) UseInterval(start, new_end);
new_interval->next_ = first_interval_;
first_interval_ = new_interval;
if (new_interval->next() == NULL) {
if (new_interval->next() == nullptr) {
last_interval_ = new_interval;
}
}
......@@ -430,15 +438,15 @@ void LiveRange::AddUseInterval(LifetimePosition start, LifetimePosition end,
Zone* zone) {
TraceAlloc("Add to live range %d interval [%d %d[\n", id_, start.Value(),
end.Value());
if (first_interval_ == NULL) {
UseInterval* interval = new (zone) UseInterval(start, end);
if (first_interval_ == nullptr) {
auto interval = new (zone) UseInterval(start, end);
first_interval_ = interval;
last_interval_ = interval;
} else {
if (end.Value() == first_interval_->start().Value()) {
first_interval_->set_start(start);
} else if (end.Value() < first_interval_->start().Value()) {
UseInterval* interval = new (zone) UseInterval(start, end);
auto interval = new (zone) UseInterval(start, end);
interval->set_next(first_interval_);
first_interval_ = interval;
} else {
......@@ -457,17 +465,17 @@ void LiveRange::AddUsePosition(LifetimePosition pos,
InstructionOperand* operand,
InstructionOperand* hint, Zone* zone) {
TraceAlloc("Add to live range %d use position %d\n", id_, pos.Value());
UsePosition* use_pos = new (zone) UsePosition(pos, operand, hint);
UsePosition* prev_hint = NULL;
UsePosition* prev = NULL;
UsePosition* current = first_pos_;
while (current != NULL && current->pos().Value() < pos.Value()) {
auto use_pos = new (zone) UsePosition(pos, operand, hint);
UsePosition* prev_hint = nullptr;
UsePosition* prev = nullptr;
auto current = first_pos_;
while (current != nullptr && current->pos().Value() < pos.Value()) {
prev_hint = current->HasHint() ? current : prev_hint;
prev = current;
current = current->next();
}
if (prev == NULL) {
if (prev == nullptr) {
use_pos->set_next(first_pos_);
first_pos_ = use_pos;
} else {
......@@ -475,15 +483,15 @@ void LiveRange::AddUsePosition(LifetimePosition pos,
prev->next_ = use_pos;
}
if (prev_hint == NULL && use_pos->HasHint()) {
if (prev_hint == nullptr && use_pos->HasHint()) {
current_hint_operand_ = hint;
}
}
void LiveRange::ConvertUsesToOperand(InstructionOperand* op) {
UsePosition* use_pos = first_pos();
while (use_pos != NULL) {
auto use_pos = first_pos();
while (use_pos != nullptr) {
DCHECK(Start().Value() <= use_pos->pos().Value() &&
use_pos->pos().Value() <= End().Value());
......@@ -506,10 +514,10 @@ bool LiveRange::CanCover(LifetimePosition position) const {
bool LiveRange::Covers(LifetimePosition position) {
if (!CanCover(position)) return false;
UseInterval* start_search = FirstSearchIntervalForPosition(position);
for (UseInterval* interval = start_search; interval != NULL;
auto start_search = FirstSearchIntervalForPosition(position);
for (auto interval = start_search; interval != nullptr;
interval = interval->next()) {
DCHECK(interval->next() == NULL ||
DCHECK(interval->next() == nullptr ||
interval->next()->start().Value() >= interval->start().Value());
AdvanceLastProcessedMarker(interval, position);
if (interval->Contains(position)) return true;
......@@ -520,20 +528,20 @@ bool LiveRange::Covers(LifetimePosition position) {
LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
UseInterval* b = other->first_interval();
if (b == NULL) return LifetimePosition::Invalid();
LifetimePosition advance_last_processed_up_to = b->start();
UseInterval* a = FirstSearchIntervalForPosition(b->start());
while (a != NULL && b != NULL) {
auto b = other->first_interval();
if (b == nullptr) return LifetimePosition::Invalid();
auto advance_last_processed_up_to = b->start();
auto a = FirstSearchIntervalForPosition(b->start());
while (a != nullptr && b != nullptr) {
if (a->start().Value() > other->End().Value()) break;
if (b->start().Value() > End().Value()) break;
LifetimePosition cur_intersection = a->Intersect(b);
auto cur_intersection = a->Intersect(b);
if (cur_intersection.IsValid()) {
return cur_intersection;
}
if (a->start().Value() < b->start().Value()) {
a = a->next();
if (a == NULL || a->start().Value() > other->End().Value()) break;
if (a == nullptr || a->start().Value() > other->End().Value()) break;
AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
} else {
b = b->next();
......@@ -553,17 +561,17 @@ RegisterAllocator::RegisterAllocator(const RegisterConfiguration* config,
debug_name_(debug_name),
config_(config),
phi_map_(PhiMap::key_compare(), PhiMap::allocator_type(local_zone())),
live_in_sets_(code->InstructionBlockCount(), local_zone()),
live_ranges_(code->VirtualRegisterCount() * 2, local_zone()),
fixed_live_ranges_(this->config()->num_general_registers(), NULL,
live_in_sets_(code->InstructionBlockCount(), nullptr, local_zone()),
live_ranges_(code->VirtualRegisterCount() * 2, nullptr, local_zone()),
fixed_live_ranges_(this->config()->num_general_registers(), nullptr,
local_zone()),
fixed_double_live_ranges_(this->config()->num_double_registers(), NULL,
fixed_double_live_ranges_(this->config()->num_double_registers(), nullptr,
local_zone()),
unhandled_live_ranges_(code->VirtualRegisterCount() * 2, local_zone()),
active_live_ranges_(8, local_zone()),
inactive_live_ranges_(8, local_zone()),
reusable_slots_(8, local_zone()),
spill_ranges_(8, local_zone()),
unhandled_live_ranges_(local_zone()),
active_live_ranges_(local_zone()),
inactive_live_ranges_(local_zone()),
reusable_slots_(local_zone()),
spill_ranges_(local_zone()),
mode_(UNALLOCATED_REGISTERS),
num_registers_(-1),
allocation_ok_(true) {
......@@ -575,6 +583,12 @@ RegisterAllocator::RegisterAllocator(const RegisterConfiguration* config,
// when allocating local arrays.
DCHECK(RegisterConfiguration::kMaxDoubleRegisters >=
this->config()->num_general_registers());
unhandled_live_ranges().reserve(
static_cast<size_t>(code->VirtualRegisterCount() * 2));
active_live_ranges().reserve(8);
inactive_live_ranges().reserve(8);
reusable_slots().reserve(8);
spill_ranges().reserve(8);
assigned_registers_ =
new (code_zone()) BitVector(config->num_general_registers(), code_zone());
assigned_double_registers_ = new (code_zone())
......@@ -584,28 +598,22 @@ RegisterAllocator::RegisterAllocator(const RegisterConfiguration* config,
}
void RegisterAllocator::InitializeLivenessAnalysis() {
// Initialize the live_in sets for each block to NULL.
std::fill(live_in_sets_.begin(), live_in_sets_.end(), nullptr);
}
BitVector* RegisterAllocator::ComputeLiveOut(const InstructionBlock* block) {
// Compute live out for the given block, except not including backward
// successor edges.
BitVector* live_out = new (local_zone())
auto live_out = new (local_zone())
BitVector(code()->VirtualRegisterCount(), local_zone());
// Process all successor blocks.
for (auto succ : block->successors()) {
// Add values live on entry to the successor. Note the successor's
// live_in will not be computed yet for backwards edges.
BitVector* live_in = live_in_sets_[succ.ToSize()];
if (live_in != NULL) live_out->Union(*live_in);
auto live_in = live_in_sets_[succ.ToSize()];
if (live_in != nullptr) live_out->Union(*live_in);
// All phi input operands corresponding to this successor edge are live
// out from this block.
const InstructionBlock* successor = code()->InstructionBlockAt(succ);
auto successor = code()->InstructionBlockAt(succ);
size_t index = successor->PredecessorIndexOf(block->rpo_number());
DCHECK(index < successor->PredecessorCount());
for (auto phi : successor->phis()) {
......@@ -620,14 +628,14 @@ void RegisterAllocator::AddInitialIntervals(const InstructionBlock* block,
BitVector* live_out) {
// Add an interval that includes the entire block to the live range for
// each live_out value.
LifetimePosition start =
auto start =
LifetimePosition::FromInstructionIndex(block->first_instruction_index());
LifetimePosition end = LifetimePosition::FromInstructionIndex(
block->last_instruction_index()).NextInstruction();
auto end = LifetimePosition::FromInstructionIndex(
block->last_instruction_index()).NextInstruction();
BitVector::Iterator iterator(live_out);
while (!iterator.Done()) {
int operand_index = iterator.Current();
LiveRange* range = LiveRangeFor(operand_index);
auto range = LiveRangeFor(operand_index);
range->AddUseInterval(start, end, local_zone());
iterator.Advance();
}
......@@ -657,7 +665,7 @@ InstructionOperand* RegisterAllocator::AllocateFixed(
}
if (is_tagged) {
TraceAlloc("Fixed reg is tagged at %d\n", pos);
Instruction* instr = InstructionAt(pos);
auto instr = InstructionAt(pos);
if (instr->HasPointerMap()) {
instr->pointer_map()->RecordPointer(operand, code_zone());
}
......@@ -668,8 +676,8 @@ InstructionOperand* RegisterAllocator::AllocateFixed(
LiveRange* RegisterAllocator::FixedLiveRangeFor(int index) {
DCHECK(index < config()->num_general_registers());
LiveRange* result = fixed_live_ranges_[index];
if (result == NULL) {
auto result = fixed_live_ranges()[index];
if (result == nullptr) {
// TODO(titzer): add a utility method to allocate a new LiveRange:
// The LiveRange object itself can go in this zone, but the
// InstructionOperand needs
......@@ -678,7 +686,7 @@ LiveRange* RegisterAllocator::FixedLiveRangeFor(int index) {
DCHECK(result->IsFixed());
result->kind_ = GENERAL_REGISTERS;
SetLiveRangeAssignedRegister(result, index);
fixed_live_ranges_[index] = result;
fixed_live_ranges()[index] = result;
}
return result;
}
......@@ -686,14 +694,14 @@ LiveRange* RegisterAllocator::FixedLiveRangeFor(int index) {
LiveRange* RegisterAllocator::FixedDoubleLiveRangeFor(int index) {
DCHECK(index < config()->num_aliased_double_registers());
LiveRange* result = fixed_double_live_ranges_[index];
if (result == NULL) {
auto result = fixed_double_live_ranges()[index];
if (result == nullptr) {
result = new (local_zone())
LiveRange(FixedDoubleLiveRangeID(index), code_zone());
DCHECK(result->IsFixed());
result->kind_ = DOUBLE_REGISTERS;
SetLiveRangeAssignedRegister(result, index);
fixed_double_live_ranges_[index] = result;
fixed_double_live_ranges()[index] = result;
}
return result;
}
......@@ -701,12 +709,12 @@ LiveRange* RegisterAllocator::FixedDoubleLiveRangeFor(int index) {
LiveRange* RegisterAllocator::LiveRangeFor(int index) {
if (index >= static_cast<int>(live_ranges_.size())) {
live_ranges_.resize(index + 1, NULL);
live_ranges_.resize(index + 1, nullptr);
}
LiveRange* result = live_ranges_[index];
if (result == NULL) {
auto result = live_ranges()[index];
if (result == nullptr) {
result = new (local_zone()) LiveRange(index, code_zone());
live_ranges_[index] = result;
live_ranges()[index] = result;
}
return result;
}
......@@ -726,7 +734,7 @@ LiveRange* RegisterAllocator::LiveRangeFor(InstructionOperand* operand) {
} else if (operand->IsDoubleRegister()) {
return FixedDoubleLiveRangeFor(operand->index());
} else {
return NULL;
return nullptr;
}
}
......@@ -734,19 +742,20 @@ LiveRange* RegisterAllocator::LiveRangeFor(InstructionOperand* operand) {
void RegisterAllocator::Define(LifetimePosition position,
InstructionOperand* operand,
InstructionOperand* hint) {
LiveRange* range = LiveRangeFor(operand);
if (range == NULL) return;
auto range = LiveRangeFor(operand);
if (range == nullptr) return;
if (range->IsEmpty() || range->Start().Value() > position.Value()) {
// Can happen if there is a definition without use.
range->AddUseInterval(position, position.NextInstruction(), local_zone());
range->AddUsePosition(position.NextInstruction(), NULL, NULL, local_zone());
range->AddUsePosition(position.NextInstruction(), nullptr, nullptr,
local_zone());
} else {
range->ShortenTo(position);
}
if (operand->IsUnallocated()) {
UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand);
auto unalloc_operand = UnallocatedOperand::cast(operand);
range->AddUsePosition(position, unalloc_operand, hint, local_zone());
}
}
......@@ -756,8 +765,8 @@ void RegisterAllocator::Use(LifetimePosition block_start,
LifetimePosition position,
InstructionOperand* operand,
InstructionOperand* hint) {
LiveRange* range = LiveRangeFor(operand);
if (range == NULL) return;
auto range = LiveRangeFor(operand);
if (range == nullptr) return;
if (operand->IsUnallocated()) {
UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand);
range->AddUsePosition(position, unalloc_operand, hint, local_zone());
......@@ -769,14 +778,13 @@ void RegisterAllocator::Use(LifetimePosition block_start,
void RegisterAllocator::AddConstraintsGapMove(int index,
InstructionOperand* from,
InstructionOperand* to) {
GapInstruction* gap = code()->GapAt(index);
ParallelMove* move =
gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
auto gap = code()->GapAt(index);
auto move = gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
if (from->IsUnallocated()) {
const ZoneList<MoveOperands>* move_operands = move->move_operands();
for (int i = 0; i < move_operands->length(); ++i) {
MoveOperands cur = move_operands->at(i);
InstructionOperand* cur_to = cur.destination();
auto cur = move_operands->at(i);
auto cur_to = cur.destination();
if (cur_to->IsUnallocated()) {
if (UnallocatedOperand::cast(cur_to)->virtual_register() ==
UnallocatedOperand::cast(from)->virtual_register()) {
......@@ -792,7 +800,7 @@ void RegisterAllocator::AddConstraintsGapMove(int index,
static bool AreUseIntervalsIntersecting(UseInterval* interval1,
UseInterval* interval2) {
while (interval1 != NULL && interval2 != NULL) {
while (interval1 != nullptr && interval2 != nullptr) {
if (interval1->start().Value() < interval2->start().Value()) {
if (interval1->end().Value() > interval2->start().Value()) {
return true;
......@@ -811,13 +819,13 @@ static bool AreUseIntervalsIntersecting(UseInterval* interval1,
SpillRange::SpillRange(LiveRange* range, int id, Zone* zone)
: id_(id), live_ranges_(1, zone), end_position_(range->End()) {
UseInterval* src = range->first_interval();
UseInterval* result = NULL;
UseInterval* node = NULL;
auto src = range->first_interval();
UseInterval* result = nullptr;
UseInterval* node = nullptr;
// Copy the nodes
while (src != NULL) {
while (src != nullptr) {
UseInterval* new_node = new (zone) UseInterval(src->start(), src->end());
if (result == NULL) {
if (result == nullptr) {
result = new_node;
} else {
node->set_next(new_node);
......@@ -849,7 +857,7 @@ bool SpillRange::TryMerge(SpillRange* other, Zone* zone) {
}
MergeDisjointIntervals(other->use_interval_, zone);
other->use_interval_ = NULL;
other->use_interval_ = nullptr;
for (int i = 0; i < other->live_ranges_.length(); i++) {
DCHECK(other->live_ranges_.at(i)->GetSpillRange() == other);
......@@ -874,19 +882,21 @@ void SpillRange::SetOperand(InstructionOperand* op) {
void SpillRange::MergeDisjointIntervals(UseInterval* other, Zone* zone) {
UseInterval* tail = NULL;
UseInterval* current = use_interval_;
while (other != NULL) {
UseInterval* tail = nullptr;
auto current = use_interval_;
while (other != nullptr) {
// Make sure the 'current' list starts first
if (current == NULL || current->start().Value() > other->start().Value()) {
if (current == nullptr ||
current->start().Value() > other->start().Value()) {
std::swap(current, other);
}
// Check disjointness
DCHECK(other == NULL || current->end().Value() <= other->start().Value());
DCHECK(other == nullptr ||
current->end().Value() <= other->start().Value());
// Append the 'current' node to the result accumulator and move forward
if (tail == NULL) {
if (tail == nullptr) {
use_interval_ = current;
} else {
tail->set_next(current);
......@@ -902,21 +912,19 @@ void RegisterAllocator::ReuseSpillSlots() {
DCHECK(FLAG_turbo_reuse_spill_slots);
// Merge disjoint spill ranges
for (int i = 0; i < spill_ranges_.length(); i++) {
SpillRange* range = spill_ranges_.at(i);
if (!range->IsEmpty()) {
for (int j = i + 1; j < spill_ranges_.length(); j++) {
SpillRange* other = spill_ranges_.at(j);
if (!other->IsEmpty()) {
range->TryMerge(spill_ranges_.at(j), local_zone());
}
for (size_t i = 0; i < spill_ranges().size(); i++) {
auto range = spill_ranges()[i];
if (range->IsEmpty()) continue;
for (size_t j = i + 1; j < spill_ranges().size(); j++) {
auto other = spill_ranges()[j];
if (!other->IsEmpty()) {
range->TryMerge(other, local_zone());
}
}
}
// Allocate slots for the merged spill ranges.
for (int i = 0; i < spill_ranges_.length(); i++) {
auto range = spill_ranges_.at(i);
for (auto range : spill_ranges()) {
if (range->IsEmpty()) continue;
// Allocate a new operand referring to the spill slot.
auto kind = range->Kind();
......@@ -944,10 +952,10 @@ void RegisterAllocator::CommitAssignment() {
SpillRange* RegisterAllocator::AssignSpillRangeToLiveRange(LiveRange* range) {
DCHECK(FLAG_turbo_reuse_spill_slots);
int spill_id = spill_ranges_.length();
SpillRange* spill_range =
int spill_id = static_cast<int>(spill_ranges().size());
auto spill_range =
new (local_zone()) SpillRange(range, spill_id, local_zone());
spill_ranges_.Add(spill_range, local_zone());
spill_ranges().push_back(spill_range);
return spill_range;
}
......@@ -969,7 +977,7 @@ bool RegisterAllocator::TryReuseSpillForPhi(LiveRange* range) {
LiveRange* op_range = LiveRangeFor(op);
if (op_range->GetSpillRange() == nullptr) continue;
auto pred = code()->InstructionBlockAt(block->predecessors()[i]);
LifetimePosition pred_end =
auto pred_end =
LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
while (op_range != nullptr && !op_range->CanCover(pred_end)) {
op_range = op_range->next();
......@@ -989,14 +997,14 @@ bool RegisterAllocator::TryReuseSpillForPhi(LiveRange* range) {
// Try to merge the spilled operands and count the number of merged spilled
// operands.
DCHECK(first_op != NULL);
SpillRange* first_op_spill = first_op->GetSpillRange();
DCHECK(first_op != nullptr);
auto first_op_spill = first_op->GetSpillRange();
size_t num_merged = 1;
for (size_t i = 1; i < phi->operands().size(); i++) {
int op = phi->operands()[i];
LiveRange* op_range = LiveRangeFor(op);
SpillRange* op_spill = op_range->GetSpillRange();
if (op_spill != NULL) {
auto op_range = LiveRangeFor(op);
auto op_spill = op_range->GetSpillRange();
if (op_spill != nullptr) {
if (op_spill->id() == first_op_spill->id() ||
first_op_spill->TryMerge(op_spill, local_zone())) {
num_merged++;
......@@ -1014,18 +1022,18 @@ bool RegisterAllocator::TryReuseSpillForPhi(LiveRange* range) {
// If the range does not need register soon, spill it to the merged
// spill range.
LifetimePosition next_pos = range->Start();
auto next_pos = range->Start();
if (code()->IsGapAt(next_pos.InstructionIndex())) {
next_pos = next_pos.NextInstruction();
}
UsePosition* pos = range->NextUsePositionRegisterIsBeneficial(next_pos);
if (pos == NULL) {
SpillRange* spill_range = AssignSpillRangeToLiveRange(range->TopLevel());
auto pos = range->NextUsePositionRegisterIsBeneficial(next_pos);
if (pos == nullptr) {
auto spill_range = AssignSpillRangeToLiveRange(range->TopLevel());
CHECK(first_op_spill->TryMerge(spill_range, local_zone()));
Spill(range);
return true;
} else if (pos->pos().Value() > range->Start().NextInstruction().Value()) {
SpillRange* spill_range = AssignSpillRangeToLiveRange(range->TopLevel());
auto spill_range = AssignSpillRangeToLiveRange(range->TopLevel());
CHECK(first_op_spill->TryMerge(spill_range, local_zone()));
SpillBetween(range, range->Start(), pos->pos());
if (!AllocationOk()) return false;
......@@ -1042,8 +1050,8 @@ void RegisterAllocator::MeetRegisterConstraints(const InstructionBlock* block) {
DCHECK_NE(-1, start);
for (int i = start; i <= end; ++i) {
if (code()->IsGapAt(i)) {
Instruction* instr = NULL;
Instruction* prev_instr = NULL;
Instruction* instr = nullptr;
Instruction* prev_instr = nullptr;
if (i < end) instr = InstructionAt(i + 1);
if (i > start) prev_instr = InstructionAt(i - 1);
MeetConstraintsBetween(prev_instr, instr, i);
......@@ -1061,13 +1069,13 @@ void RegisterAllocator::MeetRegisterConstraints(const InstructionBlock* block) {
void RegisterAllocator::MeetRegisterConstraintsForLastInstructionInBlock(
const InstructionBlock* block) {
int end = block->last_instruction_index();
Instruction* last_instruction = InstructionAt(end);
auto last_instruction = InstructionAt(end);
for (size_t i = 0; i < last_instruction->OutputCount(); i++) {
InstructionOperand* output_operand = last_instruction->OutputAt(i);
auto output_operand = last_instruction->OutputAt(i);
DCHECK(!output_operand->IsConstant());
UnallocatedOperand* output = UnallocatedOperand::cast(output_operand);
auto output = UnallocatedOperand::cast(output_operand);
int output_vreg = output->virtual_register();
LiveRange* range = LiveRangeFor(output_vreg);
auto range = LiveRangeFor(output_vreg);
bool assigned = false;
if (output->HasFixedPolicy()) {
AllocateFixed(output, -1, false);
......@@ -1111,10 +1119,10 @@ void RegisterAllocator::MeetRegisterConstraintsForLastInstructionInBlock(
void RegisterAllocator::MeetConstraintsBetween(Instruction* first,
Instruction* second,
int gap_index) {
if (first != NULL) {
if (first != nullptr) {
// Handle fixed temporaries.
for (size_t i = 0; i < first->TempCount(); i++) {
UnallocatedOperand* temp = UnallocatedOperand::cast(first->TempAt(i));
auto temp = UnallocatedOperand::cast(first->TempAt(i));
if (temp->HasFixedPolicy()) {
AllocateFixed(temp, gap_index - 1, false);
}
......@@ -1125,16 +1133,15 @@ void RegisterAllocator::MeetConstraintsBetween(Instruction* first,
InstructionOperand* output = first->OutputAt(i);
if (output->IsConstant()) {
int output_vreg = output->index();
LiveRange* range = LiveRangeFor(output_vreg);
auto range = LiveRangeFor(output_vreg);
range->SetSpillStartIndex(gap_index - 1);
range->SetSpillOperand(output);
} else {
UnallocatedOperand* first_output = UnallocatedOperand::cast(output);
LiveRange* range = LiveRangeFor(first_output->virtual_register());
auto first_output = UnallocatedOperand::cast(output);
auto range = LiveRangeFor(first_output->virtual_register());
bool assigned = false;
if (first_output->HasFixedPolicy()) {
UnallocatedOperand* output_copy =
first_output->CopyUnconstrained(code_zone());
auto output_copy = first_output->CopyUnconstrained(code_zone());
bool is_tagged = HasTaggedValue(first_output->virtual_register());
AllocateFixed(first_output, gap_index, is_tagged);
......@@ -1158,15 +1165,14 @@ void RegisterAllocator::MeetConstraintsBetween(Instruction* first,
}
}
if (second != NULL) {
if (second != nullptr) {
// Handle fixed input operands of second instruction.
for (size_t i = 0; i < second->InputCount(); i++) {
InstructionOperand* input = second->InputAt(i);
auto input = second->InputAt(i);
if (input->IsImmediate()) continue; // Ignore immediates.
UnallocatedOperand* cur_input = UnallocatedOperand::cast(input);
auto cur_input = UnallocatedOperand::cast(input);
if (cur_input->HasFixedPolicy()) {
UnallocatedOperand* input_copy =
cur_input->CopyUnconstrained(code_zone());
auto input_copy = cur_input->CopyUnconstrained(code_zone());
bool is_tagged = HasTaggedValue(cur_input->virtual_register());
AllocateFixed(cur_input, gap_index + 1, is_tagged);
AddConstraintsGapMove(gap_index, input_copy, cur_input);
......@@ -1175,9 +1181,9 @@ void RegisterAllocator::MeetConstraintsBetween(Instruction* first,
// Handle "output same as input" for second instruction.
for (size_t i = 0; i < second->OutputCount(); i++) {
InstructionOperand* output = second->OutputAt(i);
auto output = second->OutputAt(i);
if (!output->IsUnallocated()) continue;
UnallocatedOperand* second_output = UnallocatedOperand::cast(output);
auto second_output = UnallocatedOperand::cast(output);
if (second_output->HasSameAsInputPolicy()) {
DCHECK(i == 0); // Only valid for first output.
UnallocatedOperand* cur_input =
......@@ -1185,8 +1191,7 @@ void RegisterAllocator::MeetConstraintsBetween(Instruction* first,
int output_vreg = second_output->virtual_register();
int input_vreg = cur_input->virtual_register();
UnallocatedOperand* input_copy =
cur_input->CopyUnconstrained(code_zone());
auto input_copy = cur_input->CopyUnconstrained(code_zone());
cur_input->set_virtual_register(second_output->virtual_register());
AddConstraintsGapMove(gap_index, input_copy, cur_input);
......@@ -1212,7 +1217,7 @@ void RegisterAllocator::MeetConstraintsBetween(Instruction* first,
bool RegisterAllocator::IsOutputRegisterOf(Instruction* instr, int index) {
for (size_t i = 0; i < instr->OutputCount(); i++) {
InstructionOperand* output = instr->OutputAt(i);
auto output = instr->OutputAt(i);
if (output->IsRegister() && output->index() == index) return true;
}
return false;
......@@ -1222,7 +1227,7 @@ bool RegisterAllocator::IsOutputRegisterOf(Instruction* instr, int index) {
bool RegisterAllocator::IsOutputDoubleRegisterOf(Instruction* instr,
int index) {
for (size_t i = 0; i < instr->OutputCount(); i++) {
InstructionOperand* output = instr->OutputAt(i);
auto output = instr->OutputAt(i);
if (output->IsDoubleRegister() && output->index() == index) return true;
}
return false;
......@@ -1232,33 +1237,30 @@ bool RegisterAllocator::IsOutputDoubleRegisterOf(Instruction* instr,
void RegisterAllocator::ProcessInstructions(const InstructionBlock* block,
BitVector* live) {
int block_start = block->first_instruction_index();
LifetimePosition block_start_position =
auto block_start_position =
LifetimePosition::FromInstructionIndex(block_start);
for (int index = block->last_instruction_index(); index >= block_start;
index--) {
LifetimePosition curr_position =
LifetimePosition::FromInstructionIndex(index);
Instruction* instr = InstructionAt(index);
DCHECK(instr != NULL);
auto curr_position = LifetimePosition::FromInstructionIndex(index);
auto instr = InstructionAt(index);
DCHECK(instr != nullptr);
if (instr->IsGapMoves()) {
// Process the moves of the gap instruction, making their sources live.
GapInstruction* gap = code()->GapAt(index);
auto gap = code()->GapAt(index);
// TODO(titzer): no need to create the parallel move if it doesn't exist.
ParallelMove* move =
auto move =
gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
const ZoneList<MoveOperands>* move_operands = move->move_operands();
for (int i = 0; i < move_operands->length(); ++i) {
MoveOperands* cur = &move_operands->at(i);
InstructionOperand* from = cur->source();
InstructionOperand* to = cur->destination();
InstructionOperand* hint = to;
auto cur = &move_operands->at(i);
auto from = cur->source();
auto to = cur->destination();
auto hint = to;
if (to->IsUnallocated()) {
int to_vreg = UnallocatedOperand::cast(to)->virtual_register();
LiveRange* to_range = LiveRangeFor(to_vreg);
auto to_range = LiveRangeFor(to_vreg);
if (to_range->is_phi()) {
DCHECK(!FLAG_turbo_delay_ssa_decon);
if (to_range->is_non_loop_phi()) {
......@@ -1284,7 +1286,7 @@ void RegisterAllocator::ProcessInstructions(const InstructionBlock* block,
} else {
// Process output, inputs, and temps of this non-gap instruction.
for (size_t i = 0; i < instr->OutputCount(); i++) {
InstructionOperand* output = instr->OutputAt(i);
auto output = instr->OutputAt(i);
if (output->IsUnallocated()) {
int out_vreg = UnallocatedOperand::cast(output)->virtual_register();
live->Remove(out_vreg);
......@@ -1292,13 +1294,13 @@ void RegisterAllocator::ProcessInstructions(const InstructionBlock* block,
int out_vreg = output->index();
live->Remove(out_vreg);
}
Define(curr_position, output, NULL);
Define(curr_position, output, nullptr);
}
if (instr->ClobbersRegisters()) {
for (int i = 0; i < config()->num_general_registers(); ++i) {
if (!IsOutputRegisterOf(instr, i)) {
LiveRange* range = FixedLiveRangeFor(i);
auto range = FixedLiveRangeFor(i);
range->AddUseInterval(curr_position, curr_position.InstructionEnd(),
local_zone());
}
......@@ -1308,7 +1310,7 @@ void RegisterAllocator::ProcessInstructions(const InstructionBlock* block,
if (instr->ClobbersDoubleRegisters()) {
for (int i = 0; i < config()->num_aliased_double_registers(); ++i) {
if (!IsOutputDoubleRegisterOf(instr, i)) {
LiveRange* range = FixedDoubleLiveRangeFor(i);
auto range = FixedDoubleLiveRangeFor(i);
range->AddUseInterval(curr_position, curr_position.InstructionEnd(),
local_zone());
}
......@@ -1316,7 +1318,7 @@ void RegisterAllocator::ProcessInstructions(const InstructionBlock* block,
}
for (size_t i = 0; i < instr->InputCount(); i++) {
InstructionOperand* input = instr->InputAt(i);
auto input = instr->InputAt(i);
if (input->IsImmediate()) continue; // Ignore immediates.
LifetimePosition use_pos;
if (input->IsUnallocated() &&
......@@ -1326,14 +1328,14 @@ void RegisterAllocator::ProcessInstructions(const InstructionBlock* block,
use_pos = curr_position.InstructionEnd();
}
Use(block_start_position, use_pos, input, NULL);
Use(block_start_position, use_pos, input, nullptr);
if (input->IsUnallocated()) {
live->Add(UnallocatedOperand::cast(input)->virtual_register());
}
}
for (size_t i = 0; i < instr->TempCount(); i++) {
InstructionOperand* temp = instr->TempAt(i);
auto temp = instr->TempAt(i);
if (instr->ClobbersTemps()) {
if (temp->IsRegister()) continue;
if (temp->IsUnallocated()) {
......@@ -1343,8 +1345,9 @@ void RegisterAllocator::ProcessInstructions(const InstructionBlock* block,
}
}
}
Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
Define(curr_position, temp, NULL);
Use(block_start_position, curr_position.InstructionEnd(), temp,
nullptr);
Define(curr_position, temp, nullptr);
}
}
}
......@@ -1373,15 +1376,13 @@ void RegisterAllocator::ResolvePhis(const InstructionBlock* block) {
->HasPointerMap());
}
}
LiveRange* live_range = LiveRangeFor(phi_vreg);
auto live_range = LiveRangeFor(phi_vreg);
int gap_index = block->first_instruction_index();
live_range->SpillAtDefinition(local_zone(), gap_index, output);
live_range->SetSpillStartIndex(gap_index);
// We use the phi-ness of some nodes in some later heuristics.
live_range->set_is_phi(true);
if (!block->IsLoopHeader()) {
live_range->set_is_non_loop_phi(true);
}
live_range->set_is_non_loop_phi(!block->IsLoopHeader());
}
}
......@@ -1406,7 +1407,7 @@ ParallelMove* RegisterAllocator::GetConnectingParallelMove(
LifetimePosition pos) {
int index = pos.InstructionIndex();
if (code()->IsGapAt(index)) {
GapInstruction* gap = code()->GapAt(index);
auto gap = code()->GapAt(index);
return gap->GetOrCreateParallelMove(
pos.IsInstructionStart() ? GapInstruction::START : GapInstruction::END,
code_zone());
......@@ -1425,14 +1426,11 @@ const InstructionBlock* RegisterAllocator::GetInstructionBlock(
void RegisterAllocator::ConnectRanges() {
for (size_t i = 0; i < live_ranges().size(); ++i) {
LiveRange* first_range = live_ranges().at(i);
if (first_range == NULL || first_range->parent() != NULL) continue;
LiveRange* second_range = first_range->next();
while (second_range != NULL) {
LifetimePosition pos = second_range->Start();
for (auto first_range : live_ranges()) {
if (first_range == nullptr || first_range->IsChild()) continue;
auto second_range = first_range->next();
while (second_range != nullptr) {
auto pos = second_range->Start();
if (!second_range->IsSpilled()) {
// Add gap move if the two live ranges touch and there is no block
// boundary.
......@@ -1443,16 +1441,13 @@ void RegisterAllocator::ConnectRanges() {
CanEagerlyResolveControlFlow(GetInstructionBlock(pos));
}
if (should_insert) {
ParallelMove* move = GetConnectingParallelMove(pos);
InstructionOperand* prev_operand =
first_range->CreateAssignedOperand(code_zone());
InstructionOperand* cur_operand =
second_range->CreateAssignedOperand(code_zone());
auto move = GetConnectingParallelMove(pos);
auto prev_operand = first_range->CreateAssignedOperand(code_zone());
auto cur_operand = second_range->CreateAssignedOperand(code_zone());
move->AddMove(prev_operand, cur_operand, code_zone());
}
}
}
first_range = second_range;
second_range = second_range->next();
}
......@@ -1500,15 +1495,15 @@ class LiveRangeBoundArray {
public:
LiveRangeBoundArray() : length_(0), start_(nullptr) {}
bool ShouldInitialize() { return start_ == NULL; }
bool ShouldInitialize() { return start_ == nullptr; }
void Initialize(Zone* zone, const LiveRange* const range) {
size_t length = 0;
for (const LiveRange* i = range; i != NULL; i = i->next()) length++;
for (auto i = range; i != nullptr; i = i->next()) length++;
start_ = zone->NewArray<LiveRangeBound>(static_cast<int>(length));
length_ = length;
LiveRangeBound* curr = start_;
for (const LiveRange* i = range; i != NULL; i = i->next(), ++curr) {
auto curr = start_;
for (auto i = range; i != nullptr; i = i->next(), ++curr) {
new (curr) LiveRangeBound(i);
}
}
......@@ -1519,7 +1514,7 @@ class LiveRangeBoundArray {
while (true) {
size_t current_index = left_index + (right_index - left_index) / 2;
DCHECK(right_index > current_index);
LiveRangeBound* bound = &start_[current_index];
auto bound = &start_[current_index];
if (bound->start_.Value() <= position.Value()) {
if (position.Value() < bound->end_.Value()) return bound;
DCHECK(left_index < current_index);
......@@ -1531,24 +1526,24 @@ class LiveRangeBoundArray {
}
LiveRangeBound* FindPred(const InstructionBlock* pred) {
const LifetimePosition pred_end =
auto pred_end =
LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
return Find(pred_end);
}
LiveRangeBound* FindSucc(const InstructionBlock* succ) {
const LifetimePosition succ_start =
auto succ_start =
LifetimePosition::FromInstructionIndex(succ->first_instruction_index());
return Find(succ_start);
}
void Find(const InstructionBlock* block, const InstructionBlock* pred,
FindResult* result) const {
const LifetimePosition pred_end =
auto pred_end =
LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
LiveRangeBound* bound = Find(pred_end);
auto bound = Find(pred_end);
result->pred_cover_ = bound->range_;
const LifetimePosition cur_start = LifetimePosition::FromInstructionIndex(
auto cur_start = LifetimePosition::FromInstructionIndex(
block->first_instruction_index());
// Common case.
if (bound->CanCover(cur_start)) {
......@@ -1556,7 +1551,7 @@ class LiveRangeBoundArray {
return;
}
result->cur_cover_ = Find(cur_start)->range_;
DCHECK(result->pred_cover_ != NULL && result->cur_cover_ != NULL);
DCHECK(result->pred_cover_ != nullptr && result->cur_cover_ != nullptr);
}
private:
......@@ -1581,9 +1576,9 @@ class LiveRangeFinder {
LiveRangeBoundArray* ArrayFor(int operand_index) {
DCHECK(operand_index < bounds_length_);
const LiveRange* range = allocator_.live_ranges()[operand_index];
auto range = allocator_.live_ranges()[operand_index];
DCHECK(range != nullptr && !range->IsEmpty());
LiveRangeBoundArray* array = &bounds_[operand_index];
auto array = &bounds_[operand_index];
if (array->ShouldInitialize()) {
array->Initialize(allocator_.local_zone(), range);
}
......@@ -1626,7 +1621,7 @@ void RegisterAllocator::ResolveControlFlow() {
}
}
}
BitVector* live = live_in_sets_[block->rpo_number().ToInt()];
auto live = live_in_sets_[block->rpo_number().ToInt()];
BitVector::Iterator iterator(live);
while (!iterator.Done()) {
auto* array = finder.ArrayFor(iterator.Current());
......@@ -1637,10 +1632,8 @@ void RegisterAllocator::ResolveControlFlow() {
if (result.cur_cover_ == result.pred_cover_ ||
result.cur_cover_->IsSpilled())
continue;
InstructionOperand* pred_op =
result.pred_cover_->CreateAssignedOperand(code_zone());
InstructionOperand* cur_op =
result.cur_cover_->CreateAssignedOperand(code_zone());
auto pred_op = result.pred_cover_->CreateAssignedOperand(code_zone());
auto cur_op = result.cur_cover_->CreateAssignedOperand(code_zone());
ResolveControlFlow(block, cur_op, pred_block, pred_op);
}
iterator.Advance();
......@@ -1660,8 +1653,7 @@ void RegisterAllocator::ResolveControlFlow(const InstructionBlock* block,
} else {
DCHECK(pred->SuccessorCount() == 1);
gap = GetLastGap(pred);
Instruction* branch = InstructionAt(pred->last_instruction_index());
auto branch = InstructionAt(pred->last_instruction_index());
DCHECK(!branch->HasPointerMap());
USE(branch);
}
......@@ -1671,13 +1663,12 @@ void RegisterAllocator::ResolveControlFlow(const InstructionBlock* block,
void RegisterAllocator::BuildLiveRanges() {
InitializeLivenessAnalysis();
// Process the blocks in reverse order.
for (int block_id = code()->InstructionBlockCount() - 1; block_id >= 0;
--block_id) {
const InstructionBlock* block =
auto block =
code()->InstructionBlockAt(BasicBlock::RpoNumber::FromInt(block_id));
BitVector* live = ComputeLiveOut(block);
auto live = ComputeLiveOut(block);
// Initially consider all live_out values live for the entire block. We
// will shorten these intervals if necessary.
AddInitialIntervals(block, live);
......@@ -1692,14 +1683,14 @@ void RegisterAllocator::BuildLiveRanges() {
int phi_vreg = phi->virtual_register();
live->Remove(phi_vreg);
if (!FLAG_turbo_delay_ssa_decon) {
InstructionOperand* hint = NULL;
InstructionOperand* phi_operand = NULL;
GapInstruction* gap =
InstructionOperand* hint = nullptr;
InstructionOperand* phi_operand = nullptr;
auto gap =
GetLastGap(code()->InstructionBlockAt(block->predecessors()[0]));
ParallelMove* move =
auto move =
gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
for (int j = 0; j < move->move_operands()->length(); ++j) {
InstructionOperand* to = move->move_operands()->at(j).destination();
auto to = move->move_operands()->at(j).destination();
if (to->IsUnallocated() &&
UnallocatedOperand::cast(to)->virtual_register() == phi_vreg) {
hint = move->move_operands()->at(j).source();
......@@ -1707,8 +1698,8 @@ void RegisterAllocator::BuildLiveRanges() {
break;
}
}
DCHECK(hint != NULL);
LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
DCHECK(hint != nullptr);
auto block_start = LifetimePosition::FromInstructionIndex(
block->first_instruction_index());
Define(block_start, phi_operand, hint);
}
......@@ -1722,18 +1713,16 @@ void RegisterAllocator::BuildLiveRanges() {
// Add a live range stretching from the first loop instruction to the last
// for each value live on entry to the header.
BitVector::Iterator iterator(live);
LifetimePosition start = LifetimePosition::FromInstructionIndex(
auto start = LifetimePosition::FromInstructionIndex(
block->first_instruction_index());
LifetimePosition end =
LifetimePosition::FromInstructionIndex(
code()->LastLoopInstructionIndex(block)).NextInstruction();
auto end = LifetimePosition::FromInstructionIndex(
code()->LastLoopInstructionIndex(block)).NextInstruction();
while (!iterator.Done()) {
int operand_index = iterator.Current();
LiveRange* range = LiveRangeFor(operand_index);
auto range = LiveRangeFor(operand_index);
range->EnsureInterval(start, end, local_zone());
iterator.Advance();
}
// Insert all values into the live in sets of all blocks in the loop.
for (int i = block->rpo_number().ToInt() + 1;
i < block->loop_end().ToInt(); ++i) {
......@@ -1742,26 +1731,22 @@ void RegisterAllocator::BuildLiveRanges() {
}
}
for (size_t i = 0; i < live_ranges_.size(); ++i) {
if (live_ranges_[i] != NULL) {
live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
// TODO(bmeurer): This is a horrible hack to make sure that for constant
// live ranges, every use requires the constant to be in a register.
// Without this hack, all uses with "any" policy would get the constant
// operand assigned.
LiveRange* range = live_ranges_[i];
if (range->HasSpillOperand() && range->GetSpillOperand()->IsConstant()) {
for (UsePosition* pos = range->first_pos(); pos != NULL;
pos = pos->next_) {
pos->register_beneficial_ = true;
// TODO(dcarney): should the else case assert requires_reg_ == false?
// Can't mark phis as needing a register.
if (!code()
->InstructionAt(pos->pos().InstructionIndex())
->IsGapMoves()) {
pos->requires_reg_ = true;
}
for (auto range : live_ranges()) {
if (range == nullptr) continue;
range->kind_ = RequiredRegisterKind(range->id());
// TODO(bmeurer): This is a horrible hack to make sure that for constant
// live ranges, every use requires the constant to be in a register.
// Without this hack, all uses with "any" policy would get the constant
// operand assigned.
if (range->HasSpillOperand() && range->GetSpillOperand()->IsConstant()) {
for (auto pos = range->first_pos(); pos != nullptr; pos = pos->next_) {
pos->register_beneficial_ = true;
// TODO(dcarney): should the else case assert requires_reg_ == false?
// Can't mark phis as needing a register.
if (!code()
->InstructionAt(pos->pos().InstructionIndex())
->IsGapMoves()) {
pos->requires_reg_ = true;
}
}
}
......@@ -1792,10 +1777,7 @@ bool RegisterAllocator::ExistsUseWithoutDefinition() {
bool RegisterAllocator::SafePointsAreInOrder() const {
int safe_point = 0;
const PointerMapDeque* pointer_maps = code()->pointer_maps();
for (PointerMapDeque::const_iterator it = pointer_maps->begin();
it != pointer_maps->end(); ++it) {
PointerMap* map = *it;
for (auto map : *code()->pointer_maps()) {
if (safe_point > map->instruction_position()) return false;
safe_point = map->instruction_position();
}
......@@ -1809,13 +1791,12 @@ void RegisterAllocator::PopulatePointerMaps() {
// Iterate over all safe point positions and record a pointer
// for all spilled live ranges at this point.
int last_range_start = 0;
const PointerMapDeque* pointer_maps = code()->pointer_maps();
auto pointer_maps = code()->pointer_maps();
PointerMapDeque::const_iterator first_it = pointer_maps->begin();
for (size_t range_idx = 0; range_idx < live_ranges().size(); ++range_idx) {
LiveRange* range = live_ranges().at(range_idx);
if (range == NULL) continue;
for (LiveRange* range : live_ranges()) {
if (range == nullptr) continue;
// Iterate over the first parts of multi-part live ranges.
if (range->parent() != NULL) continue;
if (range->IsChild()) continue;
// Skip non-reference values.
if (!HasTaggedValue(range->id())) continue;
// Skip empty live ranges.
......@@ -1824,8 +1805,8 @@ void RegisterAllocator::PopulatePointerMaps() {
// Find the extent of the range and its children.
int start = range->Start().InstructionIndex();
int end = 0;
for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
LifetimePosition this_end = cur->End();
for (auto cur = range; cur != nullptr; cur = cur->next()) {
auto this_end = cur->End();
if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
DCHECK(cur->Start().InstructionIndex() >= start);
}
......@@ -1838,14 +1819,13 @@ void RegisterAllocator::PopulatePointerMaps() {
// Step across all the safe points that are before the start of this range,
// recording how far we step in order to save doing this for the next range.
for (; first_it != pointer_maps->end(); ++first_it) {
PointerMap* map = *first_it;
auto map = *first_it;
if (map->instruction_position() >= start) break;
}
// Step through the safe points to see whether they are in the range.
for (PointerMapDeque::const_iterator it = first_it;
it != pointer_maps->end(); ++it) {
PointerMap* map = *it;
for (auto it = first_it; it != pointer_maps->end(); ++it) {
auto map = *it;
int safe_point = map->instruction_position();
// The safe points are sorted so we can stop searching here.
......@@ -1853,13 +1833,12 @@ void RegisterAllocator::PopulatePointerMaps() {
// Advance to the next active range that covers the current
// safe point position.
LifetimePosition safe_point_pos =
LifetimePosition::FromInstructionIndex(safe_point);
LiveRange* cur = range;
while (cur != NULL && !cur->Covers(safe_point_pos)) {
auto safe_point_pos = LifetimePosition::FromInstructionIndex(safe_point);
auto cur = range;
while (cur != nullptr && !cur->Covers(safe_point_pos)) {
cur = cur->next();
}
if (cur == NULL) continue;
if (cur == nullptr) continue;
// Check if the live range is spilled and the safe point is after
// the spill position.
......@@ -1900,43 +1879,43 @@ void RegisterAllocator::AllocateDoubleRegisters() {
void RegisterAllocator::AllocateRegisters() {
DCHECK(unhandled_live_ranges_.is_empty());
DCHECK(unhandled_live_ranges().empty());
for (size_t i = 0; i < live_ranges_.size(); ++i) {
if (live_ranges_[i] != NULL) {
if (live_ranges_[i]->Kind() == mode_) {
AddToUnhandledUnsorted(live_ranges_[i]);
}
for (auto range : live_ranges()) {
if (range == nullptr) continue;
if (range->Kind() == mode_) {
AddToUnhandledUnsorted(range);
}
}
SortUnhandled();
DCHECK(UnhandledIsSorted());
DCHECK(reusable_slots_.is_empty());
DCHECK(active_live_ranges_.is_empty());
DCHECK(inactive_live_ranges_.is_empty());
DCHECK(reusable_slots().empty());
DCHECK(active_live_ranges().empty());
DCHECK(inactive_live_ranges().empty());
if (mode_ == DOUBLE_REGISTERS) {
for (int i = 0; i < config()->num_aliased_double_registers(); ++i) {
LiveRange* current = fixed_double_live_ranges_.at(i);
if (current != NULL) {
auto current = fixed_double_live_ranges()[i];
if (current != nullptr) {
AddToInactive(current);
}
}
} else {
DCHECK(mode_ == GENERAL_REGISTERS);
for (auto current : fixed_live_ranges()) {
if (current != NULL) {
if (current != nullptr) {
AddToInactive(current);
}
}
}
while (!unhandled_live_ranges_.is_empty()) {
while (!unhandled_live_ranges().empty()) {
DCHECK(UnhandledIsSorted());
LiveRange* current = unhandled_live_ranges_.RemoveLast();
auto current = unhandled_live_ranges().back();
unhandled_live_ranges().pop_back();
DCHECK(UnhandledIsSorted());
LifetimePosition position = current->Start();
auto position = current->Start();
#ifdef DEBUG
allocation_finger_ = position;
#endif
......@@ -1945,14 +1924,14 @@ void RegisterAllocator::AllocateRegisters() {
if (!current->HasNoSpillType()) {
TraceAlloc("Live range %d already has a spill operand\n", current->id());
LifetimePosition next_pos = position;
auto next_pos = position;
if (code()->IsGapAt(next_pos.InstructionIndex())) {
next_pos = next_pos.NextInstruction();
}
UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
auto pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
// If the range already has a spill operand and it doesn't need a
// register immediately, split it and spill the first part of the range.
if (pos == NULL) {
if (pos == nullptr) {
Spill(current);
continue;
} else if (pos->pos().Value() >
......@@ -1973,8 +1952,8 @@ void RegisterAllocator::AllocateRegisters() {
if (!AllocationOk()) return;
}
for (int i = 0; i < active_live_ranges_.length(); ++i) {
LiveRange* cur_active = active_live_ranges_.at(i);
for (size_t i = 0; i < active_live_ranges().size(); ++i) {
auto cur_active = active_live_ranges()[i];
if (cur_active->End().Value() <= position.Value()) {
ActiveToHandled(cur_active);
--i; // The live range was removed from the list of active live ranges.
......@@ -1984,8 +1963,8 @@ void RegisterAllocator::AllocateRegisters() {
}
}
for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
LiveRange* cur_inactive = inactive_live_ranges_.at(i);
for (size_t i = 0; i < inactive_live_ranges().size(); ++i) {
auto cur_inactive = inactive_live_ranges()[i];
if (cur_inactive->End().Value() <= position.Value()) {
InactiveToHandled(cur_inactive);
--i; // Live range was removed from the list of inactive live ranges.
......@@ -2008,9 +1987,9 @@ void RegisterAllocator::AllocateRegisters() {
}
}
reusable_slots_.Rewind(0);
active_live_ranges_.Rewind(0);
inactive_live_ranges_.Rewind(0);
reusable_slots().clear();
active_live_ranges().clear();
inactive_live_ranges().clear();
}
......@@ -2037,49 +2016,49 @@ RegisterKind RegisterAllocator::RequiredRegisterKind(
void RegisterAllocator::AddToActive(LiveRange* range) {
TraceAlloc("Add live range %d to active\n", range->id());
active_live_ranges_.Add(range, local_zone());
active_live_ranges().push_back(range);
}
void RegisterAllocator::AddToInactive(LiveRange* range) {
TraceAlloc("Add live range %d to inactive\n", range->id());
inactive_live_ranges_.Add(range, local_zone());
inactive_live_ranges().push_back(range);
}
void RegisterAllocator::AddToUnhandledSorted(LiveRange* range) {
if (range == NULL || range->IsEmpty()) return;
if (range == nullptr || range->IsEmpty()) return;
DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
DCHECK(allocation_finger_.Value() <= range->Start().Value());
for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
LiveRange* cur_range = unhandled_live_ranges_.at(i);
if (range->ShouldBeAllocatedBefore(cur_range)) {
TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
unhandled_live_ranges_.InsertAt(i + 1, range, local_zone());
DCHECK(UnhandledIsSorted());
return;
}
for (int i = static_cast<int>(unhandled_live_ranges().size() - 1); i >= 0;
--i) {
auto cur_range = unhandled_live_ranges().at(i);
if (!range->ShouldBeAllocatedBefore(cur_range)) continue;
TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
auto it = unhandled_live_ranges().begin() + (i + 1);
unhandled_live_ranges().insert(it, range);
DCHECK(UnhandledIsSorted());
return;
}
TraceAlloc("Add live range %d to unhandled at start\n", range->id());
unhandled_live_ranges_.InsertAt(0, range, local_zone());
unhandled_live_ranges().insert(unhandled_live_ranges().begin(), range);
DCHECK(UnhandledIsSorted());
}
void RegisterAllocator::AddToUnhandledUnsorted(LiveRange* range) {
if (range == NULL || range->IsEmpty()) return;
if (range == nullptr || range->IsEmpty()) return;
DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
unhandled_live_ranges_.Add(range, local_zone());
unhandled_live_ranges().push_back(range);
}
static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
DCHECK(!(*a)->ShouldBeAllocatedBefore(*b) ||
!(*b)->ShouldBeAllocatedBefore(*a));
if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
return (*a)->id() - (*b)->id();
static bool UnhandledSortHelper(LiveRange* a, LiveRange* b) {
DCHECK(!a->ShouldBeAllocatedBefore(b) || !b->ShouldBeAllocatedBefore(a));
if (a->ShouldBeAllocatedBefore(b)) return false;
if (b->ShouldBeAllocatedBefore(a)) return true;
return a->id() < b->id();
}
......@@ -2088,15 +2067,16 @@ static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
// algorithm because it is efficient to remove elements from the end.
void RegisterAllocator::SortUnhandled() {
TraceAlloc("Sort unhandled\n");
unhandled_live_ranges_.Sort(&UnhandledSortHelper);
std::sort(unhandled_live_ranges().begin(), unhandled_live_ranges().end(),
&UnhandledSortHelper);
}
bool RegisterAllocator::UnhandledIsSorted() {
int len = unhandled_live_ranges_.length();
for (int i = 1; i < len; i++) {
LiveRange* a = unhandled_live_ranges_.at(i - 1);
LiveRange* b = unhandled_live_ranges_.at(i);
size_t len = unhandled_live_ranges().size();
for (size_t i = 1; i < len; i++) {
auto a = unhandled_live_ranges().at(i - 1);
auto b = unhandled_live_ranges().at(i);
if (a->Start().Value() < b->Start().Value()) return false;
}
return true;
......@@ -2106,60 +2086,53 @@ bool RegisterAllocator::UnhandledIsSorted() {
void RegisterAllocator::FreeSpillSlot(LiveRange* range) {
DCHECK(!FLAG_turbo_reuse_spill_slots);
// Check that we are the last range.
if (range->next() != NULL) return;
if (range->next() != nullptr) return;
if (!range->TopLevel()->HasSpillOperand()) return;
InstructionOperand* spill_operand = range->TopLevel()->GetSpillOperand();
auto spill_operand = range->TopLevel()->GetSpillOperand();
if (spill_operand->IsConstant()) return;
if (spill_operand->index() >= 0) {
reusable_slots_.Add(range, local_zone());
reusable_slots().push_back(range);
}
}
InstructionOperand* RegisterAllocator::TryReuseSpillSlot(LiveRange* range) {
DCHECK(!FLAG_turbo_reuse_spill_slots);
if (reusable_slots_.is_empty()) return NULL;
if (reusable_slots_.first()->End().Value() >
if (reusable_slots().empty()) return nullptr;
if (reusable_slots().front()->End().Value() >
range->TopLevel()->Start().Value()) {
return NULL;
return nullptr;
}
InstructionOperand* result =
reusable_slots_.first()->TopLevel()->GetSpillOperand();
reusable_slots_.Remove(0);
auto result = reusable_slots().front()->TopLevel()->GetSpillOperand();
reusable_slots().erase(reusable_slots().begin());
return result;
}
void RegisterAllocator::ActiveToHandled(LiveRange* range) {
DCHECK(active_live_ranges_.Contains(range));
active_live_ranges_.RemoveElement(range);
RemoveElement(&active_live_ranges(), range);
TraceAlloc("Moving live range %d from active to handled\n", range->id());
if (!FLAG_turbo_reuse_spill_slots) FreeSpillSlot(range);
}
void RegisterAllocator::ActiveToInactive(LiveRange* range) {
DCHECK(active_live_ranges_.Contains(range));
active_live_ranges_.RemoveElement(range);
inactive_live_ranges_.Add(range, local_zone());
RemoveElement(&active_live_ranges(), range);
inactive_live_ranges().push_back(range);
TraceAlloc("Moving live range %d from active to inactive\n", range->id());
}
void RegisterAllocator::InactiveToHandled(LiveRange* range) {
DCHECK(inactive_live_ranges_.Contains(range));
inactive_live_ranges_.RemoveElement(range);
RemoveElement(&inactive_live_ranges(), range);
TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
if (!FLAG_turbo_reuse_spill_slots) FreeSpillSlot(range);
}
void RegisterAllocator::InactiveToActive(LiveRange* range) {
DCHECK(inactive_live_ranges_.Contains(range));
inactive_live_ranges_.RemoveElement(range);
active_live_ranges_.Add(range, local_zone());
RemoveElement(&inactive_live_ranges(), range);
active_live_ranges().push_back(range);
TraceAlloc("Moving live range %d from inactive to active\n", range->id());
}
......@@ -2171,24 +2144,21 @@ bool RegisterAllocator::TryAllocateFreeReg(LiveRange* current) {
free_until_pos[i] = LifetimePosition::MaxPosition();
}
for (int i = 0; i < active_live_ranges_.length(); ++i) {
LiveRange* cur_active = active_live_ranges_.at(i);
for (auto cur_active : active_live_ranges()) {
free_until_pos[cur_active->assigned_register()] =
LifetimePosition::FromInstructionIndex(0);
}
for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
LiveRange* cur_inactive = inactive_live_ranges_.at(i);
for (auto cur_inactive : inactive_live_ranges()) {
DCHECK(cur_inactive->End().Value() > current->Start().Value());
LifetimePosition next_intersection =
cur_inactive->FirstIntersection(current);
auto next_intersection = cur_inactive->FirstIntersection(current);
if (!next_intersection.IsValid()) continue;
int cur_reg = cur_inactive->assigned_register();
free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
}
InstructionOperand* hint = current->FirstHint();
if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
auto hint = current->FirstHint();
if (hint != nullptr && (hint->IsRegister() || hint->IsDoubleRegister())) {
int register_index = hint->index();
TraceAlloc(
"Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
......@@ -2212,7 +2182,7 @@ bool RegisterAllocator::TryAllocateFreeReg(LiveRange* current) {
}
}
LifetimePosition pos = free_until_pos[reg];
auto pos = free_until_pos[reg];
if (pos.Value() <= current->Start().Value()) {
// All registers are blocked.
......@@ -2222,12 +2192,11 @@ bool RegisterAllocator::TryAllocateFreeReg(LiveRange* current) {
if (pos.Value() < current->End().Value()) {
// Register reg is available at the range start but becomes blocked before
// the range end. Split current at position where it becomes blocked.
LiveRange* tail = SplitRangeAt(current, pos);
auto tail = SplitRangeAt(current, pos);
if (!AllocationOk()) return false;
AddToUnhandledSorted(tail);
}
// Register reg is available at the range start and is free until
// the range end.
DCHECK(pos.Value() >= current->End().Value());
......@@ -2240,8 +2209,8 @@ bool RegisterAllocator::TryAllocateFreeReg(LiveRange* current) {
void RegisterAllocator::AllocateBlockedReg(LiveRange* current) {
UsePosition* register_use = current->NextRegisterPosition(current->Start());
if (register_use == NULL) {
auto register_use = current->NextRegisterPosition(current->Start());
if (register_use == nullptr) {
// There is no use in the current live range that requires a register.
// We can just spill it.
Spill(current);
......@@ -2255,16 +2224,15 @@ void RegisterAllocator::AllocateBlockedReg(LiveRange* current) {
use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
}
for (int i = 0; i < active_live_ranges_.length(); ++i) {
LiveRange* range = active_live_ranges_[i];
for (auto range : active_live_ranges()) {
int cur_reg = range->assigned_register();
if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
block_pos[cur_reg] = use_pos[cur_reg] =
LifetimePosition::FromInstructionIndex(0);
} else {
UsePosition* next_use =
auto next_use =
range->NextUsePositionRegisterIsBeneficial(current->Start());
if (next_use == NULL) {
if (next_use == nullptr) {
use_pos[cur_reg] = range->End();
} else {
use_pos[cur_reg] = next_use->pos();
......@@ -2272,10 +2240,9 @@ void RegisterAllocator::AllocateBlockedReg(LiveRange* current) {
}
}
for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
LiveRange* range = inactive_live_ranges_.at(i);
for (auto range : inactive_live_ranges()) {
DCHECK(range->End().Value() > current->Start().Value());
LifetimePosition next_intersection = range->FirstIntersection(current);
auto next_intersection = range->FirstIntersection(current);
if (!next_intersection.IsValid()) continue;
int cur_reg = range->assigned_register();
if (range->IsFixed()) {
......@@ -2293,7 +2260,7 @@ void RegisterAllocator::AllocateBlockedReg(LiveRange* current) {
}
}
LifetimePosition pos = use_pos[reg];
auto pos = use_pos[reg];
if (pos.Value() < register_use->pos().Value()) {
// All registers are blocked before the first use that requires a register.
......@@ -2326,31 +2293,31 @@ void RegisterAllocator::AllocateBlockedReg(LiveRange* current) {
static const InstructionBlock* GetContainingLoop(
const InstructionSequence* sequence, const InstructionBlock* block) {
BasicBlock::RpoNumber index = block->loop_header();
if (!index.IsValid()) return NULL;
auto index = block->loop_header();
if (!index.IsValid()) return nullptr;
return sequence->InstructionBlockAt(index);
}
LifetimePosition RegisterAllocator::FindOptimalSpillingPos(
LiveRange* range, LifetimePosition pos) {
const InstructionBlock* block = GetInstructionBlock(pos.InstructionStart());
const InstructionBlock* loop_header =
auto block = GetInstructionBlock(pos.InstructionStart());
auto loop_header =
block->IsLoopHeader() ? block : GetContainingLoop(code(), block);
if (loop_header == NULL) return pos;
if (loop_header == nullptr) return pos;
UsePosition* prev_use = range->PreviousUsePositionRegisterIsBeneficial(pos);
auto prev_use = range->PreviousUsePositionRegisterIsBeneficial(pos);
while (loop_header != NULL) {
while (loop_header != nullptr) {
// We are going to spill live range inside the loop.
// If possible try to move spilling position backwards to loop header.
// This will reduce number of memory moves on the back edge.
LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
auto loop_start = LifetimePosition::FromInstructionIndex(
loop_header->first_instruction_index());
if (range->Covers(loop_start)) {
if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
if (prev_use == nullptr || prev_use->pos().Value() < loop_start.Value()) {
// No register beneficial use inside the loop before the pos.
pos = loop_start;
}
......@@ -2367,13 +2334,13 @@ LifetimePosition RegisterAllocator::FindOptimalSpillingPos(
void RegisterAllocator::SplitAndSpillIntersecting(LiveRange* current) {
DCHECK(current->HasRegisterAssigned());
int reg = current->assigned_register();
LifetimePosition split_pos = current->Start();
for (int i = 0; i < active_live_ranges_.length(); ++i) {
LiveRange* range = active_live_ranges_[i];
auto split_pos = current->Start();
for (size_t i = 0; i < active_live_ranges().size(); ++i) {
auto range = active_live_ranges()[i];
if (range->assigned_register() == reg) {
UsePosition* next_pos = range->NextRegisterPosition(current->Start());
LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
if (next_pos == NULL) {
auto next_pos = range->NextRegisterPosition(current->Start());
auto spill_pos = FindOptimalSpillingPos(range, split_pos);
if (next_pos == nullptr) {
SpillAfter(range, spill_pos);
} else {
// When spilling between spill_pos and next_pos ensure that the range
......@@ -2392,14 +2359,14 @@ void RegisterAllocator::SplitAndSpillIntersecting(LiveRange* current) {
}
}
for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
LiveRange* range = inactive_live_ranges_[i];
for (size_t i = 0; i < inactive_live_ranges().size(); ++i) {
auto range = inactive_live_ranges()[i];
DCHECK(range->End().Value() > current->Start().Value());
if (range->assigned_register() == reg && !range->IsFixed()) {
LifetimePosition next_intersection = range->FirstIntersection(current);
if (next_intersection.IsValid()) {
UsePosition* next_pos = range->NextRegisterPosition(current->Start());
if (next_pos == NULL) {
if (next_pos == nullptr) {
SpillAfter(range, split_pos);
} else {
next_intersection = Min(next_intersection, next_pos->pos());
......@@ -2433,8 +2400,8 @@ LiveRange* RegisterAllocator::SplitRangeAt(LiveRange* range,
!InstructionAt(pos.InstructionIndex())->IsControl());
int vreg = GetVirtualRegister();
if (!AllocationOk()) return NULL;
LiveRange* result = LiveRangeFor(vreg);
if (!AllocationOk()) return nullptr;
auto result = LiveRangeFor(vreg);
range->SplitAt(pos, result, local_zone());
return result;
}
......@@ -2447,7 +2414,7 @@ LiveRange* RegisterAllocator::SplitBetween(LiveRange* range,
TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
range->id(), start.Value(), end.Value());
LifetimePosition split_pos = FindOptimalSplitPos(start, end);
auto split_pos = FindOptimalSplitPos(start, end);
DCHECK(split_pos.Value() >= start.Value());
return SplitRangeAt(range, split_pos);
}
......@@ -2462,8 +2429,8 @@ LifetimePosition RegisterAllocator::FindOptimalSplitPos(LifetimePosition start,
// We have no choice
if (start_instr == end_instr) return end;
const InstructionBlock* start_block = GetInstructionBlock(start);
const InstructionBlock* end_block = GetInstructionBlock(end);
auto start_block = GetInstructionBlock(start);
auto end_block = GetInstructionBlock(end);
if (end_block == start_block) {
// The interval is split in the same basic block. Split at the latest
......@@ -2471,10 +2438,10 @@ LifetimePosition RegisterAllocator::FindOptimalSplitPos(LifetimePosition start,
return end;
}
const InstructionBlock* block = end_block;
auto block = end_block;
// Find header of outermost loop.
// TODO(titzer): fix redundancy below.
while (GetContainingLoop(code(), block) != NULL &&
while (GetContainingLoop(code(), block) != nullptr &&
GetContainingLoop(code(), block)->rpo_number().ToInt() >
start_block->rpo_number().ToInt()) {
block = GetContainingLoop(code(), block);
......@@ -2490,7 +2457,7 @@ LifetimePosition RegisterAllocator::FindOptimalSplitPos(LifetimePosition start,
void RegisterAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
LiveRange* second_part = SplitRangeAt(range, pos);
auto second_part = SplitRangeAt(range, pos);
if (!AllocationOk()) return;
Spill(second_part);
}
......@@ -2507,14 +2474,14 @@ void RegisterAllocator::SpillBetweenUntil(LiveRange* range,
LifetimePosition until,
LifetimePosition end) {
CHECK(start.Value() < end.Value());
LiveRange* second_part = SplitRangeAt(range, start);
auto second_part = SplitRangeAt(range, start);
if (!AllocationOk()) return;
if (second_part->Start().Value() < end.Value()) {
// The split result intersects with [start, end[.
// Split it at position between ]start+1, end[, spill the middle part
// and put the rest to unhandled.
LiveRange* third_part = SplitBetween(
auto third_part = SplitBetween(
second_part, Max(second_part->Start().InstructionEnd(), until),
end.PrevInstruction().InstructionEnd());
if (!AllocationOk()) return;
......@@ -2534,13 +2501,13 @@ void RegisterAllocator::SpillBetweenUntil(LiveRange* range,
void RegisterAllocator::Spill(LiveRange* range) {
DCHECK(!range->IsSpilled());
TraceAlloc("Spilling live range %d\n", range->id());
LiveRange* first = range->TopLevel();
auto first = range->TopLevel();
if (first->HasNoSpillType()) {
if (FLAG_turbo_reuse_spill_slots) {
AssignSpillRangeToLiveRange(first);
} else {
InstructionOperand* op = TryReuseSpillSlot(range);
if (op == NULL) {
auto op = TryReuseSpillSlot(range);
if (op == nullptr) {
// Allocate a new operand referring to the spill slot.
RegisterKind kind = range->Kind();
int index = frame()->AllocateSpillSlot(kind == DOUBLE_REGISTERS);
......@@ -2564,7 +2531,7 @@ int RegisterAllocator::RegisterCount() const { return num_registers_; }
void RegisterAllocator::Verify() const {
for (auto current : live_ranges()) {
if (current != NULL) current->Verify();
if (current != nullptr) current->Verify();
}
}
......
......@@ -452,7 +452,6 @@ class RegisterAllocator FINAL : public ZoneObject {
bool SafePointsAreInOrder() const;
// Liveness analysis support.
void InitializeLivenessAnalysis();
BitVector* ComputeLiveOut(const InstructionBlock* block);
void AddInitialIntervals(const InstructionBlock* block, BitVector* live_out);
bool IsOutputRegisterOf(Instruction* instr, int index);
......@@ -569,6 +568,20 @@ class RegisterAllocator FINAL : public ZoneObject {
Frame* frame() const { return frame_; }
const char* debug_name() const { return debug_name_; }
const RegisterConfiguration* config() const { return config_; }
ZoneVector<LiveRange*>& live_ranges() { return live_ranges_; }
ZoneVector<LiveRange*>& fixed_live_ranges() { return fixed_live_ranges_; }
ZoneVector<LiveRange*>& fixed_double_live_ranges() {
return fixed_double_live_ranges_;
}
ZoneVector<LiveRange*>& unhandled_live_ranges() {
return unhandled_live_ranges_;
}
ZoneVector<LiveRange*>& active_live_ranges() { return active_live_ranges_; }
ZoneVector<LiveRange*>& inactive_live_ranges() {
return inactive_live_ranges_;
}
ZoneVector<LiveRange*>& reusable_slots() { return reusable_slots_; }
ZoneVector<SpillRange*>& spill_ranges() { return spill_ranges_; }
struct PhiMapValue {
PhiMapValue(PhiInstruction* phi, const InstructionBlock* block)
......@@ -598,11 +611,11 @@ class RegisterAllocator FINAL : public ZoneObject {
// Lists of live ranges
ZoneVector<LiveRange*> fixed_live_ranges_;
ZoneVector<LiveRange*> fixed_double_live_ranges_;
ZoneList<LiveRange*> unhandled_live_ranges_;
ZoneList<LiveRange*> active_live_ranges_;
ZoneList<LiveRange*> inactive_live_ranges_;
ZoneList<LiveRange*> reusable_slots_;
ZoneList<SpillRange*> spill_ranges_;
ZoneVector<LiveRange*> unhandled_live_ranges_;
ZoneVector<LiveRange*> active_live_ranges_;
ZoneVector<LiveRange*> inactive_live_ranges_;
ZoneVector<LiveRange*> reusable_slots_;
ZoneVector<SpillRange*> spill_ranges_;
RegisterKind mode_;
int num_registers_;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment