Commit 21ebbd3e authored by danno's avatar danno Committed by Commit bot

[stubs] Remove dead IncStub and DecStub

R=mvstanton@chromium.org
TBR=rmcilroy@chromium.org

Review-Url: https://codereview.chromium.org/2608683002
Cr-Commit-Position: refs/heads/master@{#41985}
parent 71f8c819
...@@ -257,18 +257,6 @@ TFS_BUILTIN(StringCharCodeAt) ...@@ -257,18 +257,6 @@ TFS_BUILTIN(StringCharCodeAt)
#undef TFS_BUILTIN #undef TFS_BUILTIN
// static
Callable CodeFactory::Inc(Isolate* isolate) {
IncStub stub(isolate);
return make_callable(stub);
}
// static
Callable CodeFactory::Dec(Isolate* isolate) {
DecStub stub(isolate);
return make_callable(stub);
}
// static // static
Callable CodeFactory::StringAdd(Isolate* isolate, StringAddFlags flags, Callable CodeFactory::StringAdd(Isolate* isolate, StringAddFlags flags,
PretenureFlag pretenure_flag) { PretenureFlag pretenure_flag) {
......
...@@ -105,8 +105,6 @@ class V8_EXPORT_PRIVATE CodeFactory final { ...@@ -105,8 +105,6 @@ class V8_EXPORT_PRIVATE CodeFactory final {
static Callable BitwiseAnd(Isolate* isolate); static Callable BitwiseAnd(Isolate* isolate);
static Callable BitwiseOr(Isolate* isolate); static Callable BitwiseOr(Isolate* isolate);
static Callable BitwiseXor(Isolate* isolate); static Callable BitwiseXor(Isolate* isolate);
static Callable Inc(Isolate* isolate);
static Callable Dec(Isolate* isolate);
static Callable LessThan(Isolate* isolate); static Callable LessThan(Isolate* isolate);
static Callable LessThanOrEqual(Isolate* isolate); static Callable LessThanOrEqual(Isolate* isolate);
static Callable GreaterThan(Isolate* isolate); static Callable GreaterThan(Isolate* isolate);
......
...@@ -1512,150 +1512,6 @@ compiler::Node* ModulusWithFeedbackStub::Generate( ...@@ -1512,150 +1512,6 @@ compiler::Node* ModulusWithFeedbackStub::Generate(
return var_result.value(); return var_result.value();
} }
#define UNARY_OP_STUB(Name) \
void Name::GenerateAssembly(compiler::CodeAssemblerState* state) const { \
CodeStubAssembler assembler(state); \
assembler.Return(Generate(&assembler, assembler.Parameter(0), \
assembler.Parameter(1), assembler.Parameter(2), \
assembler.Parameter(3))); \
}
UNARY_OP_STUB(IncStub)
UNARY_OP_STUB(DecStub)
#undef UNARY_OP_STUB
// static
compiler::Node* IncStub::Generate(CodeStubAssembler* assembler,
compiler::Node* value,
compiler::Node* context,
compiler::Node* type_feedback_vector,
compiler::Node* slot_id) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
// Shared entry for floating point increment.
Label do_finc(assembler), end(assembler);
Variable var_finc_value(assembler, MachineRepresentation::kFloat64);
// We might need to try again due to ToNumber conversion.
Variable value_var(assembler, MachineRepresentation::kTagged);
Variable result_var(assembler, MachineRepresentation::kTagged);
Variable var_type_feedback(assembler, MachineRepresentation::kWord32);
Variable* loop_vars[] = {&value_var, &var_type_feedback};
Label start(assembler, 2, loop_vars);
value_var.Bind(value);
var_type_feedback.Bind(
assembler->Int32Constant(BinaryOperationFeedback::kNone));
assembler->Goto(&start);
assembler->Bind(&start);
{
value = value_var.value();
Label if_issmi(assembler), if_isnotsmi(assembler);
assembler->Branch(assembler->TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
assembler->Bind(&if_issmi);
{
// Try fast Smi addition first.
Node* one = assembler->SmiConstant(Smi::FromInt(1));
Node* pair = assembler->IntPtrAddWithOverflow(
assembler->BitcastTaggedToWord(value),
assembler->BitcastTaggedToWord(one));
Node* overflow = assembler->Projection(1, pair);
// Check if the Smi addition overflowed.
Label if_overflow(assembler), if_notoverflow(assembler);
assembler->Branch(overflow, &if_overflow, &if_notoverflow);
assembler->Bind(&if_notoverflow);
var_type_feedback.Bind(assembler->Word32Or(
var_type_feedback.value(),
assembler->Int32Constant(BinaryOperationFeedback::kSignedSmall)));
result_var.Bind(
assembler->BitcastWordToTaggedSigned(assembler->Projection(0, pair)));
assembler->Goto(&end);
assembler->Bind(&if_overflow);
{
var_finc_value.Bind(assembler->SmiToFloat64(value));
assembler->Goto(&do_finc);
}
}
assembler->Bind(&if_isnotsmi);
{
// Check if the value is a HeapNumber.
Label if_valueisnumber(assembler),
if_valuenotnumber(assembler, Label::kDeferred);
Node* value_map = assembler->LoadMap(value);
assembler->Branch(assembler->IsHeapNumberMap(value_map),
&if_valueisnumber, &if_valuenotnumber);
assembler->Bind(&if_valueisnumber);
{
// Load the HeapNumber value.
var_finc_value.Bind(assembler->LoadHeapNumberValue(value));
assembler->Goto(&do_finc);
}
assembler->Bind(&if_valuenotnumber);
{
// We do not require an Or with earlier feedback here because once we
// convert the value to a number, we cannot reach this path. We can
// only reach this path on the first pass when the feedback is kNone.
CSA_ASSERT(assembler,
assembler->Word32Equal(var_type_feedback.value(),
assembler->Int32Constant(
BinaryOperationFeedback::kNone)));
Label if_valueisoddball(assembler), if_valuenotoddball(assembler);
Node* instance_type = assembler->LoadMapInstanceType(value_map);
Node* is_oddball = assembler->Word32Equal(
instance_type, assembler->Int32Constant(ODDBALL_TYPE));
assembler->Branch(is_oddball, &if_valueisoddball, &if_valuenotoddball);
assembler->Bind(&if_valueisoddball);
{
// Convert Oddball to Number and check again.
value_var.Bind(
assembler->LoadObjectField(value, Oddball::kToNumberOffset));
var_type_feedback.Bind(assembler->Int32Constant(
BinaryOperationFeedback::kNumberOrOddball));
assembler->Goto(&start);
}
assembler->Bind(&if_valuenotoddball);
{
// Convert to a Number first and try again.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_type_feedback.Bind(
assembler->Int32Constant(BinaryOperationFeedback::kAny));
value_var.Bind(assembler->CallStub(callable, context, value));
assembler->Goto(&start);
}
}
}
}
assembler->Bind(&do_finc);
{
Node* finc_value = var_finc_value.value();
Node* one = assembler->Float64Constant(1.0);
Node* finc_result = assembler->Float64Add(finc_value, one);
var_type_feedback.Bind(assembler->Word32Or(
var_type_feedback.value(),
assembler->Int32Constant(BinaryOperationFeedback::kNumber)));
result_var.Bind(assembler->AllocateHeapNumberWithValue(finc_result));
assembler->Goto(&end);
}
assembler->Bind(&end);
assembler->UpdateFeedback(var_type_feedback.value(), type_feedback_vector,
slot_id);
return result_var.value();
}
void NumberToStringStub::GenerateAssembly( void NumberToStringStub::GenerateAssembly(
compiler::CodeAssemblerState* state) const { compiler::CodeAssemblerState* state) const {
typedef compiler::Node Node; typedef compiler::Node Node;
...@@ -1665,139 +1521,6 @@ void NumberToStringStub::GenerateAssembly( ...@@ -1665,139 +1521,6 @@ void NumberToStringStub::GenerateAssembly(
assembler.Return(assembler.NumberToString(context, argument)); assembler.Return(assembler.NumberToString(context, argument));
} }
// static
compiler::Node* DecStub::Generate(CodeStubAssembler* assembler,
compiler::Node* value,
compiler::Node* context,
compiler::Node* type_feedback_vector,
compiler::Node* slot_id) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
// Shared entry for floating point decrement.
Label do_fdec(assembler), end(assembler);
Variable var_fdec_value(assembler, MachineRepresentation::kFloat64);
// We might need to try again due to ToNumber conversion.
Variable value_var(assembler, MachineRepresentation::kTagged);
Variable result_var(assembler, MachineRepresentation::kTagged);
Variable var_type_feedback(assembler, MachineRepresentation::kWord32);
Variable* loop_vars[] = {&value_var, &var_type_feedback};
Label start(assembler, 2, loop_vars);
var_type_feedback.Bind(
assembler->Int32Constant(BinaryOperationFeedback::kNone));
value_var.Bind(value);
assembler->Goto(&start);
assembler->Bind(&start);
{
value = value_var.value();
Label if_issmi(assembler), if_isnotsmi(assembler);
assembler->Branch(assembler->TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
assembler->Bind(&if_issmi);
{
// Try fast Smi subtraction first.
Node* one = assembler->SmiConstant(Smi::FromInt(1));
Node* pair = assembler->IntPtrSubWithOverflow(
assembler->BitcastTaggedToWord(value),
assembler->BitcastTaggedToWord(one));
Node* overflow = assembler->Projection(1, pair);
// Check if the Smi subtraction overflowed.
Label if_overflow(assembler), if_notoverflow(assembler);
assembler->Branch(overflow, &if_overflow, &if_notoverflow);
assembler->Bind(&if_notoverflow);
var_type_feedback.Bind(assembler->Word32Or(
var_type_feedback.value(),
assembler->Int32Constant(BinaryOperationFeedback::kSignedSmall)));
result_var.Bind(
assembler->BitcastWordToTaggedSigned(assembler->Projection(0, pair)));
assembler->Goto(&end);
assembler->Bind(&if_overflow);
{
var_fdec_value.Bind(assembler->SmiToFloat64(value));
assembler->Goto(&do_fdec);
}
}
assembler->Bind(&if_isnotsmi);
{
// Check if the value is a HeapNumber.
Label if_valueisnumber(assembler),
if_valuenotnumber(assembler, Label::kDeferred);
Node* value_map = assembler->LoadMap(value);
assembler->Branch(assembler->IsHeapNumberMap(value_map),
&if_valueisnumber, &if_valuenotnumber);
assembler->Bind(&if_valueisnumber);
{
// Load the HeapNumber value.
var_fdec_value.Bind(assembler->LoadHeapNumberValue(value));
assembler->Goto(&do_fdec);
}
assembler->Bind(&if_valuenotnumber);
{
// We do not require an Or with earlier feedback here because once we
// convert the value to a number, we cannot reach this path. We can
// only reach this path on the first pass when the feedback is kNone.
CSA_ASSERT(assembler,
assembler->Word32Equal(var_type_feedback.value(),
assembler->Int32Constant(
BinaryOperationFeedback::kNone)));
Label if_valueisoddball(assembler), if_valuenotoddball(assembler);
Node* instance_type = assembler->LoadMapInstanceType(value_map);
Node* is_oddball = assembler->Word32Equal(
instance_type, assembler->Int32Constant(ODDBALL_TYPE));
assembler->Branch(is_oddball, &if_valueisoddball, &if_valuenotoddball);
assembler->Bind(&if_valueisoddball);
{
// Convert Oddball to Number and check again.
value_var.Bind(
assembler->LoadObjectField(value, Oddball::kToNumberOffset));
var_type_feedback.Bind(assembler->Int32Constant(
BinaryOperationFeedback::kNumberOrOddball));
assembler->Goto(&start);
}
assembler->Bind(&if_valuenotoddball);
{
// Convert to a Number first and try again.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_type_feedback.Bind(
assembler->Int32Constant(BinaryOperationFeedback::kAny));
value_var.Bind(assembler->CallStub(callable, context, value));
assembler->Goto(&start);
}
}
}
}
assembler->Bind(&do_fdec);
{
Node* fdec_value = var_fdec_value.value();
Node* one = assembler->Float64Constant(1.0);
Node* fdec_result = assembler->Float64Sub(fdec_value, one);
var_type_feedback.Bind(assembler->Word32Or(
var_type_feedback.value(),
assembler->Int32Constant(BinaryOperationFeedback::kNumber)));
result_var.Bind(assembler->AllocateHeapNumberWithValue(fdec_result));
assembler->Goto(&end);
}
assembler->Bind(&end);
assembler->UpdateFeedback(var_type_feedback.value(), type_feedback_vector,
slot_id);
return result_var.value();
}
// ES6 section 21.1.3.19 String.prototype.substring ( start, end ) // ES6 section 21.1.3.19 String.prototype.substring ( start, end )
compiler::Node* SubStringStub::Generate(CodeStubAssembler* assembler, compiler::Node* SubStringStub::Generate(CodeStubAssembler* assembler,
compiler::Node* string, compiler::Node* string,
......
...@@ -94,10 +94,8 @@ class Node; ...@@ -94,10 +94,8 @@ class Node;
V(MultiplyWithFeedback) \ V(MultiplyWithFeedback) \
V(DivideWithFeedback) \ V(DivideWithFeedback) \
V(ModulusWithFeedback) \ V(ModulusWithFeedback) \
V(Inc) \
V(InternalArrayNoArgumentConstructor) \ V(InternalArrayNoArgumentConstructor) \
V(InternalArraySingleArgumentConstructor) \ V(InternalArraySingleArgumentConstructor) \
V(Dec) \
V(ElementsTransitionAndStore) \ V(ElementsTransitionAndStore) \
V(FastCloneRegExp) \ V(FastCloneRegExp) \
V(FastCloneShallowArray) \ V(FastCloneShallowArray) \
...@@ -731,22 +729,6 @@ class ModulusWithFeedbackStub final : public TurboFanCodeStub { ...@@ -731,22 +729,6 @@ class ModulusWithFeedbackStub final : public TurboFanCodeStub {
TurboFanCodeStub); TurboFanCodeStub);
}; };
class IncStub final : public TurboFanCodeStub {
public:
explicit IncStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(CountOp);
DEFINE_TURBOFAN_UNARY_OP_CODE_STUB_WITH_FEEDBACK(Inc, TurboFanCodeStub);
};
class DecStub final : public TurboFanCodeStub {
public:
explicit DecStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(CountOp);
DEFINE_TURBOFAN_UNARY_OP_CODE_STUB_WITH_FEEDBACK(Dec, TurboFanCodeStub);
};
class StoreInterceptorStub : public TurboFanCodeStub { class StoreInterceptorStub : public TurboFanCodeStub {
public: public:
explicit StoreInterceptorStub(Isolate* isolate) : TurboFanCodeStub(isolate) {} explicit StoreInterceptorStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
......
...@@ -1567,14 +1567,276 @@ void Interpreter::DoToObject(InterpreterAssembler* assembler) { ...@@ -1567,14 +1567,276 @@ void Interpreter::DoToObject(InterpreterAssembler* assembler) {
// //
// Increments value in the accumulator by one. // Increments value in the accumulator by one.
void Interpreter::DoInc(InterpreterAssembler* assembler) { void Interpreter::DoInc(InterpreterAssembler* assembler) {
DoUnaryOpWithFeedback<IncStub>(assembler); typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* value = __ GetAccumulator();
Node* context = __ GetContext();
Node* slot_index = __ BytecodeOperandIdx(0);
Node* type_feedback_vector = __ LoadTypeFeedbackVector();
// Shared entry for floating point increment.
Label do_finc(assembler), end(assembler);
Variable var_finc_value(assembler, MachineRepresentation::kFloat64);
// We might need to try again due to ToNumber conversion.
Variable value_var(assembler, MachineRepresentation::kTagged);
Variable result_var(assembler, MachineRepresentation::kTagged);
Variable var_type_feedback(assembler, MachineRepresentation::kWord32);
Variable* loop_vars[] = {&value_var, &var_type_feedback};
Label start(assembler, 2, loop_vars);
value_var.Bind(value);
var_type_feedback.Bind(
assembler->Int32Constant(BinaryOperationFeedback::kNone));
assembler->Goto(&start);
assembler->Bind(&start);
{
value = value_var.value();
Label if_issmi(assembler), if_isnotsmi(assembler);
assembler->Branch(assembler->TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
assembler->Bind(&if_issmi);
{
// Try fast Smi addition first.
Node* one = assembler->SmiConstant(Smi::FromInt(1));
Node* pair = assembler->IntPtrAddWithOverflow(
assembler->BitcastTaggedToWord(value),
assembler->BitcastTaggedToWord(one));
Node* overflow = assembler->Projection(1, pair);
// Check if the Smi addition overflowed.
Label if_overflow(assembler), if_notoverflow(assembler);
assembler->Branch(overflow, &if_overflow, &if_notoverflow);
assembler->Bind(&if_notoverflow);
var_type_feedback.Bind(assembler->Word32Or(
var_type_feedback.value(),
assembler->Int32Constant(BinaryOperationFeedback::kSignedSmall)));
result_var.Bind(
assembler->BitcastWordToTaggedSigned(assembler->Projection(0, pair)));
assembler->Goto(&end);
assembler->Bind(&if_overflow);
{
var_finc_value.Bind(assembler->SmiToFloat64(value));
assembler->Goto(&do_finc);
}
}
assembler->Bind(&if_isnotsmi);
{
// Check if the value is a HeapNumber.
Label if_valueisnumber(assembler),
if_valuenotnumber(assembler, Label::kDeferred);
Node* value_map = assembler->LoadMap(value);
assembler->Branch(assembler->IsHeapNumberMap(value_map),
&if_valueisnumber, &if_valuenotnumber);
assembler->Bind(&if_valueisnumber);
{
// Load the HeapNumber value.
var_finc_value.Bind(assembler->LoadHeapNumberValue(value));
assembler->Goto(&do_finc);
}
assembler->Bind(&if_valuenotnumber);
{
// We do not require an Or with earlier feedback here because once we
// convert the value to a number, we cannot reach this path. We can
// only reach this path on the first pass when the feedback is kNone.
CSA_ASSERT(assembler,
assembler->Word32Equal(var_type_feedback.value(),
assembler->Int32Constant(
BinaryOperationFeedback::kNone)));
Label if_valueisoddball(assembler), if_valuenotoddball(assembler);
Node* instance_type = assembler->LoadMapInstanceType(value_map);
Node* is_oddball = assembler->Word32Equal(
instance_type, assembler->Int32Constant(ODDBALL_TYPE));
assembler->Branch(is_oddball, &if_valueisoddball, &if_valuenotoddball);
assembler->Bind(&if_valueisoddball);
{
// Convert Oddball to Number and check again.
value_var.Bind(
assembler->LoadObjectField(value, Oddball::kToNumberOffset));
var_type_feedback.Bind(assembler->Int32Constant(
BinaryOperationFeedback::kNumberOrOddball));
assembler->Goto(&start);
}
assembler->Bind(&if_valuenotoddball);
{
// Convert to a Number first and try again.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_type_feedback.Bind(
assembler->Int32Constant(BinaryOperationFeedback::kAny));
value_var.Bind(assembler->CallStub(callable, context, value));
assembler->Goto(&start);
}
}
}
}
assembler->Bind(&do_finc);
{
Node* finc_value = var_finc_value.value();
Node* one = assembler->Float64Constant(1.0);
Node* finc_result = assembler->Float64Add(finc_value, one);
var_type_feedback.Bind(assembler->Word32Or(
var_type_feedback.value(),
assembler->Int32Constant(BinaryOperationFeedback::kNumber)));
result_var.Bind(assembler->AllocateHeapNumberWithValue(finc_result));
assembler->Goto(&end);
}
assembler->Bind(&end);
assembler->UpdateFeedback(var_type_feedback.value(), type_feedback_vector,
slot_index);
__ SetAccumulator(result_var.value());
__ Dispatch();
} }
// Dec // Dec
// //
// Decrements value in the accumulator by one. // Decrements value in the accumulator by one.
void Interpreter::DoDec(InterpreterAssembler* assembler) { void Interpreter::DoDec(InterpreterAssembler* assembler) {
DoUnaryOpWithFeedback<DecStub>(assembler); typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* value = __ GetAccumulator();
Node* context = __ GetContext();
Node* slot_index = __ BytecodeOperandIdx(0);
Node* type_feedback_vector = __ LoadTypeFeedbackVector();
// Shared entry for floating point decrement.
Label do_fdec(assembler), end(assembler);
Variable var_fdec_value(assembler, MachineRepresentation::kFloat64);
// We might need to try again due to ToNumber conversion.
Variable value_var(assembler, MachineRepresentation::kTagged);
Variable result_var(assembler, MachineRepresentation::kTagged);
Variable var_type_feedback(assembler, MachineRepresentation::kWord32);
Variable* loop_vars[] = {&value_var, &var_type_feedback};
Label start(assembler, 2, loop_vars);
var_type_feedback.Bind(
assembler->Int32Constant(BinaryOperationFeedback::kNone));
value_var.Bind(value);
assembler->Goto(&start);
assembler->Bind(&start);
{
value = value_var.value();
Label if_issmi(assembler), if_isnotsmi(assembler);
assembler->Branch(assembler->TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
assembler->Bind(&if_issmi);
{
// Try fast Smi subtraction first.
Node* one = assembler->SmiConstant(Smi::FromInt(1));
Node* pair = assembler->IntPtrSubWithOverflow(
assembler->BitcastTaggedToWord(value),
assembler->BitcastTaggedToWord(one));
Node* overflow = assembler->Projection(1, pair);
// Check if the Smi subtraction overflowed.
Label if_overflow(assembler), if_notoverflow(assembler);
assembler->Branch(overflow, &if_overflow, &if_notoverflow);
assembler->Bind(&if_notoverflow);
var_type_feedback.Bind(assembler->Word32Or(
var_type_feedback.value(),
assembler->Int32Constant(BinaryOperationFeedback::kSignedSmall)));
result_var.Bind(
assembler->BitcastWordToTaggedSigned(assembler->Projection(0, pair)));
assembler->Goto(&end);
assembler->Bind(&if_overflow);
{
var_fdec_value.Bind(assembler->SmiToFloat64(value));
assembler->Goto(&do_fdec);
}
}
assembler->Bind(&if_isnotsmi);
{
// Check if the value is a HeapNumber.
Label if_valueisnumber(assembler),
if_valuenotnumber(assembler, Label::kDeferred);
Node* value_map = assembler->LoadMap(value);
assembler->Branch(assembler->IsHeapNumberMap(value_map),
&if_valueisnumber, &if_valuenotnumber);
assembler->Bind(&if_valueisnumber);
{
// Load the HeapNumber value.
var_fdec_value.Bind(assembler->LoadHeapNumberValue(value));
assembler->Goto(&do_fdec);
}
assembler->Bind(&if_valuenotnumber);
{
// We do not require an Or with earlier feedback here because once we
// convert the value to a number, we cannot reach this path. We can
// only reach this path on the first pass when the feedback is kNone.
CSA_ASSERT(assembler,
assembler->Word32Equal(var_type_feedback.value(),
assembler->Int32Constant(
BinaryOperationFeedback::kNone)));
Label if_valueisoddball(assembler), if_valuenotoddball(assembler);
Node* instance_type = assembler->LoadMapInstanceType(value_map);
Node* is_oddball = assembler->Word32Equal(
instance_type, assembler->Int32Constant(ODDBALL_TYPE));
assembler->Branch(is_oddball, &if_valueisoddball, &if_valuenotoddball);
assembler->Bind(&if_valueisoddball);
{
// Convert Oddball to Number and check again.
value_var.Bind(
assembler->LoadObjectField(value, Oddball::kToNumberOffset));
var_type_feedback.Bind(assembler->Int32Constant(
BinaryOperationFeedback::kNumberOrOddball));
assembler->Goto(&start);
}
assembler->Bind(&if_valuenotoddball);
{
// Convert to a Number first and try again.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_type_feedback.Bind(
assembler->Int32Constant(BinaryOperationFeedback::kAny));
value_var.Bind(assembler->CallStub(callable, context, value));
assembler->Goto(&start);
}
}
}
}
assembler->Bind(&do_fdec);
{
Node* fdec_value = var_fdec_value.value();
Node* one = assembler->Float64Constant(1.0);
Node* fdec_result = assembler->Float64Sub(fdec_value, one);
var_type_feedback.Bind(assembler->Word32Or(
var_type_feedback.value(),
assembler->Int32Constant(BinaryOperationFeedback::kNumber)));
result_var.Bind(assembler->AllocateHeapNumberWithValue(fdec_result));
assembler->Goto(&end);
}
assembler->Bind(&end);
assembler->UpdateFeedback(var_type_feedback.value(), type_feedback_vector,
slot_index);
__ SetAccumulator(result_var.value());
__ Dispatch();
} }
// LogicalNot // LogicalNot
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment