Commit 4095d606 authored by mlippautz's avatar mlippautz Committed by Commit bot

[heap] Enforce coding style decl order in {Heap} round #1.

Order is now:
 - forward declarations
 - enums
 - nested classes
 - static consts
 - constructors
 - static methods
 - regular methods
 - members fields

Bonus:
 - Allocate*() methods are grouped together
 - Sections

BUG=

Review URL: https://codereview.chromium.org/1312503004

Cr-Commit-Position: refs/heads/master@{#30327}
parent 07a4a6cb
......@@ -472,9 +472,9 @@ void GCTracer::PrintNVP() const {
intptr_t allocated_since_last_gc =
current_.start_object_size - previous_.end_object_size;
PrintF("allocated=%" V8_PTR_PREFIX "d ", allocated_since_last_gc);
PrintF("promoted=%" V8_PTR_PREFIX "d ", heap_->promoted_objects_size_);
PrintF("promoted=%" V8_PTR_PREFIX "d ", heap_->promoted_objects_size());
PrintF("semi_space_copied=%" V8_PTR_PREFIX "d ",
heap_->semi_space_copied_object_size_);
heap_->semi_space_copied_object_size());
PrintF("nodes_died_in_new=%d ", heap_->nodes_died_in_new_space_);
PrintF("nodes_copied_in_new=%d ", heap_->nodes_copied_in_new_space_);
PrintF("nodes_promoted=%d ", heap_->nodes_promoted_);
......
......@@ -577,124 +577,256 @@ enum ArrayStorageAllocationMode {
class Heap {
public:
// Configure heap size in MB before setup. Return false if the heap has been
// set up already.
bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
int max_executable_size, size_t code_range_size);
bool ConfigureHeapDefault();
// Declare all the root indices. This defines the root list order.
enum RootListIndex {
#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
#undef ROOT_INDEX_DECLARATION
// Prepares the heap, setting up memory areas that are needed in the isolate
// without actually creating any objects.
bool SetUp();
#define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
#undef STRING_DECLARATION
// Bootstraps the object heap with the core set of objects required to run.
// Returns whether it succeeded.
bool CreateHeapObjects();
#define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex,
PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
#undef SYMBOL_INDEX_DECLARATION
// Destroys all memory allocated by the heap.
void TearDown();
#define SYMBOL_INDEX_DECLARATION(name, varname, description) k##name##RootIndex,
PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
#undef SYMBOL_INDEX_DECLARATION
// Set the stack limit in the roots_ array. Some architectures generate
// code that looks here, because it is faster than loading from the static
// jslimit_/real_jslimit_ variable in the StackGuard.
void SetStackLimits();
// Utility type maps
#define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
STRUCT_LIST(DECLARE_STRUCT_MAP)
#undef DECLARE_STRUCT_MAP
kStringTableRootIndex,
// Notifies the heap that is ok to start marking or other activities that
// should not happen during deserialization.
void NotifyDeserializationComplete();
#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
#undef ROOT_INDEX_DECLARATION
kRootListLength,
kStrongRootListLength = kStringTableRootIndex,
kSmiRootsStart = kStringTableRootIndex + 1
};
// Returns whether SetUp has been called.
bool HasBeenSetUp();
// Indicates whether live bytes adjustment is triggered
// - from within the GC code before sweeping started (SEQUENTIAL_TO_SWEEPER),
// - or from within GC (CONCURRENT_TO_SWEEPER),
// - or mutator code (CONCURRENT_TO_SWEEPER).
enum InvocationMode { SEQUENTIAL_TO_SWEEPER, CONCURRENT_TO_SWEEPER };
// Returns the maximum amount of memory reserved for the heap. For
// the young generation, we reserve 4 times the amount needed for a
// semi space. The young generation consists of two semi spaces and
// we reserve twice the amount needed for those in order to ensure
// that new space can be aligned to its size.
intptr_t MaxReserved() {
return 4 * reserved_semispace_size_ + max_old_generation_size_;
}
int MaxSemiSpaceSize() { return max_semi_space_size_; }
int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
int InitialSemiSpaceSize() { return initial_semispace_size_; }
int TargetSemiSpaceSize() { return target_semispace_size_; }
intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
intptr_t MaxExecutableSize() { return max_executable_size_; }
enum ScratchpadSlotMode { IGNORE_SCRATCHPAD_SLOT, RECORD_SCRATCHPAD_SLOT };
// Returns the capacity of the heap in bytes w/o growing. Heap grows when
// more spaces are needed until it reaches the limit.
intptr_t Capacity();
enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
// Returns the amount of memory currently committed for the heap.
intptr_t CommittedMemory();
// ObjectStats are kept in two arrays, counts and sizes. Related stats are
// stored in a contiguous linear buffer. Stats groups are stored one after
// another.
enum {
FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
FIRST_FIXED_ARRAY_SUB_TYPE =
FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS,
FIRST_CODE_AGE_SUB_TYPE =
FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1,
OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1
};
// Returns the amount of memory currently committed for the old space.
intptr_t CommittedOldGenerationMemory();
// Taking this lock prevents the GC from entering a phase that relocates
// object references.
class RelocationLock {
public:
explicit RelocationLock(Heap* heap) : heap_(heap) {
heap_->relocation_mutex_.Lock();
}
// Returns the amount of executable memory currently committed for the heap.
intptr_t CommittedMemoryExecutable();
~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
// Returns the amount of phyical memory currently committed for the heap.
size_t CommittedPhysicalMemory();
private:
Heap* heap_;
};
// Returns the maximum amount of memory ever committed for the heap.
intptr_t MaximumCommittedMemory() { return maximum_committed_; }
// An optional version of the above lock that can be used for some critical
// sections on the mutator thread; only safe since the GC currently does not
// do concurrent compaction.
class OptionalRelocationLock {
public:
OptionalRelocationLock(Heap* heap, bool concurrent)
: heap_(heap), concurrent_(concurrent) {
if (concurrent_) heap_->relocation_mutex_.Lock();
}
// Updates the maximum committed memory for the heap. Should be called
// whenever a space grows.
void UpdateMaximumCommitted();
~OptionalRelocationLock() {
if (concurrent_) heap_->relocation_mutex_.Unlock();
}
// Returns the available bytes in space w/o growing.
// Heap doesn't guarantee that it can allocate an object that requires
// all available bytes. Check MaxHeapObjectSize() instead.
intptr_t Available();
private:
Heap* heap_;
bool concurrent_;
};
// Returns of size of all objects residing in the heap.
intptr_t SizeOfObjects();
// Support for partial snapshots. After calling this we have a linear
// space to write objects in each space.
struct Chunk {
uint32_t size;
Address start;
Address end;
};
typedef List<Chunk> Reservation;
intptr_t old_generation_allocation_limit() const {
return old_generation_allocation_limit_;
}
static const intptr_t kMinimumOldGenerationAllocationLimit =
8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
// Return the starting address and a mask for the new space. And-masking an
// address with the mask will result in the start address of the new space
// for all addresses in either semispace.
Address NewSpaceStart() { return new_space_.start(); }
uintptr_t NewSpaceMask() { return new_space_.mask(); }
Address NewSpaceTop() { return new_space_.top(); }
static const int kInitalOldGenerationLimitFactor = 2;
NewSpace* new_space() { return &new_space_; }
OldSpace* old_space() { return old_space_; }
OldSpace* code_space() { return code_space_; }
MapSpace* map_space() { return map_space_; }
LargeObjectSpace* lo_space() { return lo_space_; }
PagedSpace* paged_space(int idx) {
switch (idx) {
case OLD_SPACE:
return old_space();
case MAP_SPACE:
return map_space();
case CODE_SPACE:
return code_space();
case NEW_SPACE:
case LO_SPACE:
UNREACHABLE();
}
return NULL;
}
Space* space(int idx) {
switch (idx) {
case NEW_SPACE:
return new_space();
case LO_SPACE:
return lo_space();
default:
return paged_space(idx);
}
#if V8_OS_ANDROID
// Don't apply pointer multiplier on Android since it has no swap space and
// should instead adapt it's heap size based on available physical memory.
static const int kPointerMultiplier = 1;
#else
static const int kPointerMultiplier = i::kPointerSize / 4;
#endif
// The new space size has to be a power of 2. Sizes are in MB.
static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
// The old space size has to be a multiple of Page::kPageSize.
// Sizes are in MB.
static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
static const int kMaxOldSpaceSizeMediumMemoryDevice =
256 * kPointerMultiplier;
static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
// The executable size has to be a multiple of Page::kPageSize.
// Sizes are in MB.
static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
static const int kMaxExecutableSizeMediumMemoryDevice =
192 * kPointerMultiplier;
static const int kMaxExecutableSizeHighMemoryDevice =
256 * kPointerMultiplier;
static const int kMaxExecutableSizeHugeMemoryDevice =
256 * kPointerMultiplier;
static const int kTraceRingBufferSize = 512;
static const int kStacktraceBufferSize = 512;
static const double kMinHeapGrowingFactor;
static const double kMaxHeapGrowingFactor;
static const double kMaxHeapGrowingFactorMemoryConstrained;
static const double kMaxHeapGrowingFactorIdle;
static const double kTargetMutatorUtilization;
// Sloppy mode arguments object size.
static const int kSloppyArgumentsObjectSize =
JSObject::kHeaderSize + 2 * kPointerSize;
// Strict mode arguments has no callee so it is smaller.
static const int kStrictArgumentsObjectSize =
JSObject::kHeaderSize + 1 * kPointerSize;
// Indicies for direct access into argument objects.
static const int kArgumentsLengthIndex = 0;
// callee is only valid in sloppy mode.
static const int kArgumentsCalleeIndex = 1;
static const int kNoGCFlags = 0;
static const int kReduceMemoryFootprintMask = 1;
static const int kAbortIncrementalMarkingMask = 2;
static const int kFinalizeIncrementalMarkingMask = 4;
// Making the heap iterable requires us to abort incremental marking.
static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
// The roots that have an index less than this are always in old space.
static const int kOldSpaceRoots = 0x20;
STATIC_ASSERT(kUndefinedValueRootIndex ==
Internals::kUndefinedValueRootIndex);
STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
// Calculates the maximum amount of filler that could be required by the
// given alignment.
static int GetMaximumFillToAlign(AllocationAlignment alignment);
// Calculates the actual amount of filler required for a given address at the
// given alignment.
static int GetFillToAlign(Address address, AllocationAlignment alignment);
template <typename T>
static inline bool IsOneByte(T t, int chars);
// Callback function passed to Heap::Iterate etc. Copies an object if
// necessary, the object might be promoted to an old space. The caller must
// ensure the precondition that the object is (a) a heap object and (b) in
// the heap's from space.
static inline void ScavengePointer(HeapObject** p);
static inline void ScavengeObject(HeapObject** p, HeapObject* object);
// Slow part of scavenge object.
static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
static void FatalProcessOutOfMemory(const char* location,
bool take_snapshot = false);
static bool RootIsImmortalImmovable(int root_index);
// Checks whether the space is valid.
static bool IsValidAllocationSpace(AllocationSpace space);
// An object may have an AllocationSite associated with it through a trailing
// AllocationMemento. Its feedback should be updated when objects are found
// in the heap.
static inline void UpdateAllocationSiteFeedback(HeapObject* object,
ScratchpadSlotMode mode);
// Generated code can embed direct references to non-writable roots if
// they are in new space.
static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
// Zapping is needed for verify heap, and always done in debug builds.
static inline bool ShouldZapGarbage() {
#ifdef DEBUG
return true;
#else
#ifdef VERIFY_HEAP
return FLAG_verify_heap;
#else
return false;
#endif
#endif
}
// Returns name of the space.
const char* GetSpaceName(int idx);
static double HeapGrowingFactor(double gc_speed, double mutator_speed);
// Copy block of memory from src to dst. Size of block should be aligned
// by pointer size.
static inline void CopyBlock(Address dst, Address src, int byte_size);
// Optimized version of memmove for blocks with pointer size aligned sizes and
// pointer size aligned addresses.
static inline void MoveBlock(Address dst, Address src, int byte_size);
// Set the stack limit in the roots_ array. Some architectures generate
// code that looks here, because it is faster than loading from the static
// jslimit_/real_jslimit_ variable in the StackGuard.
void SetStackLimits();
// Notifies the heap that is ok to start marking or other activities that
// should not happen during deserialization.
void NotifyDeserializationComplete();
// Returns whether SetUp has been called.
bool HasBeenSetUp();
intptr_t old_generation_allocation_limit() const {
return old_generation_allocation_limit_;
}
bool always_allocate() { return always_allocate_scope_depth_ != 0; }
Address always_allocate_scope_depth_address() {
......@@ -721,30 +853,6 @@ class Heap {
return (CommittedOldGenerationMemory() + size) < MaxOldGenerationSize();
}
// Returns a deep copy of the JavaScript object.
// Properties and elements are copied too.
// Optionally takes an AllocationSite to be appended in an AllocationMemento.
MUST_USE_RESULT AllocationResult
CopyJSObject(JSObject* source, AllocationSite* site = NULL);
// Calculates the maximum amount of filler that could be required by the
// given alignment.
static int GetMaximumFillToAlign(AllocationAlignment alignment);
// Calculates the actual amount of filler required for a given address at the
// given alignment.
static int GetFillToAlign(Address address, AllocationAlignment alignment);
// Creates a filler object and returns a heap object immediately after it.
MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object,
int filler_size);
// Creates a filler object if needed for alignment and returns a heap object
// immediately after it. If any space is left after the returned object,
// another filler object is created so the over allocated memory is iterable.
MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object,
int object_size,
int allocation_size,
AllocationAlignment alignment);
// Clear the Instanceof cache (used when a prototype changes).
inline void ClearInstanceofCache();
......@@ -754,24 +862,10 @@ class Heap {
// FreeSpace objects have a null map after deserialization. Update the map.
void RepairFreeListsAfterDeserialization();
template <typename T>
static inline bool IsOneByte(T t, int chars);
// Move len elements within a given array from src_index index to dst_index
// index.
void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
// Sloppy mode arguments object size.
static const int kSloppyArgumentsObjectSize =
JSObject::kHeaderSize + 2 * kPointerSize;
// Strict mode arguments has no callee so it is smaller.
static const int kStrictArgumentsObjectSize =
JSObject::kHeaderSize + 1 * kPointerSize;
// Indicies for direct access into argument objects.
static const int kArgumentsLengthIndex = 0;
// callee is only valid in sloppy mode.
static const int kArgumentsCalleeIndex = 1;
// Finalizes an external string by deleting the associated external
// data and clearing the resource pointer.
inline void FinalizeExternalString(String* string);
......@@ -782,12 +876,6 @@ class Heap {
bool CanMoveObjectStart(HeapObject* object);
// Indicates whether live bytes adjustment is triggered
// - from within the GC code before sweeping started (SEQUENTIAL_TO_SWEEPER),
// - or from within GC (CONCURRENT_TO_SWEEPER),
// - or mutator code (CONCURRENT_TO_SWEEPER).
enum InvocationMode { SEQUENTIAL_TO_SWEEPER, CONCURRENT_TO_SWEEPER };
// Maintain consistency of live bytes during incremental marking.
void AdjustLiveBytes(HeapObject* object, int by, InvocationMode mode);
......@@ -802,65 +890,18 @@ class Heap {
// Converts the given boolean condition to JavaScript boolean value.
inline Object* ToBoolean(bool condition);
// Performs garbage collection operation.
// Returns whether there is a chance that another major GC could
// collect more garbage.
inline bool CollectGarbage(
AllocationSpace space, const char* gc_reason = NULL,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
static const int kNoGCFlags = 0;
static const int kReduceMemoryFootprintMask = 1;
static const int kAbortIncrementalMarkingMask = 2;
static const int kFinalizeIncrementalMarkingMask = 4;
// Making the heap iterable requires us to abort incremental marking.
static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
// Invoked when GC was requested via the stack guard.
void HandleGCRequest();
// Attempt to over-approximate the weak closure by marking object groups and
// implicit references from global handles, but don't atomically complete
// marking. If we continue to mark incrementally, we might have marked
// objects that die later.
void OverApproximateWeakClosure(const char* gc_reason);
// Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is
// non-zero, then the slower precise sweeper is used, which leaves the heap
// in a state where we can iterate over the heap visiting all objects.
void CollectAllGarbage(
int flags = kFinalizeIncrementalMarkingMask, const char* gc_reason = NULL,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
// Last hope GC, should try to squeeze as much as possible.
void CollectAllAvailableGarbage(const char* gc_reason = NULL);
// Check whether the heap is currently iterable.
bool IsHeapIterable();
// Notify the heap that a context has been disposed.
int NotifyContextDisposed(bool dependant_context);
// Start incremental marking and ensure that idle time handler can perform
// incremental steps.
void StartIdleIncrementalMarking();
// Starts incremental marking assuming incremental marking is currently
// stopped.
void StartIncrementalMarking(int gc_flags,
const GCCallbackFlags gc_callback_flags,
const char* reason = nullptr);
// Performs incremental marking steps of step_size_in_bytes as long as
// deadline_ins_ms is not reached. step_size_in_bytes can be 0 to compute
// an estimate increment. Returns the remaining time that cannot be used
// for incremental marking anymore because a single step would exceed the
// deadline.
double AdvanceIncrementalMarking(
intptr_t step_size_in_bytes, double deadline_in_ms,
IncrementalMarking::StepActions step_actions);
void FinalizeIncrementalMarkingIfComplete(const char* comment);
inline void increment_scan_on_scavenge_pages() {
......@@ -877,16 +918,6 @@ class Heap {
}
}
PromotionQueue* promotion_queue() { return &promotion_queue_; }
void AddGCPrologueCallback(v8::Isolate::GCCallback callback,
GCType gc_type_filter, bool pass_isolate = true);
void RemoveGCPrologueCallback(v8::Isolate::GCCallback callback);
void AddGCEpilogueCallback(v8::Isolate::GCCallback callback,
GCType gc_type_filter, bool pass_isolate = true);
void RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback);
// Heap root getters. We have versions with and without type::cast() here.
// You can't use type::cast during GC because the assert fails.
// TODO(1490): Try removing the unchecked accessors, now that GC marking does
......@@ -944,46 +975,6 @@ class Heap {
// Number of mark-sweeps.
int ms_count() const { return ms_count_; }
// Iterates over all roots in the heap.
void IterateRoots(ObjectVisitor* v, VisitMode mode);
// Iterates over all strong roots in the heap.
void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
// Iterates over entries in the smi roots list. Only interesting to the
// serializer/deserializer, since GC does not care about smis.
void IterateSmiRoots(ObjectVisitor* v);
// Iterates over all the other roots in the heap.
void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
// Iterate pointers to from semispace of new space found in memory interval
// from start to end within |object|.
void IterateAndMarkPointersToFromSpace(HeapObject* object, Address start,
Address end, bool record_slots,
ObjectSlotCallback callback);
// Returns whether the object resides in new space.
inline bool InNewSpace(Object* object);
inline bool InNewSpace(Address address);
inline bool InNewSpacePage(Address address);
inline bool InFromSpace(Object* object);
inline bool InToSpace(Object* object);
// Returns whether the object resides in old space.
inline bool InOldSpace(Address address);
inline bool InOldSpace(Object* object);
// Checks whether an address/object in the heap (including auxiliary
// area and unused area).
bool Contains(Address addr);
bool Contains(HeapObject* value);
// Checks whether an address/object in a space.
// Currently used by tests, serialization and heap verification only.
bool InSpace(Address addr, AllocationSpace space);
bool InSpace(HeapObject* value, AllocationSpace space);
// Checks whether the space is valid.
static bool IsValidAllocationSpace(AllocationSpace space);
// Checks whether the given object is allowed to be migrated from it's
// current space into the given destination space. Used for debugging.
inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
......@@ -1017,35 +1008,7 @@ class Heap {
return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
}
static bool RootIsImmortalImmovable(int root_index);
void CheckHandleCount();
#ifdef VERIFY_HEAP
// Verify the heap is in its normal state before or after a GC.
void Verify();
#endif
#ifdef DEBUG
void Print();
void PrintHandles();
// Report heap statistics.
void ReportHeapStatistics(const char* title);
void ReportCodeStatistics(const char* title);
#endif
// Zapping is needed for verify heap, and always done in debug builds.
static inline bool ShouldZapGarbage() {
#ifdef DEBUG
return true;
#else
#ifdef VERIFY_HEAP
return FLAG_verify_heap;
#else
return false;
#endif
#endif
}
void CheckHandleCount();
// Number of "runtime allocations" done so far.
uint32_t allocations_count() { return allocations_count_; }
......@@ -1060,6 +1023,7 @@ class Heap {
size_t object_count_last_gc(size_t index) {
return index < OBJECT_STATS_COUNT ? object_counts_last_time_[index] : 0;
}
size_t object_size_last_gc(size_t index) {
return index < OBJECT_STATS_COUNT ? object_sizes_last_time_[index] : 0;
}
......@@ -1070,51 +1034,14 @@ class Heap {
// Write barrier support for address[start : start + len[ = o.
INLINE(void RecordWrites(Address address, int start, int len));
enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
inline HeapState gc_state() { return gc_state_; }
inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
#ifdef DEBUG
void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
void TracePathToObjectFrom(Object* target, Object* root);
void TracePathToObject(Object* target);
void TracePathToGlobal();
#endif
// Callback function passed to Heap::Iterate etc. Copies an object if
// necessary, the object might be promoted to an old space. The caller must
// ensure the precondition that the object is (a) a heap object and (b) in
// the heap's from space.
static inline void ScavengePointer(HeapObject** p);
static inline void ScavengeObject(HeapObject** p, HeapObject* object);
// Slow part of scavenge object.
static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
enum ScratchpadSlotMode { IGNORE_SCRATCHPAD_SLOT, RECORD_SCRATCHPAD_SLOT };
// If an object has an AllocationMemento trailing it, return it, otherwise
// return NULL;
inline AllocationMemento* FindAllocationMemento(HeapObject* object);
// An object may have an AllocationSite associated with it through a trailing
// AllocationMemento. Its feedback should be updated when objects are found
// in the heap.
static inline void UpdateAllocationSiteFeedback(HeapObject* object,
ScratchpadSlotMode mode);
// Support for partial snapshots. After calling this we have a linear
// space to write objects in each space.
struct Chunk {
uint32_t size;
Address start;
Address end;
};
typedef List<Chunk> Reservation;
// Returns false if not able to reserve.
bool ReserveSpace(Reservation* reservations);
......@@ -1124,72 +1051,6 @@ class Heap {
void CreateApiObjects();
inline intptr_t PromotedTotalSize() {
int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
if (total > std::numeric_limits<intptr_t>::max()) {
// TODO(erikcorry): Use uintptr_t everywhere we do heap size calculations.
return std::numeric_limits<intptr_t>::max();
}
if (total < 0) return 0;
return static_cast<intptr_t>(total);
}
inline intptr_t OldGenerationSpaceAvailable() {
return old_generation_allocation_limit_ - PromotedTotalSize();
}
inline intptr_t OldGenerationCapacityAvailable() {
return max_old_generation_size_ - PromotedTotalSize();
}
static const intptr_t kMinimumOldGenerationAllocationLimit =
8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
static const int kInitalOldGenerationLimitFactor = 2;
#if V8_OS_ANDROID
// Don't apply pointer multiplier on Android since it has no swap space and
// should instead adapt it's heap size based on available physical memory.
static const int kPointerMultiplier = 1;
#else
static const int kPointerMultiplier = i::kPointerSize / 4;
#endif
// The new space size has to be a power of 2. Sizes are in MB.
static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
// The old space size has to be a multiple of Page::kPageSize.
// Sizes are in MB.
static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
static const int kMaxOldSpaceSizeMediumMemoryDevice =
256 * kPointerMultiplier;
static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
// The executable size has to be a multiple of Page::kPageSize.
// Sizes are in MB.
static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
static const int kMaxExecutableSizeMediumMemoryDevice =
192 * kPointerMultiplier;
static const int kMaxExecutableSizeHighMemoryDevice =
256 * kPointerMultiplier;
static const int kMaxExecutableSizeHugeMemoryDevice =
256 * kPointerMultiplier;
static const int kTraceRingBufferSize = 512;
static const int kStacktraceBufferSize = 512;
static const double kMinHeapGrowingFactor;
static const double kMaxHeapGrowingFactor;
static const double kMaxHeapGrowingFactorMemoryConstrained;
static const double kMaxHeapGrowingFactorIdle;
static const double kTargetMutatorUtilization;
static double HeapGrowingFactor(double gc_speed, double mutator_speed);
// Calculates the allocation limit based on a given growing factor and a
// given old generation size.
intptr_t CalculateOldGenerationAllocationLimit(double factor,
......@@ -1205,63 +1066,14 @@ class Heap {
double gc_speed,
double mutator_speed);
// Indicates whether inline bump-pointer allocation has been disabled.
bool inline_allocation_disabled() { return inline_allocation_disabled_; }
// Switch whether inline bump-pointer allocation should be used.
void EnableInlineAllocation();
void DisableInlineAllocation();
// Implements the corresponding V8 API function.
bool IdleNotification(double deadline_in_seconds);
bool IdleNotification(int idle_time_in_ms);
double MonotonicallyIncreasingTimeInMs();
// Declare all the root indices. This defines the root list order.
enum RootListIndex {
#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
#undef ROOT_INDEX_DECLARATION
#define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
#undef STRING_DECLARATION
#define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex,
PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
#undef SYMBOL_INDEX_DECLARATION
#define SYMBOL_INDEX_DECLARATION(name, varname, description) k##name##RootIndex,
PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
#undef SYMBOL_INDEX_DECLARATION
// Utility type maps
#define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
STRUCT_LIST(DECLARE_STRUCT_MAP)
#undef DECLARE_STRUCT_MAP
kStringTableRootIndex,
#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
#undef ROOT_INDEX_DECLARATION
kRootListLength,
kStrongRootListLength = kStringTableRootIndex,
kSmiRootsStart = kStringTableRootIndex + 1
};
Object* root(RootListIndex index) { return roots_[index]; }
STATIC_ASSERT(kUndefinedValueRootIndex ==
Internals::kUndefinedValueRootIndex);
STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
// Generated code can embed direct references to non-writable roots if
// they are in new space.
static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
// Generated code can treat direct references to this root as constant.
bool RootCanBeTreatedAsConstant(RootListIndex root_index);
......@@ -1273,43 +1085,9 @@ class Heap {
void RecordStats(HeapStats* stats, bool take_snapshot = false);
// Copy block of memory from src to dst. Size of block should be aligned
// by pointer size.
static inline void CopyBlock(Address dst, Address src, int byte_size);
// Optimized version of memmove for blocks with pointer size aligned sizes and
// pointer size aligned addresses.
static inline void MoveBlock(Address dst, Address src, int byte_size);
// Check new space expansion criteria and expand semispaces if it was hit.
void CheckNewSpaceExpansionCriteria();
inline void IncrementPromotedObjectsSize(int object_size) {
DCHECK(object_size > 0);
promoted_objects_size_ += object_size;
}
inline void IncrementSemiSpaceCopiedObjectSize(int object_size) {
DCHECK(object_size > 0);
semi_space_copied_object_size_ += object_size;
}
inline intptr_t SurvivedNewSpaceObjectSize() {
return promoted_objects_size_ + semi_space_copied_object_size_;
}
inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
inline void IncrementNodesPromoted() { nodes_promoted_++; }
inline void IncrementYoungSurvivorsCounter(int survived) {
DCHECK(survived >= 0);
survived_last_scavenge_ = survived;
survived_since_last_expansion_ += survived;
}
inline bool HeapIsFullEnoughToStartIncrementalMarking(intptr_t limit) {
if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
......@@ -1337,105 +1115,26 @@ class Heap {
void ClearNormalizedMapCaches();
GCTracer* tracer() { return tracer_; }
// Returns the size of objects residing in non new spaces.
intptr_t PromotedSpaceSizeOfObjects();
double total_regexp_code_generated() { return total_regexp_code_generated_; }
void IncreaseTotalRegexpCodeGenerated(int size) {
total_regexp_code_generated_ += size;
}
void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
if (is_crankshafted) {
crankshaft_codegen_bytes_generated_ += size;
} else {
full_codegen_bytes_generated_ += size;
}
}
void UpdateNewSpaceAllocationCounter() {
new_space_allocation_counter_ = NewSpaceAllocationCounter();
}
size_t NewSpaceAllocationCounter() {
return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
}
// This should be used only for testing.
void set_new_space_allocation_counter(size_t new_value) {
new_space_allocation_counter_ = new_value;
}
void UpdateOldGenerationAllocationCounter() {
old_generation_allocation_counter_ = OldGenerationAllocationCounter();
}
size_t OldGenerationAllocationCounter() {
return old_generation_allocation_counter_ + PromotedSinceLastGC();
}
// This should be used only for testing.
void set_old_generation_allocation_counter(size_t new_value) {
old_generation_allocation_counter_ = new_value;
}
size_t PromotedSinceLastGC() {
return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_;
}
// Update GC statistics that are tracked on the Heap.
void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
double marking_time);
// Returns maximum GC pause.
double get_max_gc_pause() { return max_gc_pause_; }
// Returns maximum size of objects alive after GC.
intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
// Returns minimal interval between two subsequent collections.
double get_min_in_mutator() { return min_in_mutator_; }
void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
MarkCompactCollector* mark_compact_collector() {
return &mark_compact_collector_;
}
StoreBuffer* store_buffer() { return &store_buffer_; }
IncrementalMarking* incremental_marking() { return &incremental_marking_; }
ExternalStringTable* external_string_table() {
return &external_string_table_;
}
bool concurrent_sweeping_enabled() { return concurrent_sweeping_enabled_; }
inline Isolate* isolate();
void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
inline bool OldGenerationAllocationLimitReached();
void QueueMemoryChunkForFree(MemoryChunk* chunk);
void FilterStoreBufferEntriesOnAboutToBeFreedPages();
void FreeQueuedChunks();
int gc_count() const { return gc_count_; }
bool RecentIdleNotificationHappened();
// Completely clear the Instanceof cache (to stop it keeping objects alive
// around a GC).
inline void CompletelyClearInstanceofCache();
// The roots that have an index less than this are always in old space.
static const int kOldSpaceRoots = 0x20;
inline uint32_t HashSeed();
inline Smi* NextScriptId();
......@@ -1468,18 +1167,6 @@ class Heap {
return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
}
// ObjectStats are kept in two arrays, counts and sizes. Related stats are
// stored in a contiguous linear buffer. Stats groups are stored one after
// another.
enum {
FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
FIRST_FIXED_ARRAY_SUB_TYPE =
FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS,
FIRST_CODE_AGE_SUB_TYPE =
FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1,
OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1
};
void RecordObjectStats(InstanceType type, size_t size) {
DCHECK(type <= LAST_TYPE);
object_counts_[type]++;
......@@ -1515,39 +1202,6 @@ class Heap {
void RegisterStrongRoots(Object** start, Object** end);
void UnregisterStrongRoots(Object** start);
// Taking this lock prevents the GC from entering a phase that relocates
// object references.
class RelocationLock {
public:
explicit RelocationLock(Heap* heap) : heap_(heap) {
heap_->relocation_mutex_.Lock();
}
~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
private:
Heap* heap_;
};
// An optional version of the above lock that can be used for some critical
// sections on the mutator thread; only safe since the GC currently does not
// do concurrent compaction.
class OptionalRelocationLock {
public:
OptionalRelocationLock(Heap* heap, bool concurrent)
: heap_(heap), concurrent_(concurrent) {
if (concurrent_) heap_->relocation_mutex_.Lock();
}
~OptionalRelocationLock() {
if (concurrent_) heap_->relocation_mutex_.Unlock();
}
private:
Heap* heap_;
bool concurrent_;
};
void AddWeakObjectToCodeDependency(Handle<HeapObject> obj,
Handle<DependentCode> dep);
......@@ -1555,9 +1209,6 @@ class Heap {
void AddRetainedMap(Handle<Map> map);
static void FatalProcessOutOfMemory(const char* location,
bool take_snapshot = false);
// This event is triggered after successful allocation of a new object made
// by runtime. Allocations of target space for object evacuation do not
// trigger the event. In order to track ALL allocations one must turn off
......@@ -1579,220 +1230,437 @@ class Heap {
// The backing store |data| is no longer owned by V8.
void UnregisterArrayBuffer(bool in_new_space, void* data);
// A live ArrayBuffer was discovered during marking/scavenge.
void RegisterLiveArrayBuffer(bool from_scavenge, void* data);
// A live ArrayBuffer was discovered during marking/scavenge.
void RegisterLiveArrayBuffer(bool from_scavenge, void* data);
// Frees all backing store pointers that weren't discovered in the previous
// marking or scavenge phase.
void FreeDeadArrayBuffers(bool from_scavenge);
// Prepare for a new scavenge phase. A new marking phase is implicitly
// prepared by finishing the previous one.
void PrepareArrayBufferDiscoveryInNewSpace();
// An ArrayBuffer moved from new space to old space.
void PromoteArrayBuffer(Object* buffer);
bool HasLowAllocationRate();
bool HasHighFragmentation();
bool HasHighFragmentation(intptr_t used, intptr_t committed);
bool ShouldOptimizeForMemoryUsage() { return optimize_for_memory_usage_; }
// ===========================================================================
// Initialization. ===========================================================
// ===========================================================================
// Configure heap size in MB before setup. Return false if the heap has been
// set up already.
bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
int max_executable_size, size_t code_range_size);
bool ConfigureHeapDefault();
// Prepares the heap, setting up memory areas that are needed in the isolate
// without actually creating any objects.
bool SetUp();
// Bootstraps the object heap with the core set of objects required to run.
// Returns whether it succeeded.
bool CreateHeapObjects();
// Destroys all memory allocated by the heap.
void TearDown();
// ===========================================================================
// Getters for spaces. =======================================================
// ===========================================================================
// Return the starting address and a mask for the new space. And-masking an
// address with the mask will result in the start address of the new space
// for all addresses in either semispace.
Address NewSpaceStart() { return new_space_.start(); }
uintptr_t NewSpaceMask() { return new_space_.mask(); }
Address NewSpaceTop() { return new_space_.top(); }
NewSpace* new_space() { return &new_space_; }
OldSpace* old_space() { return old_space_; }
OldSpace* code_space() { return code_space_; }
MapSpace* map_space() { return map_space_; }
LargeObjectSpace* lo_space() { return lo_space_; }
PagedSpace* paged_space(int idx) {
switch (idx) {
case OLD_SPACE:
return old_space();
case MAP_SPACE:
return map_space();
case CODE_SPACE:
return code_space();
case NEW_SPACE:
case LO_SPACE:
UNREACHABLE();
}
return NULL;
}
Space* space(int idx) {
switch (idx) {
case NEW_SPACE:
return new_space();
case LO_SPACE:
return lo_space();
default:
return paged_space(idx);
}
}
// Returns name of the space.
const char* GetSpaceName(int idx);
// ===========================================================================
// Getters to other components. ==============================================
// ===========================================================================
GCTracer* tracer() { return tracer_; }
PromotionQueue* promotion_queue() { return &promotion_queue_; }
inline Isolate* isolate();
MarkCompactCollector* mark_compact_collector() {
return &mark_compact_collector_;
}
StoreBuffer* store_buffer() { return &store_buffer_; }
// ===========================================================================
// Inline allocation. ========================================================
// ===========================================================================
// Indicates whether inline bump-pointer allocation has been disabled.
bool inline_allocation_disabled() { return inline_allocation_disabled_; }
// Switch whether inline bump-pointer allocation should be used.
void EnableInlineAllocation();
void DisableInlineAllocation();
// ===========================================================================
// Methods triggering GCs. ===================================================
// ===========================================================================
// Performs garbage collection operation.
// Returns whether there is a chance that another major GC could
// collect more garbage.
inline bool CollectGarbage(
AllocationSpace space, const char* gc_reason = NULL,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
// Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is
// non-zero, then the slower precise sweeper is used, which leaves the heap
// in a state where we can iterate over the heap visiting all objects.
void CollectAllGarbage(
int flags = kFinalizeIncrementalMarkingMask, const char* gc_reason = NULL,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
// Last hope GC, should try to squeeze as much as possible.
void CollectAllAvailableGarbage(const char* gc_reason = NULL);
// Invoked when GC was requested via the stack guard.
void HandleGCRequest();
// ===========================================================================
// Iterators. ================================================================
// ===========================================================================
// Iterates over all roots in the heap.
void IterateRoots(ObjectVisitor* v, VisitMode mode);
// Iterates over all strong roots in the heap.
void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
// Iterates over entries in the smi roots list. Only interesting to the
// serializer/deserializer, since GC does not care about smis.
void IterateSmiRoots(ObjectVisitor* v);
// Iterates over all the other roots in the heap.
void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
// Iterate pointers to from semispace of new space found in memory interval
// from start to end within |object|.
void IterateAndMarkPointersToFromSpace(HeapObject* object, Address start,
Address end, bool record_slots,
ObjectSlotCallback callback);
// ===========================================================================
// Incremental marking API. ==================================================
// ===========================================================================
// Start incremental marking and ensure that idle time handler can perform
// incremental steps.
void StartIdleIncrementalMarking();
// Starts incremental marking assuming incremental marking is currently
// stopped.
void StartIncrementalMarking(int gc_flags,
const GCCallbackFlags gc_callback_flags,
const char* reason = nullptr);
// Performs incremental marking steps of step_size_in_bytes as long as
// deadline_ins_ms is not reached. step_size_in_bytes can be 0 to compute
// an estimate increment. Returns the remaining time that cannot be used
// for incremental marking anymore because a single step would exceed the
// deadline.
double AdvanceIncrementalMarking(
intptr_t step_size_in_bytes, double deadline_in_ms,
IncrementalMarking::StepActions step_actions);
IncrementalMarking* incremental_marking() { return &incremental_marking_; }
// ===========================================================================
// Methods checking/returning the space of a given object/address. ===========
// ===========================================================================
// Returns whether the object resides in new space.
inline bool InNewSpace(Object* object);
inline bool InNewSpace(Address address);
inline bool InNewSpacePage(Address address);
inline bool InFromSpace(Object* object);
inline bool InToSpace(Object* object);
// Returns whether the object resides in old space.
inline bool InOldSpace(Address address);
inline bool InOldSpace(Object* object);
// Checks whether an address/object in the heap (including auxiliary
// area and unused area).
bool Contains(Address addr);
bool Contains(HeapObject* value);
// Checks whether an address/object in a space.
// Currently used by tests, serialization and heap verification only.
bool InSpace(Address addr, AllocationSpace space);
bool InSpace(HeapObject* value, AllocationSpace space);
// ===========================================================================
// GC statistics. ============================================================
// ===========================================================================
// Returns the maximum amount of memory reserved for the heap. For
// the young generation, we reserve 4 times the amount needed for a
// semi space. The young generation consists of two semi spaces and
// we reserve twice the amount needed for those in order to ensure
// that new space can be aligned to its size.
intptr_t MaxReserved() {
return 4 * reserved_semispace_size_ + max_old_generation_size_;
}
int MaxSemiSpaceSize() { return max_semi_space_size_; }
int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
int InitialSemiSpaceSize() { return initial_semispace_size_; }
int TargetSemiSpaceSize() { return target_semispace_size_; }
intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
intptr_t MaxExecutableSize() { return max_executable_size_; }
// Returns the capacity of the heap in bytes w/o growing. Heap grows when
// more spaces are needed until it reaches the limit.
intptr_t Capacity();
// Returns the amount of memory currently committed for the heap.
intptr_t CommittedMemory();
// Frees all backing store pointers that weren't discovered in the previous
// marking or scavenge phase.
void FreeDeadArrayBuffers(bool from_scavenge);
// Returns the amount of memory currently committed for the old space.
intptr_t CommittedOldGenerationMemory();
// Prepare for a new scavenge phase. A new marking phase is implicitly
// prepared by finishing the previous one.
void PrepareArrayBufferDiscoveryInNewSpace();
// Returns the amount of executable memory currently committed for the heap.
intptr_t CommittedMemoryExecutable();
// An ArrayBuffer moved from new space to old space.
void PromoteArrayBuffer(Object* buffer);
// Returns the amount of phyical memory currently committed for the heap.
size_t CommittedPhysicalMemory();
bool HasLowAllocationRate();
bool HasHighFragmentation();
bool HasHighFragmentation(intptr_t used, intptr_t committed);
// Returns the maximum amount of memory ever committed for the heap.
intptr_t MaximumCommittedMemory() { return maximum_committed_; }
bool ShouldOptimizeForMemoryUsage() { return optimize_for_memory_usage_; }
// Updates the maximum committed memory for the heap. Should be called
// whenever a space grows.
void UpdateMaximumCommitted();
private:
static const int kInitialStringTableSize = 2048;
static const int kInitialEvalCacheSize = 64;
static const int kInitialNumberStringCacheSize = 256;
// Returns the available bytes in space w/o growing.
// Heap doesn't guarantee that it can allocate an object that requires
// all available bytes. Check MaxHeapObjectSize() instead.
intptr_t Available();
Heap();
// Returns of size of all objects residing in the heap.
intptr_t SizeOfObjects();
int current_gc_flags() { return current_gc_flags_; }
void set_current_gc_flags(int flags) {
current_gc_flags_ = flags;
DCHECK(!ShouldFinalizeIncrementalMarking() ||
!ShouldAbortIncrementalMarking());
}
void UpdateSurvivalStatistics(int start_new_space_size);
inline bool ShouldReduceMemory() const {
return current_gc_flags_ & kReduceMemoryFootprintMask;
inline void IncrementPromotedObjectsSize(int object_size) {
DCHECK(object_size > 0);
promoted_objects_size_ += object_size;
}
inline intptr_t promoted_objects_size() { return promoted_objects_size_; }
inline bool ShouldAbortIncrementalMarking() const {
return current_gc_flags_ & kAbortIncrementalMarkingMask;
inline void IncrementSemiSpaceCopiedObjectSize(int object_size) {
DCHECK(object_size > 0);
semi_space_copied_object_size_ += object_size;
}
inline bool ShouldFinalizeIncrementalMarking() const {
return current_gc_flags_ & kFinalizeIncrementalMarkingMask;
inline intptr_t semi_space_copied_object_size() {
return semi_space_copied_object_size_;
}
// Allocates a JS Map in the heap.
MUST_USE_RESULT AllocationResult
AllocateMap(InstanceType instance_type, int instance_size,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
// Allocates and initializes a new JavaScript object based on a
// constructor.
// If allocation_site is non-null, then a memento is emitted after the object
// that points to the site.
MUST_USE_RESULT AllocationResult
AllocateJSObject(JSFunction* constructor,
PretenureFlag pretenure = NOT_TENURED,
AllocationSite* allocation_site = NULL);
inline intptr_t SurvivedNewSpaceObjectSize() {
return promoted_objects_size_ + semi_space_copied_object_size_;
}
// Allocates and initializes a new JavaScript object based on a map.
// Passing an allocation site means that a memento will be created that
// points to the site.
MUST_USE_RESULT AllocationResult
AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
AllocationSite* allocation_site = NULL);
inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
// Allocates a HeapNumber from value.
MUST_USE_RESULT AllocationResult
AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
PretenureFlag pretenure = NOT_TENURED);
inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
// Allocates SIMD values from the given lane values.
#define SIMD_ALLOCATE_DECLARATION(TYPE, Type, type, lane_count, lane_type) \
AllocationResult Allocate##Type(lane_type lanes[lane_count], \
PretenureFlag pretenure = NOT_TENURED);
SIMD128_TYPES(SIMD_ALLOCATE_DECLARATION)
#undef SIMD_ALLOCATE_DECLARATION
inline void IncrementNodesPromoted() { nodes_promoted_++; }
// Allocates a byte array of the specified length
MUST_USE_RESULT AllocationResult
AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
inline void IncrementYoungSurvivorsCounter(int survived) {
DCHECK(survived >= 0);
survived_last_scavenge_ = survived;
survived_since_last_expansion_ += survived;
}
// Allocates a bytecode array with given contents.
MUST_USE_RESULT AllocationResult
AllocateBytecodeArray(int length, const byte* raw_bytecodes,
int frame_size);
inline intptr_t PromotedTotalSize() {
int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
if (total > std::numeric_limits<intptr_t>::max()) {
// TODO(erikcorry): Use uintptr_t everywhere we do heap size calculations.
return std::numeric_limits<intptr_t>::max();
}
if (total < 0) return 0;
return static_cast<intptr_t>(total);
}
// Copy the code and scope info part of the code object, but insert
// the provided data as the relocation information.
MUST_USE_RESULT AllocationResult
CopyCode(Code* code, Vector<byte> reloc_info);
inline intptr_t OldGenerationSpaceAvailable() {
return old_generation_allocation_limit_ - PromotedTotalSize();
}
MUST_USE_RESULT AllocationResult CopyCode(Code* code);
inline intptr_t OldGenerationCapacityAvailable() {
return max_old_generation_size_ - PromotedTotalSize();
}
// Allocates a fixed array initialized with undefined values
MUST_USE_RESULT AllocationResult
AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
// The amount of external memory registered through the API kept alive
// by global handles
int64_t amount_of_external_allocated_memory_;
void UpdateNewSpaceAllocationCounter() {
new_space_allocation_counter_ = NewSpaceAllocationCounter();
}
// Caches the amount of external memory registered at the last global gc.
int64_t amount_of_external_allocated_memory_at_last_global_gc_;
size_t NewSpaceAllocationCounter() {
return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
}
// This can be calculated directly from a pointer to the heap; however, it is
// more expedient to get at the isolate directly from within Heap methods.
Isolate* isolate_;
// This should be used only for testing.
void set_new_space_allocation_counter(size_t new_value) {
new_space_allocation_counter_ = new_value;
}
Object* roots_[kRootListLength];
void UpdateOldGenerationAllocationCounter() {
old_generation_allocation_counter_ = OldGenerationAllocationCounter();
}
size_t code_range_size_;
int reserved_semispace_size_;
int max_semi_space_size_;
int initial_semispace_size_;
int target_semispace_size_;
intptr_t max_old_generation_size_;
intptr_t initial_old_generation_size_;
bool old_generation_size_configured_;
intptr_t max_executable_size_;
intptr_t maximum_committed_;
size_t OldGenerationAllocationCounter() {
return old_generation_allocation_counter_ + PromotedSinceLastGC();
}
// For keeping track of how much data has survived
// scavenge since last new space expansion.
int survived_since_last_expansion_;
// This should be used only for testing.
void set_old_generation_allocation_counter(size_t new_value) {
old_generation_allocation_counter_ = new_value;
}
// ... and since the last scavenge.
int survived_last_scavenge_;
size_t PromotedSinceLastGC() {
return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_;
}
int always_allocate_scope_depth_;
// Update GC statistics that are tracked on the Heap.
void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
double marking_time);
// For keeping track of context disposals.
int contexts_disposed_;
// Returns maximum GC pause.
double get_max_gc_pause() { return max_gc_pause_; }
int global_ic_age_;
// Returns maximum size of objects alive after GC.
intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
int scan_on_scavenge_pages_;
// Returns minimal interval between two subsequent collections.
double get_min_in_mutator() { return min_in_mutator_; }
NewSpace new_space_;
OldSpace* old_space_;
OldSpace* code_space_;
MapSpace* map_space_;
LargeObjectSpace* lo_space_;
HeapState gc_state_;
int gc_post_processing_depth_;
Address new_space_top_after_last_gc_;
int gc_count() const { return gc_count_; }
// Returns the amount of external memory registered since last global gc.
int64_t PromotedExternalMemorySize();
// Returns the size of objects residing in non new spaces.
intptr_t PromotedSpaceSizeOfObjects();
// How many "runtime allocations" happened.
uint32_t allocations_count_;
double total_regexp_code_generated() { return total_regexp_code_generated_; }
void IncreaseTotalRegexpCodeGenerated(int size) {
total_regexp_code_generated_ += size;
}
// Running hash over allocations performed.
uint32_t raw_allocations_hash_;
void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
if (is_crankshafted) {
crankshaft_codegen_bytes_generated_ += size;
} else {
full_codegen_bytes_generated_ += size;
}
}
// Countdown counter, dumps allocation hash when 0.
uint32_t dump_allocations_hash_countdown_;
// ===========================================================================
// Prologue/epilogue callback methods.========================================
// ===========================================================================
// How many mark-sweep collections happened.
unsigned int ms_count_;
void AddGCPrologueCallback(v8::Isolate::GCCallback callback,
GCType gc_type_filter, bool pass_isolate = true);
void RemoveGCPrologueCallback(v8::Isolate::GCCallback callback);
// How many gc happened.
unsigned int gc_count_;
void AddGCEpilogueCallback(v8::Isolate::GCCallback callback,
GCType gc_type_filter, bool pass_isolate = true);
void RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback);
// For post mortem debugging.
static const int kRememberedUnmappedPages = 128;
int remembered_unmapped_pages_index_;
Address remembered_unmapped_pages_[kRememberedUnmappedPages];
void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
#define ROOT_ACCESSOR(type, name, camel_name) \
inline void set_##name(type* value);
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
// ===========================================================================
// Allocation methods. =======================================================
// ===========================================================================
#ifdef DEBUG
// If the --gc-interval flag is set to a positive value, this
// variable holds the value indicating the number of allocations
// remain until the next failure and garbage collection.
int allocation_timeout_;
#endif // DEBUG
// Returns a deep copy of the JavaScript object.
// Properties and elements are copied too.
// Optionally takes an AllocationSite to be appended in an AllocationMemento.
MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source,
AllocationSite* site = NULL);
// Limit that triggers a global GC on the next (normally caused) GC. This
// is checked when we have already decided to do a GC to help determine
// which collector to invoke, before expanding a paged space in the old
// generation and on every allocation in large object space.
intptr_t old_generation_allocation_limit_;
// Creates a filler object and returns a heap object immediately after it.
MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object,
int filler_size);
// Creates a filler object if needed for alignment and returns a heap object
// immediately after it. If any space is left after the returned object,
// another filler object is created so the over allocated memory is iterable.
MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object,
int object_size,
int allocation_size,
AllocationAlignment alignment);
// Indicates that an allocation has failed in the old generation since the
// last GC.
bool old_gen_exhausted_;
// =============================================================================
// Indicates that memory usage is more important than latency.
// TODO(ulan): Merge it with memory reducer once chromium:490559 is fixed.
bool optimize_for_memory_usage_;
#ifdef VERIFY_HEAP
// Verify the heap is in its normal state before or after a GC.
void Verify();
#endif
// Indicates that inline bump-pointer allocation has been globally disabled
// for all spaces. This is used to disable allocations in generated code.
bool inline_allocation_disabled_;
#ifdef DEBUG
void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
// Weak list heads, threaded through the objects.
// List heads are initialized lazily and contain the undefined_value at start.
Object* native_contexts_list_;
Object* allocation_sites_list_;
void TracePathToObjectFrom(Object* target, Object* root);
void TracePathToObject(Object* target);
void TracePathToGlobal();
// List of encountered weak collections (JSWeakMap and JSWeakSet) during
// marking. It is initialized during marking, destroyed after marking and
// contains Smi(0) while marking is not active.
Object* encountered_weak_collections_;
void Print();
void PrintHandles();
Object* encountered_weak_cells_;
// Report heap statistics.
void ReportHeapStatistics(const char* title);
void ReportCodeStatistics(const char* title);
#endif
StoreBufferRebuilder store_buffer_rebuilder_;
private:
struct StrongRootsList;
struct StringTypeTable {
InstanceType type;
......@@ -1811,10 +1679,6 @@ class Heap {
RootListIndex index;
};
static const StringTypeTable string_type_table[];
static const ConstantStringTable constant_string_table[];
static const StructTable struct_table[];
struct GCCallbackPair {
GCCallbackPair(v8::Isolate::GCCallback callback, GCType gc_type,
bool pass_isolate)
......@@ -1829,8 +1693,64 @@ class Heap {
bool pass_isolate;
};
List<GCCallbackPair> gc_epilogue_callbacks_;
List<GCCallbackPair> gc_prologue_callbacks_;
static const int kInitialStringTableSize = 2048;
static const int kInitialEvalCacheSize = 64;
static const int kInitialNumberStringCacheSize = 256;
static const int kRememberedUnmappedPages = 128;
static const StringTypeTable string_type_table[];
static const ConstantStringTable constant_string_table[];
static const StructTable struct_table[];
static const int kYoungSurvivalRateHighThreshold = 90;
static const int kYoungSurvivalRateAllowedDeviation = 15;
static const int kOldSurvivalRateLowThreshold = 10;
static const int kMaxMarkCompactsInIdleRound = 7;
static const int kIdleScavengeThreshold = 5;
static const int kAllocationSiteScratchpadSize = 256;
Heap();
static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
Heap* heap, Object** pointer);
static void ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page,
StoreBufferEvent event);
// Selects the proper allocation space depending on the given object
// size and pretenuring decision.
static AllocationSpace SelectSpace(int object_size, PretenureFlag pretenure) {
if (object_size > Page::kMaxRegularHeapObjectSize) return LO_SPACE;
return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE;
}
int current_gc_flags() { return current_gc_flags_; }
void set_current_gc_flags(int flags) {
current_gc_flags_ = flags;
DCHECK(!ShouldFinalizeIncrementalMarking() ||
!ShouldAbortIncrementalMarking());
}
inline bool ShouldReduceMemory() const {
return current_gc_flags_ & kReduceMemoryFootprintMask;
}
inline bool ShouldAbortIncrementalMarking() const {
return current_gc_flags_ & kAbortIncrementalMarkingMask;
}
inline bool ShouldFinalizeIncrementalMarking() const {
return current_gc_flags_ & kFinalizeIncrementalMarkingMask;
}
#define ROOT_ACCESSOR(type, name, camel_name) \
inline void set_##name(type* value);
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
// Code that should be run before and after each GC. Includes some
// reporting/verification activities when compiled with DEBUG set.
......@@ -1858,32 +1778,205 @@ class Heap {
// over all objects. May cause a GC.
void MakeHeapIterable();
// Performs garbage collection operation.
// Returns whether there is a chance that another major GC could
// collect more garbage.
bool CollectGarbage(
GarbageCollector collector, const char* gc_reason,
const char* collector_reason,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
// Performs garbage collection operation.
// Returns whether there is a chance that another major GC could
// collect more garbage.
bool CollectGarbage(
GarbageCollector collector, const char* gc_reason,
const char* collector_reason,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
// Performs garbage collection
// Returns whether there is a chance another major GC could
// collect more garbage.
bool PerformGarbageCollection(
GarbageCollector collector,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
inline void UpdateOldSpaceLimits();
// Initializes a JSObject based on its map.
void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
Map* map);
void InitializeAllocationMemento(AllocationMemento* memento,
AllocationSite* allocation_site);
bool CreateInitialMaps();
void CreateInitialObjects();
// These five Create*EntryStub functions are here and forced to not be inlined
// because of a gcc-4.4 bug that assigns wrong vtable entries.
NO_INLINE(void CreateJSEntryStub());
NO_INLINE(void CreateJSConstructEntryStub());
void CreateFixedStubs();
HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size);
// Performs a minor collection in new generation.
void Scavenge();
// Commits from space if it is uncommitted.
void EnsureFromSpaceIsCommitted();
// Uncommit unused semi space.
bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
// Fill in bogus values in from space
void ZapFromSpace();
Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
// Performs a major collection in the whole heap.
void MarkCompact();
// Code to be run before and after mark-compact.
void MarkCompactPrologue();
void MarkCompactEpilogue();
void ProcessNativeContexts(WeakObjectRetainer* retainer);
void ProcessAllocationSites(WeakObjectRetainer* retainer);
// Deopts all code that contains allocation instruction which are tenured or
// not tenured. Moreover it clears the pretenuring allocation site statistics.
void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
// Evaluates local pretenuring for the old space and calls
// ResetAllTenuredAllocationSitesDependentCode if too many objects died in
// the old space.
void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
// Called on heap tear-down. Frees all remaining ArrayBuffer backing stores.
void TearDownArrayBuffers();
// These correspond to the non-Helper versions.
void RegisterNewArrayBufferHelper(std::map<void*, size_t>& live_buffers,
void* data, size_t length);
void UnregisterArrayBufferHelper(
std::map<void*, size_t>& live_buffers,
std::map<void*, size_t>& not_yet_discovered_buffers, void* data);
void RegisterLiveArrayBufferHelper(
std::map<void*, size_t>& not_yet_discovered_buffers, void* data);
size_t FreeDeadArrayBuffersHelper(
Isolate* isolate, std::map<void*, size_t>& live_buffers,
std::map<void*, size_t>& not_yet_discovered_buffers);
void TearDownArrayBuffersHelper(
Isolate* isolate, std::map<void*, size_t>& live_buffers,
std::map<void*, size_t>& not_yet_discovered_buffers);
// Record statistics before and after garbage collection.
void ReportStatisticsBeforeGC();
void ReportStatisticsAfterGC();
// Creates and installs the full-sized number string cache.
int FullSizeNumberStringCacheLength();
// Flush the number to string cache.
void FlushNumberStringCache();
// Sets used allocation sites entries to undefined.
void FlushAllocationSitesScratchpad();
// Initializes the allocation sites scratchpad with undefined values.
void InitializeAllocationSitesScratchpad();
// Adds an allocation site to the scratchpad if there is space left.
void AddAllocationSiteToScratchpad(AllocationSite* site,
ScratchpadSlotMode mode);
// TODO(hpayer): Allocation site pretenuring may make this method obsolete.
// Re-visit incremental marking heuristics.
bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }
void ConfigureInitialOldGenerationSize();
void SelectScavengingVisitorsTable();
bool HasLowYoungGenerationAllocationRate();
bool HasLowOldGenerationAllocationRate();
double YoungGenerationMutatorUtilization();
double OldGenerationMutatorUtilization();
void ReduceNewSpaceSize();
bool TryFinalizeIdleIncrementalMarking(
double idle_time_in_ms, size_t size_of_objects,
size_t mark_compact_speed_in_bytes_per_ms);
GCIdleTimeHandler::HeapState ComputeHeapState();
bool PerformIdleTimeAction(GCIdleTimeAction action,
GCIdleTimeHandler::HeapState heap_state,
double deadline_in_ms);
void IdleNotificationEpilogue(GCIdleTimeAction action,
GCIdleTimeHandler::HeapState heap_state,
double start_ms, double deadline_in_ms);
void CheckAndNotifyBackgroundIdleNotification(double idle_time_in_ms,
double now_ms);
void ClearObjectStats(bool clear_last_time_stats = false);
inline void UpdateAllocationsHash(HeapObject* object);
inline void UpdateAllocationsHash(uint32_t value);
inline void PrintAlloctionsHash();
void AddToRingBuffer(const char* string);
void GetFromRingBuffer(char* buffer);
// ===========================================================================
// Allocation methods. =======================================================
// ===========================================================================
// Allocates a JS Map in the heap.
MUST_USE_RESULT AllocationResult
AllocateMap(InstanceType instance_type, int instance_size,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
// Allocates and initializes a new JavaScript object based on a
// constructor.
// If allocation_site is non-null, then a memento is emitted after the object
// that points to the site.
MUST_USE_RESULT AllocationResult AllocateJSObject(
JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED,
AllocationSite* allocation_site = NULL);
// Allocates and initializes a new JavaScript object based on a map.
// Passing an allocation site means that a memento will be created that
// points to the site.
MUST_USE_RESULT AllocationResult
AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
AllocationSite* allocation_site = NULL);
// Allocates a HeapNumber from value.
MUST_USE_RESULT AllocationResult
AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
PretenureFlag pretenure = NOT_TENURED);
// Allocates SIMD values from the given lane values.
#define SIMD_ALLOCATE_DECLARATION(TYPE, Type, type, lane_count, lane_type) \
AllocationResult Allocate##Type(lane_type lanes[lane_count], \
PretenureFlag pretenure = NOT_TENURED);
SIMD128_TYPES(SIMD_ALLOCATE_DECLARATION)
#undef SIMD_ALLOCATE_DECLARATION
// Allocates a byte array of the specified length
MUST_USE_RESULT AllocationResult
AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
// Performs garbage collection
// Returns whether there is a chance another major GC could
// collect more garbage.
bool PerformGarbageCollection(
GarbageCollector collector,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
// Allocates a bytecode array with given contents.
MUST_USE_RESULT AllocationResult
AllocateBytecodeArray(int length, const byte* raw_bytecodes, int frame_size);
inline void UpdateOldSpaceLimits();
// Copy the code and scope info part of the code object, but insert
// the provided data as the relocation information.
MUST_USE_RESULT AllocationResult CopyCode(Code* code,
Vector<byte> reloc_info);
// Selects the proper allocation space depending on the given object
// size and pretenuring decision.
static AllocationSpace SelectSpace(int object_size,
PretenureFlag pretenure) {
if (object_size > Page::kMaxRegularHeapObjectSize) return LO_SPACE;
return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE;
}
MUST_USE_RESULT AllocationResult CopyCode(Code* code);
HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size);
// Allocates a fixed array initialized with undefined values
MUST_USE_RESULT AllocationResult
AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
// Allocate an uninitialized object. The memory is non-executable if the
// hardware and OS allow. This is the single choke-point for allocations
......@@ -1902,12 +1995,6 @@ class Heap {
MUST_USE_RESULT AllocationResult
AllocatePartialMap(InstanceType instance_type, int instance_size);
// Initializes a JSObject based on its map.
void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
Map* map);
void InitializeAllocationMemento(AllocationMemento* memento,
AllocationSite* allocation_site);
// Allocate a block of memory in the given space (filled with a filler).
// Used as a fall-back for generated code when the space is full.
MUST_USE_RESULT AllocationResult
......@@ -1935,9 +2022,6 @@ class Heap {
MUST_USE_RESULT AllocationResult
AllocateRawTwoByteString(int length, PretenureFlag pretenure);
bool CreateInitialMaps();
void CreateInitialObjects();
// Allocates an internalized string in old space based on the character
// stream.
MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
......@@ -2004,13 +2088,6 @@ class Heap {
MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
int length, PretenureFlag pretenure = NOT_TENURED);
// These five Create*EntryStub functions are here and forced to not be inlined
// because of a gcc-4.4 bug that assigns wrong vtable entries.
NO_INLINE(void CreateJSEntryStub());
NO_INLINE(void CreateJSConstructEntryStub());
void CreateFixedStubs();
// Allocate empty fixed array.
MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
......@@ -2040,94 +2117,125 @@ class Heap {
MUST_USE_RESULT AllocationResult InternalizeString(String* str);
// Performs a minor collection in new generation.
void Scavenge();
// The amount of external memory registered through the API kept alive
// by global handles
int64_t amount_of_external_allocated_memory_;
// Commits from space if it is uncommitted.
void EnsureFromSpaceIsCommitted();
// Caches the amount of external memory registered at the last global gc.
int64_t amount_of_external_allocated_memory_at_last_global_gc_;
// Uncommit unused semi space.
bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
// This can be calculated directly from a pointer to the heap; however, it is
// more expedient to get at the isolate directly from within Heap methods.
Isolate* isolate_;
// Fill in bogus values in from space
void ZapFromSpace();
Object* roots_[kRootListLength];
static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
Heap* heap, Object** pointer);
size_t code_range_size_;
int reserved_semispace_size_;
int max_semi_space_size_;
int initial_semispace_size_;
int target_semispace_size_;
intptr_t max_old_generation_size_;
intptr_t initial_old_generation_size_;
bool old_generation_size_configured_;
intptr_t max_executable_size_;
intptr_t maximum_committed_;
Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
static void ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page,
StoreBufferEvent event);
// For keeping track of how much data has survived
// scavenge since last new space expansion.
int survived_since_last_expansion_;
// Performs a major collection in the whole heap.
void MarkCompact();
// ... and since the last scavenge.
int survived_last_scavenge_;
// Code to be run before and after mark-compact.
void MarkCompactPrologue();
void MarkCompactEpilogue();
int always_allocate_scope_depth_;
void ProcessNativeContexts(WeakObjectRetainer* retainer);
void ProcessAllocationSites(WeakObjectRetainer* retainer);
// For keeping track of context disposals.
int contexts_disposed_;
// Deopts all code that contains allocation instruction which are tenured or
// not tenured. Moreover it clears the pretenuring allocation site statistics.
void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
int global_ic_age_;
// Evaluates local pretenuring for the old space and calls
// ResetAllTenuredAllocationSitesDependentCode if too many objects died in
// the old space.
void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
int scan_on_scavenge_pages_;
// Called on heap tear-down. Frees all remaining ArrayBuffer backing stores.
void TearDownArrayBuffers();
NewSpace new_space_;
OldSpace* old_space_;
OldSpace* code_space_;
MapSpace* map_space_;
LargeObjectSpace* lo_space_;
HeapState gc_state_;
int gc_post_processing_depth_;
Address new_space_top_after_last_gc_;
// These correspond to the non-Helper versions.
void RegisterNewArrayBufferHelper(std::map<void*, size_t>& live_buffers,
void* data, size_t length);
void UnregisterArrayBufferHelper(
std::map<void*, size_t>& live_buffers,
std::map<void*, size_t>& not_yet_discovered_buffers, void* data);
void RegisterLiveArrayBufferHelper(
std::map<void*, size_t>& not_yet_discovered_buffers, void* data);
size_t FreeDeadArrayBuffersHelper(
Isolate* isolate, std::map<void*, size_t>& live_buffers,
std::map<void*, size_t>& not_yet_discovered_buffers);
void TearDownArrayBuffersHelper(
Isolate* isolate, std::map<void*, size_t>& live_buffers,
std::map<void*, size_t>& not_yet_discovered_buffers);
// Returns the amount of external memory registered since last global gc.
int64_t PromotedExternalMemorySize();
// Record statistics before and after garbage collection.
void ReportStatisticsBeforeGC();
void ReportStatisticsAfterGC();
// How many "runtime allocations" happened.
uint32_t allocations_count_;
// Total RegExp code ever generated
double total_regexp_code_generated_;
// Running hash over allocations performed.
uint32_t raw_allocations_hash_;
int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
// Countdown counter, dumps allocation hash when 0.
uint32_t dump_allocations_hash_countdown_;
GCTracer* tracer_;
// How many mark-sweep collections happened.
unsigned int ms_count_;
// Creates and installs the full-sized number string cache.
int FullSizeNumberStringCacheLength();
// Flush the number to string cache.
void FlushNumberStringCache();
// How many gc happened.
unsigned int gc_count_;
// Sets used allocation sites entries to undefined.
void FlushAllocationSitesScratchpad();
// For post mortem debugging.
int remembered_unmapped_pages_index_;
Address remembered_unmapped_pages_[kRememberedUnmappedPages];
// Initializes the allocation sites scratchpad with undefined values.
void InitializeAllocationSitesScratchpad();
#ifdef DEBUG
// If the --gc-interval flag is set to a positive value, this
// variable holds the value indicating the number of allocations
// remain until the next failure and garbage collection.
int allocation_timeout_;
#endif // DEBUG
// Adds an allocation site to the scratchpad if there is space left.
void AddAllocationSiteToScratchpad(AllocationSite* site,
ScratchpadSlotMode mode);
// Limit that triggers a global GC on the next (normally caused) GC. This
// is checked when we have already decided to do a GC to help determine
// which collector to invoke, before expanding a paged space in the old
// generation and on every allocation in large object space.
intptr_t old_generation_allocation_limit_;
void UpdateSurvivalStatistics(int start_new_space_size);
// Indicates that an allocation has failed in the old generation since the
// last GC.
bool old_gen_exhausted_;
static const int kYoungSurvivalRateHighThreshold = 90;
static const int kYoungSurvivalRateAllowedDeviation = 15;
// Indicates that memory usage is more important than latency.
// TODO(ulan): Merge it with memory reducer once chromium:490559 is fixed.
bool optimize_for_memory_usage_;
static const int kOldSurvivalRateLowThreshold = 10;
// Indicates that inline bump-pointer allocation has been globally disabled
// for all spaces. This is used to disable allocations in generated code.
bool inline_allocation_disabled_;
// Weak list heads, threaded through the objects.
// List heads are initialized lazily and contain the undefined_value at start.
Object* native_contexts_list_;
Object* allocation_sites_list_;
// List of encountered weak collections (JSWeakMap and JSWeakSet) during
// marking. It is initialized during marking, destroyed after marking and
// contains Smi(0) while marking is not active.
Object* encountered_weak_collections_;
Object* encountered_weak_cells_;
StoreBufferRebuilder store_buffer_rebuilder_;
List<GCCallbackPair> gc_epilogue_callbacks_;
List<GCCallbackPair> gc_prologue_callbacks_;
// Total RegExp code ever generated
double total_regexp_code_generated_;
int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
GCTracer* tracer_;
int high_survival_rate_period_length_;
intptr_t promoted_objects_size_;
......@@ -2146,46 +2254,6 @@ class Heap {
// of the allocation site.
unsigned int maximum_size_scavenges_;
// TODO(hpayer): Allocation site pretenuring may make this method obsolete.
// Re-visit incremental marking heuristics.
bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }
void ConfigureInitialOldGenerationSize();
void SelectScavengingVisitorsTable();
bool HasLowYoungGenerationAllocationRate();
bool HasLowOldGenerationAllocationRate();
double YoungGenerationMutatorUtilization();
double OldGenerationMutatorUtilization();
void ReduceNewSpaceSize();
bool TryFinalizeIdleIncrementalMarking(
double idle_time_in_ms, size_t size_of_objects,
size_t mark_compact_speed_in_bytes_per_ms);
GCIdleTimeHandler::HeapState ComputeHeapState();
bool PerformIdleTimeAction(GCIdleTimeAction action,
GCIdleTimeHandler::HeapState heap_state,
double deadline_in_ms);
void IdleNotificationEpilogue(GCIdleTimeAction action,
GCIdleTimeHandler::HeapState heap_state,
double start_ms, double deadline_in_ms);
void CheckAndNotifyBackgroundIdleNotification(double idle_time_in_ms,
double now_ms);
void ClearObjectStats(bool clear_last_time_stats = false);
inline void UpdateAllocationsHash(HeapObject* object);
inline void UpdateAllocationsHash(uint32_t value);
inline void PrintAlloctionsHash();
void AddToRingBuffer(const char* string);
void GetFromRingBuffer(char* buffer);
// Object counts and used memory by InstanceType
size_t object_counts_[OBJECT_STATS_COUNT];
size_t object_counts_last_time_[OBJECT_STATS_COUNT];
......@@ -2248,7 +2316,6 @@ class Heap {
// deoptimization triggered by garbage collection.
int gcs_since_last_deopt_;
static const int kAllocationSiteScratchpadSize = 256;
int allocation_sites_scratchpad_length_;
char trace_ring_buffer_[kTraceRingBufferSize];
......@@ -2258,9 +2325,6 @@ class Heap {
bool ring_buffer_full_;
size_t ring_buffer_end_;
static const int kMaxMarkCompactsInIdleRound = 7;
static const int kIdleScavengeThreshold = 5;
// Shared state read by the scavenge collector and set by ScavengeObject.
PromotionQueue promotion_queue_;
......@@ -2304,7 +2368,6 @@ class Heap {
std::map<void*, size_t> live_array_buffers_for_scavenge_;
std::map<void*, size_t> not_yet_discovered_array_buffers_for_scavenge_;
struct StrongRootsList;
StrongRootsList* strong_roots_list_;
friend class AlwaysAllocateScope;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment