Parametrize C++ splay tree with allocator.

Thus, now there is a "generic" SplayTree and its Zone-bound
specialization ZoneSplayTree.

This is needed for my reimplementation of profiler tree generation in
C++. As generation is performed in a separate thread, Zone can't be
used, because it intentionally not thread-safe.

Review URL: http://codereview.chromium.org/660280

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3990 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent aec90d09
......@@ -261,6 +261,8 @@ template<class Allocator = FreeStoreAllocationPolicy> class ScopeInfo;
class Script;
class Slot;
class Smi;
template <typename Config, class Allocator = FreeStoreAllocationPolicy>
class SplayTree;
class Statement;
class String;
class Struct;
......
......@@ -30,6 +30,7 @@
#include <math.h>
#include "splay-tree-inl.h"
#include "zone-inl.h"
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_SPLAY_TREE_INL_H_
#define V8_SPLAY_TREE_INL_H_
#include "splay-tree.h"
namespace v8 {
namespace internal {
template<typename Config, class Allocator>
SplayTree<Config, Allocator>::~SplayTree() {
NodeDeleter deleter;
ForEachNode(&deleter);
}
template<typename Config, class Allocator>
bool SplayTree<Config, Allocator>::Insert(const Key& key, Locator* locator) {
if (is_empty()) {
// If the tree is empty, insert the new node.
root_ = new Node(key, Config::kNoValue);
} else {
// Splay on the key to move the last node on the search path
// for the key to the root of the tree.
Splay(key);
// Ignore repeated insertions with the same key.
int cmp = Config::Compare(key, root_->key_);
if (cmp == 0) {
locator->bind(root_);
return false;
}
// Insert the new node.
Node* node = new Node(key, Config::kNoValue);
if (cmp > 0) {
node->left_ = root_;
node->right_ = root_->right_;
root_->right_ = NULL;
} else {
node->right_ = root_;
node->left_ = root_->left_;
root_->left_ = NULL;
}
root_ = node;
}
locator->bind(root_);
return true;
}
template<typename Config, class Allocator>
bool SplayTree<Config, Allocator>::Find(const Key& key, Locator* locator) {
if (is_empty())
return false;
Splay(key);
if (Config::Compare(key, root_->key_) == 0) {
locator->bind(root_);
return true;
} else {
return false;
}
}
template<typename Config, class Allocator>
bool SplayTree<Config, Allocator>::FindGreatestLessThan(const Key& key,
Locator* locator) {
if (is_empty())
return false;
// Splay on the key to move the node with the given key or the last
// node on the search path to the top of the tree.
Splay(key);
// Now the result is either the root node or the greatest node in
// the left subtree.
int cmp = Config::Compare(root_->key_, key);
if (cmp <= 0) {
locator->bind(root_);
return true;
} else {
Node* temp = root_;
root_ = root_->left_;
bool result = FindGreatest(locator);
root_ = temp;
return result;
}
}
template<typename Config, class Allocator>
bool SplayTree<Config, Allocator>::FindLeastGreaterThan(const Key& key,
Locator* locator) {
if (is_empty())
return false;
// Splay on the key to move the node with the given key or the last
// node on the search path to the top of the tree.
Splay(key);
// Now the result is either the root node or the least node in
// the right subtree.
int cmp = Config::Compare(root_->key_, key);
if (cmp >= 0) {
locator->bind(root_);
return true;
} else {
Node* temp = root_;
root_ = root_->right_;
bool result = FindLeast(locator);
root_ = temp;
return result;
}
}
template<typename Config, class Allocator>
bool SplayTree<Config, Allocator>::FindGreatest(Locator* locator) {
if (is_empty())
return false;
Node* current = root_;
while (current->right_ != NULL)
current = current->right_;
locator->bind(current);
return true;
}
template<typename Config, class Allocator>
bool SplayTree<Config, Allocator>::FindLeast(Locator* locator) {
if (is_empty())
return false;
Node* current = root_;
while (current->left_ != NULL)
current = current->left_;
locator->bind(current);
return true;
}
template<typename Config, class Allocator>
bool SplayTree<Config, Allocator>::Remove(const Key& key) {
// Bail if the tree is empty
if (is_empty())
return false;
// Splay on the key to move the node with the given key to the top.
Splay(key);
// Bail if the key is not in the tree
if (Config::Compare(key, root_->key_) != 0)
return false;
if (root_->left_ == NULL) {
// No left child, so the new tree is just the right child.
root_ = root_->right_;
} else {
// Left child exists.
Node* right = root_->right_;
// Make the original left child the new root.
root_ = root_->left_;
// Splay to make sure that the new root has an empty right child.
Splay(key);
// Insert the original right child as the right child of the new
// root.
root_->right_ = right;
}
return true;
}
template<typename Config, class Allocator>
void SplayTree<Config, Allocator>::Splay(const Key& key) {
if (is_empty())
return;
Node dummy_node(Config::kNoKey, Config::kNoValue);
// Create a dummy node. The use of the dummy node is a bit
// counter-intuitive: The right child of the dummy node will hold
// the L tree of the algorithm. The left child of the dummy node
// will hold the R tree of the algorithm. Using a dummy node, left
// and right will always be nodes and we avoid special cases.
Node* dummy = &dummy_node;
Node* left = dummy;
Node* right = dummy;
Node* current = root_;
while (true) {
int cmp = Config::Compare(key, current->key_);
if (cmp < 0) {
if (current->left_ == NULL)
break;
if (Config::Compare(key, current->left_->key_) < 0) {
// Rotate right.
Node* temp = current->left_;
current->left_ = temp->right_;
temp->right_ = current;
current = temp;
if (current->left_ == NULL)
break;
}
// Link right.
right->left_ = current;
right = current;
current = current->left_;
} else if (cmp > 0) {
if (current->right_ == NULL)
break;
if (Config::Compare(key, current->right_->key_) > 0) {
// Rotate left.
Node* temp = current->right_;
current->right_ = temp->left_;
temp->left_ = current;
current = temp;
if (current->right_ == NULL)
break;
}
// Link left.
left->right_ = current;
left = current;
current = current->right_;
} else {
break;
}
}
// Assemble.
left->right_ = current->left_;
right->left_ = current->right_;
current->left_ = dummy->right_;
current->right_ = dummy->left_;
root_ = current;
}
template <typename Config, class Allocator> template <class Callback>
void SplayTree<Config, Allocator>::ForEach(Callback* callback) {
NodeToPairAdaptor<Callback> callback_adaptor(callback);
ForEachNode(&callback_adaptor);
}
template <typename Config, class Allocator> template <class Callback>
void SplayTree<Config, Allocator>::ForEachNode(Callback* callback) {
// Pre-allocate some space for tiny trees.
List<Node*, Allocator> nodes_to_visit(10);
if (root_ != NULL) nodes_to_visit.Add(root_);
int pos = 0;
while (pos < nodes_to_visit.length()) {
Node* node = nodes_to_visit[pos++];
if (node->left() != NULL) nodes_to_visit.Add(node->left());
if (node->right() != NULL) nodes_to_visit.Add(node->right());
callback->Call(node);
}
}
} } // namespace v8::internal
#endif // V8_SPLAY_TREE_INL_H_
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_SPLAY_TREE_H_
#define V8_SPLAY_TREE_H_
namespace v8 {
namespace internal {
// A splay tree. The config type parameter encapsulates the different
// configurations of a concrete splay tree:
//
// typedef Key: the key type
// typedef Value: the value type
// static const kNoKey: the dummy key used when no key is set
// static const kNoValue: the dummy value used to initialize nodes
// int (Compare)(Key& a, Key& b) -> {-1, 0, 1}: comparison function
//
// The tree is also parameterized by an allocation policy
// (Allocator). The policy is used for allocating lists in the C free
// store or the zone; see zone.h.
// Forward defined as
// template <typename Config, class Allocator = FreeStoreAllocationPolicy>
// class SplayTree;
template <typename Config, class Allocator>
class SplayTree {
public:
typedef typename Config::Key Key;
typedef typename Config::Value Value;
class Locator;
SplayTree() : root_(NULL) { }
~SplayTree();
INLINE(void* operator new(size_t size)) {
return Allocator::New(static_cast<int>(size));
}
INLINE(void operator delete(void* p, size_t)) { return Allocator::Delete(p); }
// Inserts the given key in this tree with the given value. Returns
// true if a node was inserted, otherwise false. If found the locator
// is enabled and provides access to the mapping for the key.
bool Insert(const Key& key, Locator* locator);
// Looks up the key in this tree and returns true if it was found,
// otherwise false. If the node is found the locator is enabled and
// provides access to the mapping for the key.
bool Find(const Key& key, Locator* locator);
// Finds the mapping with the greatest key less than or equal to the
// given key.
bool FindGreatestLessThan(const Key& key, Locator* locator);
// Find the mapping with the greatest key in this tree.
bool FindGreatest(Locator* locator);
// Finds the mapping with the least key greater than or equal to the
// given key.
bool FindLeastGreaterThan(const Key& key, Locator* locator);
// Find the mapping with the least key in this tree.
bool FindLeast(Locator* locator);
// Remove the node with the given key from the tree.
bool Remove(const Key& key);
bool is_empty() { return root_ == NULL; }
// Perform the splay operation for the given key. Moves the node with
// the given key to the top of the tree. If no node has the given
// key, the last node on the search path is moved to the top of the
// tree.
void Splay(const Key& key);
class Node {
public:
Node(const Key& key, const Value& value)
: key_(key),
value_(value),
left_(NULL),
right_(NULL) { }
INLINE(void* operator new(size_t size)) {
return Allocator::New(static_cast<int>(size));
}
INLINE(void operator delete(void* p, size_t)) {
return Allocator::Delete(p);
}
Key key() { return key_; }
Value value() { return value_; }
Node* left() { return left_; }
Node* right() { return right_; }
private:
friend class SplayTree;
friend class Locator;
Key key_;
Value value_;
Node* left_;
Node* right_;
};
// A locator provides access to a node in the tree without actually
// exposing the node.
class Locator BASE_EMBEDDED {
public:
explicit Locator(Node* node) : node_(node) { }
Locator() : node_(NULL) { }
const Key& key() { return node_->key_; }
Value& value() { return node_->value_; }
void set_value(const Value& value) { node_->value_ = value; }
inline void bind(Node* node) { node_ = node; }
private:
Node* node_;
};
template <class Callback>
void ForEach(Callback* callback);
protected:
// Resets tree root. Existing nodes become unreachable.
void ResetRoot() { root_ = NULL; }
private:
template<class Callback>
class NodeToPairAdaptor BASE_EMBEDDED {
public:
explicit NodeToPairAdaptor(Callback* callback)
: callback_(callback) { }
void Call(Node* node) {
callback_->Call(node->key(), node->value());
}
private:
Callback* callback_;
DISALLOW_COPY_AND_ASSIGN(NodeToPairAdaptor);
};
class NodeDeleter BASE_EMBEDDED {
public:
NodeDeleter() { }
void Call(Node* node) { delete node; }
private:
DISALLOW_COPY_AND_ASSIGN(NodeDeleter);
};
template <class Callback>
void ForEachNode(Callback* callback);
Node* root_;
DISALLOW_COPY_AND_ASSIGN(SplayTree);
};
} } // namespace v8::internal
#endif // V8_SPLAY_TREE_H_
......@@ -68,227 +68,12 @@ void Zone::adjust_segment_bytes_allocated(int delta) {
}
template <typename C>
bool ZoneSplayTree<C>::Insert(const Key& key, Locator* locator) {
if (is_empty()) {
// If the tree is empty, insert the new node.
root_ = new Node(key, C::kNoValue);
} else {
// Splay on the key to move the last node on the search path
// for the key to the root of the tree.
Splay(key);
// Ignore repeated insertions with the same key.
int cmp = C::Compare(key, root_->key_);
if (cmp == 0) {
locator->bind(root_);
return false;
}
// Insert the new node.
Node* node = new Node(key, C::kNoValue);
if (cmp > 0) {
node->left_ = root_;
node->right_ = root_->right_;
root_->right_ = NULL;
} else {
node->right_ = root_;
node->left_ = root_->left_;
root_->left_ = NULL;
}
root_ = node;
}
locator->bind(root_);
return true;
}
template <typename C>
bool ZoneSplayTree<C>::Find(const Key& key, Locator* locator) {
if (is_empty())
return false;
Splay(key);
if (C::Compare(key, root_->key_) == 0) {
locator->bind(root_);
return true;
} else {
return false;
}
}
template <typename C>
bool ZoneSplayTree<C>::FindGreatestLessThan(const Key& key,
Locator* locator) {
if (is_empty())
return false;
// Splay on the key to move the node with the given key or the last
// node on the search path to the top of the tree.
Splay(key);
// Now the result is either the root node or the greatest node in
// the left subtree.
int cmp = C::Compare(root_->key_, key);
if (cmp <= 0) {
locator->bind(root_);
return true;
} else {
Node* temp = root_;
root_ = root_->left_;
bool result = FindGreatest(locator);
root_ = temp;
return result;
}
}
template <typename C>
bool ZoneSplayTree<C>::FindLeastGreaterThan(const Key& key,
Locator* locator) {
if (is_empty())
return false;
// Splay on the key to move the node with the given key or the last
// node on the search path to the top of the tree.
Splay(key);
// Now the result is either the root node or the least node in
// the right subtree.
int cmp = C::Compare(root_->key_, key);
if (cmp >= 0) {
locator->bind(root_);
return true;
} else {
Node* temp = root_;
root_ = root_->right_;
bool result = FindLeast(locator);
root_ = temp;
return result;
}
}
template <typename C>
bool ZoneSplayTree<C>::FindGreatest(Locator* locator) {
if (is_empty())
return false;
Node* current = root_;
while (current->right_ != NULL)
current = current->right_;
locator->bind(current);
return true;
}
template <typename C>
bool ZoneSplayTree<C>::FindLeast(Locator* locator) {
if (is_empty())
return false;
Node* current = root_;
while (current->left_ != NULL)
current = current->left_;
locator->bind(current);
return true;
}
template <typename C>
bool ZoneSplayTree<C>::Remove(const Key& key) {
// Bail if the tree is empty
if (is_empty())
return false;
// Splay on the key to move the node with the given key to the top.
Splay(key);
// Bail if the key is not in the tree
if (C::Compare(key, root_->key_) != 0)
return false;
if (root_->left_ == NULL) {
// No left child, so the new tree is just the right child.
root_ = root_->right_;
} else {
// Left child exists.
Node* right = root_->right_;
// Make the original left child the new root.
root_ = root_->left_;
// Splay to make sure that the new root has an empty right child.
Splay(key);
// Insert the original right child as the right child of the new
// root.
root_->right_ = right;
}
return true;
}
template <typename C>
void ZoneSplayTree<C>::Splay(const Key& key) {
if (is_empty())
return;
Node dummy_node(C::kNoKey, C::kNoValue);
// Create a dummy node. The use of the dummy node is a bit
// counter-intuitive: The right child of the dummy node will hold
// the L tree of the algorithm. The left child of the dummy node
// will hold the R tree of the algorithm. Using a dummy node, left
// and right will always be nodes and we avoid special cases.
Node* dummy = &dummy_node;
Node* left = dummy;
Node* right = dummy;
Node* current = root_;
while (true) {
int cmp = C::Compare(key, current->key_);
if (cmp < 0) {
if (current->left_ == NULL)
break;
if (C::Compare(key, current->left_->key_) < 0) {
// Rotate right.
Node* temp = current->left_;
current->left_ = temp->right_;
temp->right_ = current;
current = temp;
if (current->left_ == NULL)
break;
}
// Link right.
right->left_ = current;
right = current;
current = current->left_;
} else if (cmp > 0) {
if (current->right_ == NULL)
break;
if (C::Compare(key, current->right_->key_) > 0) {
// Rotate left.
Node* temp = current->right_;
current->right_ = temp->left_;
temp->left_ = current;
current = temp;
if (current->right_ == NULL)
break;
}
// Link left.
left->right_ = current;
left = current;
current = current->right_;
} else {
break;
}
}
// Assemble.
left->right_ = current->left_;
right->left_ = current->right_;
current->left_ = dummy->right_;
current->right_ = dummy->left_;
root_ = current;
}
template <typename Config> template <class Callback>
void ZoneSplayTree<Config>::ForEach(Callback* callback) {
// Pre-allocate some space for tiny trees.
ZoneList<Node*> nodes_to_visit(10);
nodes_to_visit.Add(root_);
int pos = 0;
while (pos < nodes_to_visit.length()) {
Node* node = nodes_to_visit[pos++];
if (node == NULL) continue;
callback->Call(node->key(), node->value());
nodes_to_visit.Add(node->left());
nodes_to_visit.Add(node->right());
}
template <typename Config>
ZoneSplayTree<Config>::~ZoneSplayTree() {
// Reset the root to avoid unneeded iteration over all tree nodes
// in the destructor. For a zone-allocated tree, nodes will be
// freed by the Zone.
SplayTree<Config, ZoneListAllocationPolicy>::ResetRoot();
}
......
......@@ -28,6 +28,7 @@
#include "v8.h"
#include "zone-inl.h"
#include "splay-tree-inl.h"
namespace v8 {
namespace internal {
......
......@@ -205,98 +205,14 @@ class ZoneScope BASE_EMBEDDED {
// A zone splay tree. The config type parameter encapsulates the
// different configurations of a concrete splay tree:
//
// typedef Key: the key type
// typedef Value: the value type
// static const kNoKey: the dummy key used when no key is set
// static const kNoValue: the dummy value used to initialize nodes
// int (Compare)(Key& a, Key& b) -> {-1, 0, 1}: comparison function
//
// different configurations of a concrete splay tree (see splay-tree.h).
// The tree itself and all its elements are allocated in the Zone.
template <typename Config>
class ZoneSplayTree : public ZoneObject {
class ZoneSplayTree: public SplayTree<Config, ZoneListAllocationPolicy> {
public:
typedef typename Config::Key Key;
typedef typename Config::Value Value;
class Locator;
ZoneSplayTree() : root_(NULL) { }
// Inserts the given key in this tree with the given value. Returns
// true if a node was inserted, otherwise false. If found the locator
// is enabled and provides access to the mapping for the key.
bool Insert(const Key& key, Locator* locator);
// Looks up the key in this tree and returns true if it was found,
// otherwise false. If the node is found the locator is enabled and
// provides access to the mapping for the key.
bool Find(const Key& key, Locator* locator);
// Finds the mapping with the greatest key less than or equal to the
// given key.
bool FindGreatestLessThan(const Key& key, Locator* locator);
// Find the mapping with the greatest key in this tree.
bool FindGreatest(Locator* locator);
// Finds the mapping with the least key greater than or equal to the
// given key.
bool FindLeastGreaterThan(const Key& key, Locator* locator);
// Find the mapping with the least key in this tree.
bool FindLeast(Locator* locator);
// Remove the node with the given key from the tree.
bool Remove(const Key& key);
bool is_empty() { return root_ == NULL; }
// Perform the splay operation for the given key. Moves the node with
// the given key to the top of the tree. If no node has the given
// key, the last node on the search path is moved to the top of the
// tree.
void Splay(const Key& key);
class Node : public ZoneObject {
public:
Node(const Key& key, const Value& value)
: key_(key),
value_(value),
left_(NULL),
right_(NULL) { }
Key key() { return key_; }
Value value() { return value_; }
Node* left() { return left_; }
Node* right() { return right_; }
private:
friend class ZoneSplayTree;
friend class Locator;
Key key_;
Value value_;
Node* left_;
Node* right_;
};
// A locator provides access to a node in the tree without actually
// exposing the node.
class Locator {
public:
explicit Locator(Node* node) : node_(node) { }
Locator() : node_(NULL) { }
const Key& key() { return node_->key_; }
Value& value() { return node_->value_; }
void set_value(const Value& value) { node_->value_ = value; }
inline void bind(Node* node) { node_ = node; }
private:
Node* node_;
};
template <class Callback>
void ForEach(Callback* callback);
private:
Node* root_;
ZoneSplayTree()
: SplayTree<Config, ZoneListAllocationPolicy>() {}
~ZoneSplayTree();
};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment