Provide a helper to generate multiple Lithium instructions for one Hydrogen instruction.

R=jkummerow@chromium.org, ulan@chromium.org

Review URL: https://codereview.chromium.org/296993002

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@21465 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 7c55f645
......@@ -835,69 +835,76 @@ void LChunkBuilder::VisitInstruction(HInstruction* current) {
ASSERT(argument_count_ >= 0);
if (instr != NULL) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(current);
AddInstruction(instr, current);
}
current_instruction_ = old_current;
}
void LChunkBuilder::AddInstruction(LInstruction* instr,
HInstruction* hydrogen_val) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(hydrogen_val);
#if DEBUG
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, The register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, The register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
}
#endif
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = hydrogen_val;
LInstruction* instruction_needing_environment = NULL;
if (hydrogen_val->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(hydrogen_val->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = current;
LInstruction* instruction_needing_environment = NULL;
if (current->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(current->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
}
current_instruction_ = old_current;
}
......
......@@ -2837,6 +2837,7 @@ class LChunkBuilder V8_FINAL : public LChunkBuilderBase {
CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
void VisitInstruction(HInstruction* current);
void AddInstruction(LInstruction* instr, HInstruction* current);
void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr);
......
......@@ -679,69 +679,76 @@ void LChunkBuilder::VisitInstruction(HInstruction* current) {
ASSERT(argument_count_ >= 0);
if (instr != NULL) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(current);
AddInstruction(instr, current);
}
current_instruction_ = old_current;
}
void LChunkBuilder::AddInstruction(LInstruction* instr,
HInstruction* hydrogen_val) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(hydrogen_val);
#if DEBUG
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, the register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, the register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
}
#endif
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = hydrogen_val;
LInstruction* instruction_needing_environment = NULL;
if (hydrogen_val->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(hydrogen_val->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = current;
LInstruction* instruction_needing_environment = NULL;
if (current->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(current->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
}
current_instruction_ = old_current;
}
......
......@@ -3137,6 +3137,7 @@ class LChunkBuilder V8_FINAL : public LChunkBuilderBase {
LInstruction* AssignEnvironment(LInstruction* instr);
void VisitInstruction(HInstruction* current);
void AddInstruction(LInstruction* instr, HInstruction* current);
void DoBasicBlock(HBasicBlock* block);
int JSShiftAmountFromHConstant(HValue* constant) {
......
......@@ -889,69 +889,76 @@ void LChunkBuilder::VisitInstruction(HInstruction* current) {
ASSERT(argument_count_ >= 0);
if (instr != NULL) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(current);
AddInstruction(instr, current);
}
current_instruction_ = old_current;
}
void LChunkBuilder::AddInstruction(LInstruction* instr,
HInstruction* hydrogen_val) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(hydrogen_val);
#if DEBUG
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, The register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, The register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
}
#endif
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = hydrogen_val;
LInstruction* instruction_needing_environment = NULL;
if (hydrogen_val->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(hydrogen_val->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = current;
LInstruction* instruction_needing_environment = NULL;
if (current->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(current->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
}
current_instruction_ = old_current;
}
......
......@@ -2831,6 +2831,7 @@ class LChunkBuilder V8_FINAL : public LChunkBuilderBase {
CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
void VisitInstruction(HInstruction* current);
void AddInstruction(LInstruction* instr, HInstruction* current);
void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr);
......
......@@ -843,69 +843,76 @@ void LChunkBuilder::VisitInstruction(HInstruction* current) {
ASSERT(argument_count_ >= 0);
if (instr != NULL) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(current);
AddInstruction(instr, current);
}
current_instruction_ = old_current;
}
void LChunkBuilder::AddInstruction(LInstruction* instr,
HInstruction* hydrogen_val) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(hydrogen_val);
#if DEBUG
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, The register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, The register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
}
#endif
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = hydrogen_val;
LInstruction* instruction_needing_environment = NULL;
if (hydrogen_val->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(hydrogen_val->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = current;
LInstruction* instruction_needing_environment = NULL;
if (current->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(current->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
}
current_instruction_ = old_current;
}
......
......@@ -2792,6 +2792,7 @@ class LChunkBuilder V8_FINAL : public LChunkBuilderBase {
CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
void VisitInstruction(HInstruction* current);
void AddInstruction(LInstruction* instr, HInstruction* current);
void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
LInstruction* DoBit(Token::Value op, HBitwiseBinaryOperation* instr);
......
......@@ -856,69 +856,76 @@ void LChunkBuilder::VisitInstruction(HInstruction* current) {
ASSERT(argument_count_ >= 0);
if (instr != NULL) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(current);
AddInstruction(instr, current);
}
current_instruction_ = old_current;
}
void LChunkBuilder::AddInstruction(LInstruction* instr,
HInstruction* hydrogen_val) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(hydrogen_val);
#if DEBUG
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, The register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, The register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
}
#endif
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = hydrogen_val;
LInstruction* instruction_needing_environment = NULL;
if (hydrogen_val->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(hydrogen_val->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
chunk_->AddInstruction(instr, current_block_);
if (instr->IsCall()) {
HValue* hydrogen_value_for_lazy_bailout = current;
LInstruction* instruction_needing_environment = NULL;
if (current->HasObservableSideEffects()) {
HSimulate* sim = HSimulate::cast(current->next());
instruction_needing_environment = instr;
sim->ReplayEnvironment(current_block_->last_environment());
hydrogen_value_for_lazy_bailout = sim;
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
chunk_->AddInstruction(bailout, current_block_);
if (instruction_needing_environment != NULL) {
// Store the lazy deopt environment with the instruction if needed.
// Right now it is only used for LInstanceOfKnownGlobal.
instruction_needing_environment->
SetDeferredLazyDeoptimizationEnvironment(bailout->environment());
}
}
current_instruction_ = old_current;
}
......
......@@ -2806,6 +2806,7 @@ class LChunkBuilder V8_FINAL : public LChunkBuilderBase {
CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
void VisitInstruction(HInstruction* current);
void AddInstruction(LInstruction* instr, HInstruction* current);
void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment