Commit 33ae0e67 authored by machenbach's avatar machenbach Committed by Commit bot

Revert of Serializer: support all alignment kinds. (patchset #3 id:40001 of...

Revert of Serializer: support all alignment kinds. (patchset #3 id:40001 of https://codereview.chromium.org/1179873003/)

Reason for revert:
[Sheriff] Breaks arm debug compile:
http://build.chromium.org/p/client.v8/builders/V8%20Arm%20-%20debug%20builder/builds/4308

Original issue's description:
> Serializer: support all alignment kinds.
>
> We use an alignment prefix for unusual alignment kinds (not kWordAligned).
> This will cause new objects to be aligned in ReadObject, and back references
> to be aligned to skip padding.
>
> The motivation to change the undefined next sentinel in WeakCell is this:
> When the deserializer aligns an object, it requires filler maps to already
> exist to create filler objects as padding. However, deserializing the
> filler map leads to deserializing NaN, which as heap number is aligned:
> filler map > meta map > weak cell cache > undefined > NaN
> If we use the-hole instead of undefined as sentinel, it works.
>
> R=jochen@chromium.org,bbudge@chromium.org
> BUG=v8:4178
> LOG=N
>
> Committed: https://crrev.com/2146ab75387d47eef6582bd8c2d0cfc6c42b68b6
> Cr-Commit-Position: refs/heads/master@{#29044}

TBR=jochen@chromium.org,bbudge@chromium.org,yangguo@chromium.org
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=v8:4178

Review URL: https://codereview.chromium.org/1173253006

Cr-Commit-Position: refs/heads/master@{#29045}
parent 2146ab75
...@@ -641,7 +641,7 @@ HValue* CodeStubGraphBuilder<CreateWeakCellStub>::BuildCodeStub() { ...@@ -641,7 +641,7 @@ HValue* CodeStubGraphBuilder<CreateWeakCellStub>::BuildCodeStub() {
HInstruction* value = GetParameter(CreateWeakCellDescriptor::kValueIndex); HInstruction* value = GetParameter(CreateWeakCellDescriptor::kValueIndex);
Add<HStoreNamedField>(object, HObjectAccess::ForWeakCellValue(), value); Add<HStoreNamedField>(object, HObjectAccess::ForWeakCellValue(), value);
Add<HStoreNamedField>(object, HObjectAccess::ForWeakCellNext(), Add<HStoreNamedField>(object, HObjectAccess::ForWeakCellNext(),
graph()->GetConstantHole()); graph()->GetConstantUndefined());
HInstruction* feedback_vector = HInstruction* feedback_vector =
GetParameter(CreateWeakCellDescriptor::kVectorIndex); GetParameter(CreateWeakCellDescriptor::kVectorIndex);
......
...@@ -3102,7 +3102,7 @@ AllocationResult Heap::AllocateWeakCell(HeapObject* value) { ...@@ -3102,7 +3102,7 @@ AllocationResult Heap::AllocateWeakCell(HeapObject* value) {
} }
result->set_map_no_write_barrier(weak_cell_map()); result->set_map_no_write_barrier(weak_cell_map());
WeakCell::cast(result)->initialize(value); WeakCell::cast(result)->initialize(value);
WeakCell::cast(result)->set_next(the_hole_value(), SKIP_WRITE_BARRIER); WeakCell::cast(result)->set_next(undefined_value(), SKIP_WRITE_BARRIER);
return result; return result;
} }
...@@ -3706,18 +3706,19 @@ AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) { ...@@ -3706,18 +3706,19 @@ AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
void Heap::CreateFillerObjectAt(Address addr, int size) { void Heap::CreateFillerObjectAt(Address addr, int size) {
if (size == 0) return; if (size == 0) return;
HeapObject* filler = HeapObject::FromAddress(addr); HeapObject* filler = HeapObject::FromAddress(addr);
// At this point, we may be deserializing the heap from a snapshot, and
// none of the maps have been created yet and are NULL.
if (size == kPointerSize) { if (size == kPointerSize) {
filler->set_map_no_write_barrier(raw_unchecked_one_pointer_filler_map()); filler->set_map_no_write_barrier(raw_unchecked_one_pointer_filler_map());
DCHECK(filler->map() == NULL || filler->map() == one_pointer_filler_map());
} else if (size == 2 * kPointerSize) { } else if (size == 2 * kPointerSize) {
filler->set_map_no_write_barrier(raw_unchecked_two_pointer_filler_map()); filler->set_map_no_write_barrier(raw_unchecked_two_pointer_filler_map());
DCHECK(filler->map() == NULL || filler->map() == two_pointer_filler_map());
} else { } else {
filler->set_map_no_write_barrier(raw_unchecked_free_space_map()); filler->set_map_no_write_barrier(raw_unchecked_free_space_map());
DCHECK(filler->map() == NULL || filler->map() == free_space_map());
FreeSpace::cast(filler)->nobarrier_set_size(size); FreeSpace::cast(filler)->nobarrier_set_size(size);
} }
// At this point, we may be deserializing the heap from a snapshot, and
// none of the maps have been created yet and are NULL.
DCHECK(filler->map() == NULL && !deserialization_complete_ ||
filler->map()->IsMap());
} }
......
...@@ -2637,7 +2637,7 @@ void MarkCompactCollector::AbortWeakCollections() { ...@@ -2637,7 +2637,7 @@ void MarkCompactCollector::AbortWeakCollections() {
void MarkCompactCollector::ProcessAndClearWeakCells() { void MarkCompactCollector::ProcessAndClearWeakCells() {
HeapObject* the_hole = heap()->the_hole_value(); HeapObject* undefined = heap()->undefined_value();
Object* weak_cell_obj = heap()->encountered_weak_cells(); Object* weak_cell_obj = heap()->encountered_weak_cells();
while (weak_cell_obj != Smi::FromInt(0)) { while (weak_cell_obj != Smi::FromInt(0)) {
WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj); WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj);
...@@ -2672,19 +2672,19 @@ void MarkCompactCollector::ProcessAndClearWeakCells() { ...@@ -2672,19 +2672,19 @@ void MarkCompactCollector::ProcessAndClearWeakCells() {
RecordSlot(slot, slot, *slot); RecordSlot(slot, slot, *slot);
} }
weak_cell_obj = weak_cell->next(); weak_cell_obj = weak_cell->next();
weak_cell->set_next(the_hole, SKIP_WRITE_BARRIER); weak_cell->set_next(undefined, SKIP_WRITE_BARRIER);
} }
heap()->set_encountered_weak_cells(Smi::FromInt(0)); heap()->set_encountered_weak_cells(Smi::FromInt(0));
} }
void MarkCompactCollector::AbortWeakCells() { void MarkCompactCollector::AbortWeakCells() {
Object* the_hole = heap()->the_hole_value(); Object* undefined = heap()->undefined_value();
Object* weak_cell_obj = heap()->encountered_weak_cells(); Object* weak_cell_obj = heap()->encountered_weak_cells();
while (weak_cell_obj != Smi::FromInt(0)) { while (weak_cell_obj != Smi::FromInt(0)) {
WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj); WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj);
weak_cell_obj = weak_cell->next(); weak_cell_obj = weak_cell->next();
weak_cell->set_next(the_hole, SKIP_WRITE_BARRIER); weak_cell->set_next(undefined, SKIP_WRITE_BARRIER);
} }
heap()->set_encountered_weak_cells(Smi::FromInt(0)); heap()->set_encountered_weak_cells(Smi::FromInt(0));
} }
......
...@@ -329,11 +329,11 @@ void StaticMarkingVisitor<StaticVisitor>::VisitWeakCell(Map* map, ...@@ -329,11 +329,11 @@ void StaticMarkingVisitor<StaticVisitor>::VisitWeakCell(Map* map,
HeapObject* object) { HeapObject* object) {
Heap* heap = map->GetHeap(); Heap* heap = map->GetHeap();
WeakCell* weak_cell = reinterpret_cast<WeakCell*>(object); WeakCell* weak_cell = reinterpret_cast<WeakCell*>(object);
Object* the_hole = heap->the_hole_value(); Object* undefined = heap->undefined_value();
// Enqueue weak cell in linked list of encountered weak collections. // Enqueue weak cell in linked list of encountered weak collections.
// We can ignore weak cells with cleared values because they will always // We can ignore weak cells with cleared values because they will always
// contain smi zero. // contain smi zero.
if (weak_cell->next() == the_hole && !weak_cell->cleared()) { if (weak_cell->next() == undefined && !weak_cell->cleared()) {
weak_cell->set_next(heap->encountered_weak_cells(), weak_cell->set_next(heap->encountered_weak_cells(),
UPDATE_WEAK_WRITE_BARRIER); UPDATE_WEAK_WRITE_BARRIER);
heap->set_encountered_weak_cells(weak_cell); heap->set_encountered_weak_cells(weak_cell);
......
...@@ -753,8 +753,6 @@ HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) { ...@@ -753,8 +753,6 @@ HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
new_code_objects_.Add(Code::cast(obj)); new_code_objects_.Add(Code::cast(obj));
} }
} }
// Check alignment.
DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
return obj; return obj;
} }
...@@ -771,14 +769,8 @@ HeapObject* Deserializer::GetBackReferencedObject(int space) { ...@@ -771,14 +769,8 @@ HeapObject* Deserializer::GetBackReferencedObject(int space) {
uint32_t chunk_index = back_reference.chunk_index(); uint32_t chunk_index = back_reference.chunk_index();
DCHECK_LE(chunk_index, current_chunk_[space]); DCHECK_LE(chunk_index, current_chunk_[space]);
uint32_t chunk_offset = back_reference.chunk_offset(); uint32_t chunk_offset = back_reference.chunk_offset();
Address address = reservations_[space][chunk_index].start + chunk_offset; obj = HeapObject::FromAddress(reservations_[space][chunk_index].start +
if (next_alignment_ != kWordAligned) { chunk_offset);
int padding = Heap::GetFillToAlign(address, next_alignment_);
next_alignment_ = kWordAligned;
DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
address += padding;
}
obj = HeapObject::FromAddress(address);
} }
if (deserializing_user_code() && obj->IsInternalizedString()) { if (deserializing_user_code() && obj->IsInternalizedString()) {
obj = String::cast(obj)->GetForwardedInternalizedString(); obj = String::cast(obj)->GetForwardedInternalizedString();
...@@ -796,25 +788,22 @@ HeapObject* Deserializer::GetBackReferencedObject(int space) { ...@@ -796,25 +788,22 @@ HeapObject* Deserializer::GetBackReferencedObject(int space) {
void Deserializer::ReadObject(int space_number, Object** write_back) { void Deserializer::ReadObject(int space_number, Object** write_back) {
Address address; Address address;
HeapObject* obj; HeapObject* obj;
int size = source_.GetInt() << kObjectAlignmentBits; int next_int = source_.GetInt();
if (next_alignment_ != kWordAligned) { bool double_align = false;
int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_); #ifndef V8_HOST_ARCH_64_BIT
address = Allocate(space_number, reserved); double_align = next_int == kDoubleAlignmentSentinel;
if (double_align) next_int = source_.GetInt();
#endif
DCHECK_NE(kDoubleAlignmentSentinel, next_int);
int size = next_int << kObjectAlignmentBits;
int reserved_size = size + (double_align ? kPointerSize : 0);
address = Allocate(space_number, reserved_size);
obj = HeapObject::FromAddress(address); obj = HeapObject::FromAddress(address);
// If one of the following assertions fails, then we are deserializing an if (double_align) {
// aligned object when the filler maps have not been deserialized yet. obj = isolate_->heap()->DoubleAlignForDeserialization(obj, reserved_size);
// We require filler maps as padding to align the object.
Heap* heap = isolate_->heap();
DCHECK(heap->free_space_map()->IsMap());
DCHECK(heap->one_pointer_filler_map()->IsMap());
DCHECK(heap->two_pointer_filler_map()->IsMap());
obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
address = obj->address(); address = obj->address();
next_alignment_ = kWordAligned;
} else {
address = Allocate(space_number, size);
obj = HeapObject::FromAddress(address);
} }
isolate_->heap()->OnAllocationEvent(obj, size); isolate_->heap()->OnAllocationEvent(obj, size);
...@@ -1009,17 +998,14 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space, ...@@ -1009,17 +998,14 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
FOUR_CASES(byte_code + 8) \ FOUR_CASES(byte_code + 8) \
FOUR_CASES(byte_code + 12) FOUR_CASES(byte_code + 12)
#define SINGLE_CASE(where, how, within, space) \
CASE_STATEMENT(where, how, within, space) \
CASE_BODY(where, how, within, space)
// Deserialize a new object and write a pointer to it to the current // Deserialize a new object and write a pointer to it to the current
// object. // object.
ALL_SPACES(kNewObject, kPlain, kStartOfObject) ALL_SPACES(kNewObject, kPlain, kStartOfObject)
// Support for direct instruction pointers in functions. It's an inner // Support for direct instruction pointers in functions. It's an inner
// pointer because it points at the entry point, not at the start of the // pointer because it points at the entry point, not at the start of the
// code object. // code object.
SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE) CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
// Deserialize a new code object and write a pointer to its first // Deserialize a new code object and write a pointer to its first
// instruction to the current code object. // instruction to the current code object.
ALL_SPACES(kNewObject, kFromCode, kInnerPointer) ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
...@@ -1050,33 +1036,45 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space, ...@@ -1050,33 +1036,45 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
// Find an object in the roots array and write a pointer to it to the // Find an object in the roots array and write a pointer to it to the
// current object. // current object.
SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0) CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
CASE_BODY(kRootArray, kPlain, kStartOfObject, 0)
#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
// Find an object in the roots array and write a pointer to it to in code. // Find an object in the roots array and write a pointer to it to in code.
SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0) CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0)
CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0)
#endif #endif
// Find an object in the partial snapshots cache and write a pointer to it // Find an object in the partial snapshots cache and write a pointer to it
// to the current object. // to the current object.
SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0) CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
CASE_BODY(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
// Find an code entry in the partial snapshots cache and // Find an code entry in the partial snapshots cache and
// write a pointer to it to the current object. // write a pointer to it to the current object.
SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0) CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
CASE_BODY(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
// Find an external reference and write a pointer to it to the current // Find an external reference and write a pointer to it to the current
// object. // object.
SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0) CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
CASE_BODY(kExternalReference, kPlain, kStartOfObject, 0)
// Find an external reference and write a pointer to it in the current // Find an external reference and write a pointer to it in the current
// code object. // code object.
SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0) CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
CASE_BODY(kExternalReference, kFromCode, kStartOfObject, 0)
// Find an object in the attached references and write a pointer to it to // Find an object in the attached references and write a pointer to it to
// the current object. // the current object.
SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0) CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0)
SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0) CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0)
SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0) CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0)
CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0)
CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0)
CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0)
// Find a builtin and write a pointer to it to the current object. // Find a builtin and write a pointer to it to the current object.
SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0) CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0)
SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0) CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0)
SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0) CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0)
CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0)
CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0)
CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0)
#undef CASE_STATEMENT #undef CASE_STATEMENT
#undef CASE_BODY #undef CASE_BODY
...@@ -1171,15 +1169,6 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space, ...@@ -1171,15 +1169,6 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
break; break;
} }
case kAlignmentPrefix:
case kAlignmentPrefix + 1:
case kAlignmentPrefix + 2: {
DCHECK_EQ(kWordAligned, next_alignment_);
next_alignment_ =
static_cast<AllocationAlignment>(data - (kAlignmentPrefix - 1));
break;
}
STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots); STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
STATIC_ASSERT(kNumberOfRootArrayConstants == 32); STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
SIXTEEN_CASES(kRootArrayConstantsWithSkip) SIXTEEN_CASES(kRootArrayConstantsWithSkip)
...@@ -1246,7 +1235,6 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space, ...@@ -1246,7 +1235,6 @@ bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
#undef SIXTEEN_CASES #undef SIXTEEN_CASES
#undef FOUR_CASES #undef FOUR_CASES
#undef SINGLE_CASE
default: default:
CHECK(false); CHECK(false);
...@@ -1574,7 +1562,6 @@ bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, ...@@ -1574,7 +1562,6 @@ bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
PrintF("\n"); PrintF("\n");
} }
PutAlignmentPrefix(obj);
AllocationSpace space = back_reference.space(); AllocationSpace space = back_reference.space();
if (skip == 0) { if (skip == 0) {
sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef"); sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
...@@ -1668,18 +1655,6 @@ void Serializer::PutBackReference(HeapObject* object, BackReference reference) { ...@@ -1668,18 +1655,6 @@ void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
} }
int Serializer::PutAlignmentPrefix(HeapObject* object) {
AllocationAlignment alignment = object->RequiredAlignment();
if (alignment != kWordAligned) {
DCHECK(1 <= alignment && alignment <= 3);
byte prefix = (kAlignmentPrefix - 1) + alignment;
sink_->Put(prefix, "Alignment");
return Heap::GetMaximumFillToAlign(alignment);
}
return 0;
}
void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) { WhereToPoint where_to_point, int skip) {
if (obj->IsMap()) { if (obj->IsMap()) {
...@@ -1761,10 +1736,21 @@ void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space, ...@@ -1761,10 +1736,21 @@ void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
} }
back_reference = serializer_->AllocateLargeObject(size); back_reference = serializer_->AllocateLargeObject(size);
} else { } else {
int fill = serializer_->PutAlignmentPrefix(object_); bool needs_double_align = false;
back_reference = serializer_->Allocate(space, size + fill); // TODO(bbudge): Generalize to other alignment constraints.
if (object_->RequiredAlignment() == kDoubleAligned) {
// Add wriggle room for double alignment padding.
back_reference = serializer_->Allocate(space, size + kPointerSize);
needs_double_align = true;
} else {
back_reference = serializer_->Allocate(space, size);
}
sink_->Put(kNewObject + reference_representation_ + space, "NewObject"); sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); if (needs_double_align)
sink_->PutInt(kDoubleAlignmentSentinel, "DoubleAlignSentinel");
int encoded_size = size >> kObjectAlignmentBits;
DCHECK_NE(kDoubleAlignmentSentinel, encoded_size);
sink_->PutInt(encoded_size, "ObjectSizeInWords");
} }
#ifdef OBJECT_PRINT #ifdef OBJECT_PRINT
......
...@@ -324,14 +324,12 @@ class SerializerDeserializer: public ObjectVisitor { ...@@ -324,14 +324,12 @@ class SerializerDeserializer: public ObjectVisitor {
// 0x07 Unused (including 0x27, 0x47, 0x67). // 0x07 Unused (including 0x27, 0x47, 0x67).
// 0x08..0x0c Reference to previous object from space. // 0x08..0x0c Reference to previous object from space.
kBackref = 0x08, kBackref = 0x08,
// 0x0d Unused (including 0x2d, 0x4d, 0x6d).
// 0x0e Unused (including 0x2e, 0x4e, 0x6e). // 0x0e Unused (including 0x2e, 0x4e, 0x6e).
// 0x0f Unused (including 0x2f, 0x4f, 0x6f). // 0x0f Unused (including 0x2f, 0x4f, 0x6f).
// 0x10..0x14 Reference to previous object from space after skip. // 0x10..0x14 Reference to previous object from space after skip.
kBackrefWithSkip = 0x10, kBackrefWithSkip = 0x10,
// 0x15 Unused (including 0x35, 0x55, 0x75).
// 0x16 Unused (including 0x36, 0x56, 0x76). // 0x16 Unused (including 0x36, 0x56, 0x76).
// 0x17 Misc (including 0x37, 0x57, 0x77). // 0x17 Unused (including 0x37, 0x57, 0x77).
// 0x18 Root array item. // 0x18 Root array item.
kRootArray = 0x18, kRootArray = 0x18,
// 0x19 Object in the partial snapshot cache. // 0x19 Object in the partial snapshot cache.
...@@ -386,18 +384,14 @@ class SerializerDeserializer: public ObjectVisitor { ...@@ -386,18 +384,14 @@ class SerializerDeserializer: public ObjectVisitor {
// is an indication that the snapshot and the VM do not fit together. // is an indication that the snapshot and the VM do not fit together.
// Examine the build process for architecture, version or configuration // Examine the build process for architecture, version or configuration
// mismatches. // mismatches.
static const int kSynchronize = 0x17; static const int kSynchronize = 0x5d;
// Used for the source code of the natives, which is in the executable, but // Used for the source code of the natives, which is in the executable, but
// is referred to from external strings in the snapshot. // is referred to from external strings in the snapshot.
static const int kNativesStringResource = 0x37; static const int kNativesStringResource = 0x5e;
// Raw data of variable length. // Raw data of variable length.
static const int kVariableRawData = 0x57; static const int kVariableRawData = 0x7d;
// Repeats of variable length. // Repeats of variable length.
static const int kVariableRepeat = 0x77; static const int kVariableRepeat = 0x7e;
// Alignment prefixes 0x7d..0x7f
static const int kAlignmentPrefix = 0x7d;
// 0x5d..0x5f unused
// ---------- byte code range 0x80..0xff ---------- // ---------- byte code range 0x80..0xff ----------
// First 32 root array items. // First 32 root array items.
...@@ -521,8 +515,7 @@ class Deserializer: public SerializerDeserializer { ...@@ -521,8 +515,7 @@ class Deserializer: public SerializerDeserializer {
magic_number_(data->GetMagicNumber()), magic_number_(data->GetMagicNumber()),
external_reference_table_(NULL), external_reference_table_(NULL),
deserialized_large_objects_(0), deserialized_large_objects_(0),
deserializing_user_code_(false), deserializing_user_code_(false) {
next_alignment_(kWordAligned) {
DecodeReservation(data->Reservations()); DecodeReservation(data->Reservations());
} }
...@@ -609,8 +602,6 @@ class Deserializer: public SerializerDeserializer { ...@@ -609,8 +602,6 @@ class Deserializer: public SerializerDeserializer {
bool deserializing_user_code_; bool deserializing_user_code_;
AllocationAlignment next_alignment_;
DISALLOW_COPY_AND_ASSIGN(Deserializer); DISALLOW_COPY_AND_ASSIGN(Deserializer);
}; };
...@@ -715,9 +706,6 @@ class Serializer : public SerializerDeserializer { ...@@ -715,9 +706,6 @@ class Serializer : public SerializerDeserializer {
void PutBackReference(HeapObject* object, BackReference reference); void PutBackReference(HeapObject* object, BackReference reference);
// Emit alignment prefix if necessary, return required padding space in bytes.
int PutAlignmentPrefix(HeapObject* object);
// Returns true if the object was successfully serialized. // Returns true if the object was successfully serialized.
bool SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, bool SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip); WhereToPoint where_to_point, int skip);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment