Commit 14755c0a authored by jacob.bramley's avatar jacob.bramley Committed by Commit bot

Revert of [arm64][turbofan]: Handle any immediate shift. (patchset #1 id:1 of...

Revert of [arm64][turbofan]: Handle any immediate shift. (patchset #1 id:1 of https://codereview.chromium.org/1179733004/)

Reason for revert:
Breaks InstructionSelectorTest.Word64ShrWithWord64AndWithImmediate on debug builds (but not optdebug builds). I'll investigate.

Original issue's description:
> [arm64][turbofan]: Handle any immediate shift.
>
> With this patch, we can generate simple immediate-shift instructions for
> immediates outside the range "0 <= imm < width". Several related
> instruction selectors have also been updated accordingly.
>
> Example of generated code:
>
>     ---- Before ---         ---- After ----
>     movz w0, #33            lsr w0, w1, #1
>     lsr  w0, w1, w0
>
> BUG=
>
> Committed: https://crrev.com/36d771bbfa4af5efcc1c1dcf5b234445cb7ee722
> Cr-Commit-Position: refs/heads/master@{#28943}

TBR=bmeurer@chromium.org,ulan@chromium.org
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=

Review URL: https://codereview.chromium.org/1176393002

Cr-Commit-Position: refs/heads/master@{#28944}
parent 36d771bb
...@@ -337,10 +337,9 @@ Condition FlagsConditionToCondition(FlagsCondition condition) { ...@@ -337,10 +337,9 @@ Condition FlagsConditionToCondition(FlagsCondition condition) {
__ asm_instr(i.OutputRegister##width(), i.InputRegister##width(0), \ __ asm_instr(i.OutputRegister##width(), i.InputRegister##width(0), \
i.InputRegister##width(1)); \ i.InputRegister##width(1)); \
} else { \ } else { \
uint32_t imm = \ int imm = \
static_cast<uint32_t>(i.InputOperand##width(1).ImmediateValue()); \ static_cast<int>(i.InputOperand##width(1).immediate().value()); \
__ asm_instr(i.OutputRegister##width(), i.InputRegister##width(0), \ __ asm_instr(i.OutputRegister##width(), i.InputRegister##width(0), imm); \
imm % (width)); \
} \ } \
} while (0) } while (0)
......
...@@ -37,31 +37,15 @@ class Arm64OperandGenerator final : public OperandGenerator { ...@@ -37,31 +37,15 @@ class Arm64OperandGenerator final : public OperandGenerator {
return UseRegister(node); return UseRegister(node);
} }
// Use the provided node if it has the required value, or create a
// TempImmediate otherwise.
InstructionOperand UseImmediateOrTemp(Node* node, int32_t value) {
if (GetIntegerConstantValue(node) == value) {
return UseImmediate(node);
}
return TempImmediate(value);
}
bool IsIntegerConstant(Node* node) {
return (node->opcode() == IrOpcode::kInt32Constant) ||
(node->opcode() == IrOpcode::kInt64Constant);
}
int64_t GetIntegerConstantValue(Node* node) {
if (node->opcode() == IrOpcode::kInt32Constant) {
return OpParameter<int32_t>(node);
}
DCHECK(node->opcode() == IrOpcode::kInt64Constant);
return OpParameter<int64_t>(node);
}
bool CanBeImmediate(Node* node, ImmediateMode mode) { bool CanBeImmediate(Node* node, ImmediateMode mode) {
return IsIntegerConstant(node) && int64_t value;
CanBeImmediate(GetIntegerConstantValue(node), mode); if (node->opcode() == IrOpcode::kInt32Constant)
value = OpParameter<int32_t>(node);
else if (node->opcode() == IrOpcode::kInt64Constant)
value = OpParameter<int64_t>(node);
else
return false;
return CanBeImmediate(value, mode);
} }
bool CanBeImmediate(int64_t value, ImmediateMode mode) { bool CanBeImmediate(int64_t value, ImmediateMode mode) {
...@@ -77,6 +61,10 @@ class Arm64OperandGenerator final : public OperandGenerator { ...@@ -77,6 +61,10 @@ class Arm64OperandGenerator final : public OperandGenerator {
&ignored, &ignored, &ignored); &ignored, &ignored, &ignored);
case kArithmeticImm: case kArithmeticImm:
return Assembler::IsImmAddSub(value); return Assembler::IsImmAddSub(value);
case kShift32Imm:
return 0 <= value && value < 32;
case kShift64Imm:
return 0 <= value && value < 64;
case kLoadStoreImm8: case kLoadStoreImm8:
return IsLoadStoreImmediate(value, LSByte); return IsLoadStoreImmediate(value, LSByte);
case kLoadStoreImm16: case kLoadStoreImm16:
...@@ -87,12 +75,6 @@ class Arm64OperandGenerator final : public OperandGenerator { ...@@ -87,12 +75,6 @@ class Arm64OperandGenerator final : public OperandGenerator {
return IsLoadStoreImmediate(value, LSDoubleWord); return IsLoadStoreImmediate(value, LSDoubleWord);
case kNoImmediate: case kNoImmediate:
return false; return false;
case kShift32Imm: // Fall through.
case kShift64Imm:
// Shift operations only observe the bottom 5 or 6 bits of the value.
// All possible shifts can be encoded by discarding bits which have no
// effect.
return true;
} }
return false; return false;
} }
...@@ -131,36 +113,47 @@ void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, Node* node, ...@@ -131,36 +113,47 @@ void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, Node* node,
} }
bool TryMatchAnyShift(InstructionSelector* selector, Node* node, template <typename Matcher>
InstructionCode* opcode, bool try_ror) { bool TryMatchShift(InstructionSelector* selector, Node* node,
InstructionCode* opcode, IrOpcode::Value shift_opcode,
ImmediateMode imm_mode, AddressingMode addressing_mode) {
if (node->opcode() != shift_opcode) return false;
Arm64OperandGenerator g(selector); Arm64OperandGenerator g(selector);
Matcher m(node);
if (node->InputCount() != 2) return false; if (g.CanBeImmediate(m.right().node(), imm_mode)) {
if (!g.IsIntegerConstant(node->InputAt(1))) return false; *opcode |= AddressingModeField::encode(addressing_mode);
switch (node->opcode()) {
case IrOpcode::kWord32Shl:
case IrOpcode::kWord64Shl:
*opcode |= AddressingModeField::encode(kMode_Operand2_R_LSL_I);
return true;
case IrOpcode::kWord32Shr:
case IrOpcode::kWord64Shr:
*opcode |= AddressingModeField::encode(kMode_Operand2_R_LSR_I);
return true;
case IrOpcode::kWord32Sar:
case IrOpcode::kWord64Sar:
*opcode |= AddressingModeField::encode(kMode_Operand2_R_ASR_I);
return true;
case IrOpcode::kWord32Ror:
case IrOpcode::kWord64Ror:
if (try_ror) {
*opcode |= AddressingModeField::encode(kMode_Operand2_R_ROR_I);
return true; return true;
} }
return false; return false;
default: }
return false;
}
bool TryMatchAnyShift(InstructionSelector* selector, Node* node,
InstructionCode* opcode, bool try_ror) {
return TryMatchShift<Int32BinopMatcher>(selector, node, opcode,
IrOpcode::kWord32Shl, kShift32Imm,
kMode_Operand2_R_LSL_I) ||
TryMatchShift<Int32BinopMatcher>(selector, node, opcode,
IrOpcode::kWord32Shr, kShift32Imm,
kMode_Operand2_R_LSR_I) ||
TryMatchShift<Int32BinopMatcher>(selector, node, opcode,
IrOpcode::kWord32Sar, kShift32Imm,
kMode_Operand2_R_ASR_I) ||
(try_ror && TryMatchShift<Int32BinopMatcher>(
selector, node, opcode, IrOpcode::kWord32Ror,
kShift32Imm, kMode_Operand2_R_ROR_I)) ||
TryMatchShift<Int64BinopMatcher>(selector, node, opcode,
IrOpcode::kWord64Shl, kShift64Imm,
kMode_Operand2_R_LSL_I) ||
TryMatchShift<Int64BinopMatcher>(selector, node, opcode,
IrOpcode::kWord64Shr, kShift64Imm,
kMode_Operand2_R_LSR_I) ||
TryMatchShift<Int64BinopMatcher>(selector, node, opcode,
IrOpcode::kWord64Sar, kShift64Imm,
kMode_Operand2_R_ASR_I) ||
(try_ror && TryMatchShift<Int64BinopMatcher>(
selector, node, opcode, IrOpcode::kWord64Ror,
kShift64Imm, kMode_Operand2_R_ROR_I));
} }
...@@ -555,20 +548,17 @@ void InstructionSelector::VisitWord32And(Node* node) { ...@@ -555,20 +548,17 @@ void InstructionSelector::VisitWord32And(Node* node) {
// Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least // Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least
// significant bits. // significant bits.
Int32BinopMatcher mleft(m.left().node()); Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) { if (mleft.right().IsInRange(0, 31)) {
// Any shift value can match; int32 shifts use `value % 32`.
uint32_t lsb = mleft.right().Value() & 0x1f;
// Ubfx cannot extract bits past the register size, however since // Ubfx cannot extract bits past the register size, however since
// shifting the original value would have introduced some zeros we can // shifting the original value would have introduced some zeros we can
// still use ubfx with a smaller mask and the remaining bits will be // still use ubfx with a smaller mask and the remaining bits will be
// zeros. // zeros.
uint32_t lsb = mleft.right().Value();
if (lsb + mask_width > 32) mask_width = 32 - lsb; if (lsb + mask_width > 32) mask_width = 32 - lsb;
Emit(kArm64Ubfx32, g.DefineAsRegister(node), Emit(kArm64Ubfx32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.UseRegister(mleft.left().node()),
g.UseImmediateOrTemp(mleft.right().node(), lsb), g.UseImmediate(mleft.right().node()), g.TempImmediate(mask_width));
g.TempImmediate(mask_width));
return; return;
} }
// Other cases fall through to the normal And operation. // Other cases fall through to the normal And operation.
...@@ -595,19 +585,17 @@ void InstructionSelector::VisitWord64And(Node* node) { ...@@ -595,19 +585,17 @@ void InstructionSelector::VisitWord64And(Node* node) {
// Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least // Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least
// significant bits. // significant bits.
Int64BinopMatcher mleft(m.left().node()); Int64BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) { if (mleft.right().IsInRange(0, 63)) {
// Any shift value can match; int64 shifts use `value % 64`.
uint32_t lsb = static_cast<uint32_t>(mleft.right().Value() & 0x3f);
// Ubfx cannot extract bits past the register size, however since // Ubfx cannot extract bits past the register size, however since
// shifting the original value would have introduced some zeros we can // shifting the original value would have introduced some zeros we can
// still use ubfx with a smaller mask and the remaining bits will be // still use ubfx with a smaller mask and the remaining bits will be
// zeros. // zeros.
uint64_t lsb = mleft.right().Value();
if (lsb + mask_width > 64) mask_width = 64 - lsb; if (lsb + mask_width > 64) mask_width = 64 - lsb;
Emit(kArm64Ubfx, g.DefineAsRegister(node), Emit(kArm64Ubfx, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.UseRegister(mleft.left().node()),
g.UseImmediateOrTemp(mleft.right().node(), lsb), g.UseImmediate(mleft.right().node()),
g.TempImmediate(static_cast<int32_t>(mask_width))); g.TempImmediate(static_cast<int32_t>(mask_width)));
return; return;
} }
...@@ -736,21 +724,20 @@ bool TryEmitBitfieldExtract32(InstructionSelector* selector, Node* node) { ...@@ -736,21 +724,20 @@ bool TryEmitBitfieldExtract32(InstructionSelector* selector, Node* node) {
void InstructionSelector::VisitWord32Shr(Node* node) { void InstructionSelector::VisitWord32Shr(Node* node) {
Int32BinopMatcher m(node); Int32BinopMatcher m(node);
if (m.left().IsWord32And() && m.right().HasValue()) { if (m.left().IsWord32And() && m.right().IsInRange(0, 31)) {
uint32_t lsb = m.right().Value() & 0x1f; uint32_t lsb = m.right().Value();
Int32BinopMatcher mleft(m.left().node()); Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) { if (mleft.right().HasValue()) {
uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
uint32_t mask_width = base::bits::CountPopulation32(mask);
uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
// Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is // Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is
// shifted into the least-significant bits. // shifted into the least-significant bits.
uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
unsigned mask_width = base::bits::CountPopulation32(mask);
unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_msb + mask_width + lsb) == 32) { if ((mask_msb + mask_width + lsb) == 32) {
Arm64OperandGenerator g(this); Arm64OperandGenerator g(this);
DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask)); DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
Emit(kArm64Ubfx32, g.DefineAsRegister(node), Emit(kArm64Ubfx32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
g.UseImmediateOrTemp(m.right().node(), lsb),
g.TempImmediate(mask_width)); g.TempImmediate(mask_width));
return; return;
} }
...@@ -763,23 +750,23 @@ void InstructionSelector::VisitWord32Shr(Node* node) { ...@@ -763,23 +750,23 @@ void InstructionSelector::VisitWord32Shr(Node* node) {
void InstructionSelector::VisitWord64Shr(Node* node) { void InstructionSelector::VisitWord64Shr(Node* node) {
Arm64OperandGenerator g(this);
Int64BinopMatcher m(node); Int64BinopMatcher m(node);
if (m.left().IsWord64And() && m.right().HasValue()) { if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
uint32_t lsb = m.right().Value() & 0x3f; uint64_t lsb = m.right().Value();
Int64BinopMatcher mleft(m.left().node()); Int64BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) { if (mleft.right().HasValue()) {
// Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is // Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is
// shifted into the least-significant bits. // shifted into the least-significant bits.
uint64_t mask = (mleft.right().Value() >> lsb) << lsb; uint64_t mask = (mleft.right().Value() >> lsb) << lsb;
unsigned mask_width = base::bits::CountPopulation64(mask); uint64_t mask_width = base::bits::CountPopulation64(mask);
unsigned mask_msb = base::bits::CountLeadingZeros64(mask); uint64_t mask_msb = base::bits::CountLeadingZeros64(mask);
if ((mask_msb + mask_width + lsb) == 64) { if ((mask_msb + mask_width + lsb) == 64) {
Arm64OperandGenerator g(this);
DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask)); DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask));
Emit(kArm64Ubfx, g.DefineAsRegister(node), Emit(kArm64Ubfx, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.UseRegister(mleft.left().node()),
g.UseImmediateOrTemp(m.right().node(), lsb), g.TempImmediate(static_cast<int32_t>(lsb)),
g.TempImmediate(mask_width)); g.TempImmediate(static_cast<int32_t>(mask_width)));
return; return;
} }
} }
......
...@@ -642,9 +642,7 @@ TEST_F(InstructionSelectorTest, AddShiftByImmediateOnLeft) { ...@@ -642,9 +642,7 @@ TEST_F(InstructionSelectorTest, AddShiftByImmediateOnLeft) {
if (shift.mi.machine_type != kMachInt32) continue; if (shift.mi.machine_type != kMachInt32) continue;
if (shift.mi.arch_opcode == kArm64Ror32) continue; if (shift.mi.arch_opcode == kArm64Ror32) continue;
// The available shift operand range is `0 <= imm < 32`, but we also test TRACED_FORRANGE(int, imm, 0, 31) {
// that immediates outside this range are handled properly (modulo-32).
TRACED_FORRANGE(int, imm, -32, 63) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32); StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.Int32Add)( m.Return((m.Int32Add)(
(m.*shift.mi.constructor)(m.Parameter(1), m.Int32Constant(imm)), (m.*shift.mi.constructor)(m.Parameter(1), m.Int32Constant(imm)),
...@@ -665,9 +663,7 @@ TEST_F(InstructionSelectorTest, AddShiftByImmediateOnLeft) { ...@@ -665,9 +663,7 @@ TEST_F(InstructionSelectorTest, AddShiftByImmediateOnLeft) {
if (shift.mi.machine_type != kMachInt64) continue; if (shift.mi.machine_type != kMachInt64) continue;
if (shift.mi.arch_opcode == kArm64Ror) continue; if (shift.mi.arch_opcode == kArm64Ror) continue;
// The available shift operand range is `0 <= imm < 64`, but we also test TRACED_FORRANGE(int, imm, 0, 63) {
// that immediates outside this range are handled properly (modulo-64).
TRACED_FORRANGE(int, imm, -64, 127) {
StreamBuilder m(this, kMachInt64, kMachInt64, kMachInt64); StreamBuilder m(this, kMachInt64, kMachInt64, kMachInt64);
m.Return((m.Int64Add)( m.Return((m.Int64Add)(
(m.*shift.mi.constructor)(m.Parameter(1), m.Int64Constant(imm)), (m.*shift.mi.constructor)(m.Parameter(1), m.Int64Constant(imm)),
...@@ -2206,17 +2202,14 @@ TEST_F(InstructionSelectorTest, Word64XorMinusOneWithParameter) { ...@@ -2206,17 +2202,14 @@ TEST_F(InstructionSelectorTest, Word64XorMinusOneWithParameter) {
TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) { TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) {
// The available shift operand range is `0 <= imm < 32`, but we also test TRACED_FORRANGE(int32_t, lsb, 1, 31) {
// that immediates outside this range are handled properly (modulo-32).
TRACED_FORRANGE(int32_t, shift, -32, 63) {
int32_t lsb = shift & 0x1f;
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) { TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
uint32_t jnk = rng()->NextInt(); uint32_t jnk = rng()->NextInt();
jnk >>= 32 - lsb; jnk >>= 32 - lsb;
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk; uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt32, kMachInt32); StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Shr(m.Word32And(m.Parameter(0), m.Int32Constant(msk)), m.Return(m.Word32Shr(m.Word32And(m.Parameter(0), m.Int32Constant(msk)),
m.Int32Constant(shift))); m.Int32Constant(lsb)));
Stream s = m.Build(); Stream s = m.Build();
ASSERT_EQ(1U, s.size()); ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode());
...@@ -2225,15 +2218,14 @@ TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) { ...@@ -2225,15 +2218,14 @@ TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) {
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2))); EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
} }
} }
TRACED_FORRANGE(int32_t, shift, -32, 63) { TRACED_FORRANGE(int32_t, lsb, 1, 31) {
int32_t lsb = shift & 0x1f;
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) { TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
uint32_t jnk = rng()->NextInt(); uint32_t jnk = rng()->NextInt();
jnk >>= 32 - lsb; jnk >>= 32 - lsb;
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk; uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt32, kMachInt32); StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(msk), m.Parameter(0)), m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(msk), m.Parameter(0)),
m.Int32Constant(shift))); m.Int32Constant(lsb)));
Stream s = m.Build(); Stream s = m.Build();
ASSERT_EQ(1U, s.size()); ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode());
...@@ -2246,10 +2238,7 @@ TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) { ...@@ -2246,10 +2238,7 @@ TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) {
TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) { TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) {
// The available shift operand range is `0 <= imm < 64`, but we also test TRACED_FORRANGE(int32_t, lsb, 1, 63) {
// that immediates outside this range are handled properly (modulo-64).
TRACED_FORRANGE(int32_t, shift, -64, 127) {
int32_t lsb = shift & 0x3f;
TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) { TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) {
uint64_t jnk = rng()->NextInt64(); uint64_t jnk = rng()->NextInt64();
jnk >>= 64 - lsb; jnk >>= 64 - lsb;
...@@ -2257,7 +2246,7 @@ TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) { ...@@ -2257,7 +2246,7 @@ TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) {
((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk; ((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt64, kMachInt64); StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64Shr(m.Word64And(m.Parameter(0), m.Int64Constant(msk)), m.Return(m.Word64Shr(m.Word64And(m.Parameter(0), m.Int64Constant(msk)),
m.Int64Constant(shift))); m.Int64Constant(lsb)));
Stream s = m.Build(); Stream s = m.Build();
ASSERT_EQ(1U, s.size()); ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode());
...@@ -2266,8 +2255,7 @@ TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) { ...@@ -2266,8 +2255,7 @@ TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) {
EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2))); EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2)));
} }
} }
TRACED_FORRANGE(int32_t, shift, -64, 127) { TRACED_FORRANGE(int32_t, lsb, 1, 63) {
int32_t lsb = shift & 0x3f;
TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) { TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) {
uint64_t jnk = rng()->NextInt64(); uint64_t jnk = rng()->NextInt64();
jnk >>= 64 - lsb; jnk >>= 64 - lsb;
...@@ -2275,7 +2263,7 @@ TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) { ...@@ -2275,7 +2263,7 @@ TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) {
((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk; ((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt64, kMachInt64); StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(msk), m.Parameter(0)), m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(msk), m.Parameter(0)),
m.Int64Constant(shift))); m.Int64Constant(lsb)));
Stream s = m.Build(); Stream s = m.Build();
ASSERT_EQ(1U, s.size()); ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode());
...@@ -2288,14 +2276,11 @@ TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) { ...@@ -2288,14 +2276,11 @@ TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) {
TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) { TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) {
// The available shift operand range is `0 <= imm < 32`, but we also test TRACED_FORRANGE(int32_t, lsb, 1, 31) {
// that immediates outside this range are handled properly (modulo-32).
TRACED_FORRANGE(int32_t, shift, -32, 63) {
int32_t lsb = shift & 0x1f;
TRACED_FORRANGE(int32_t, width, 1, 31) { TRACED_FORRANGE(int32_t, width, 1, 31) {
uint32_t msk = (1 << width) - 1; uint32_t msk = (1 << width) - 1;
StreamBuilder m(this, kMachInt32, kMachInt32); StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)), m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(lsb)),
m.Int32Constant(msk))); m.Int32Constant(msk)));
Stream s = m.Build(); Stream s = m.Build();
ASSERT_EQ(1U, s.size()); ASSERT_EQ(1U, s.size());
...@@ -2306,14 +2291,12 @@ TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) { ...@@ -2306,14 +2291,12 @@ TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) {
EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2))); EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2)));
} }
} }
TRACED_FORRANGE(int32_t, shift, -32, 63) { TRACED_FORRANGE(int32_t, lsb, 1, 31) {
int32_t lsb = shift & 0x1f;
TRACED_FORRANGE(int32_t, width, 1, 31) { TRACED_FORRANGE(int32_t, width, 1, 31) {
uint32_t msk = (1 << width) - 1; uint32_t msk = (1 << width) - 1;
StreamBuilder m(this, kMachInt32, kMachInt32); StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return( m.Return(m.Word32And(m.Int32Constant(msk),
m.Word32And(m.Int32Constant(msk), m.Word32Shr(m.Parameter(0), m.Int32Constant(lsb))));
m.Word32Shr(m.Parameter(0), m.Int32Constant(shift))));
Stream s = m.Build(); Stream s = m.Build();
ASSERT_EQ(1U, s.size()); ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode());
...@@ -2327,14 +2310,11 @@ TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) { ...@@ -2327,14 +2310,11 @@ TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) {
TEST_F(InstructionSelectorTest, Word64AndWithImmediateWithWord64Shr) { TEST_F(InstructionSelectorTest, Word64AndWithImmediateWithWord64Shr) {
// The available shift operand range is `0 <= imm < 64`, but we also test TRACED_FORRANGE(int64_t, lsb, 1, 63) {
// that immediates outside this range are handled properly (modulo-64).
TRACED_FORRANGE(int64_t, shift, -64, 127) {
int64_t lsb = shift & 0x3f;
TRACED_FORRANGE(int64_t, width, 1, 63) { TRACED_FORRANGE(int64_t, width, 1, 63) {
uint64_t msk = (V8_UINT64_C(1) << width) - 1; uint64_t msk = (V8_UINT64_C(1) << width) - 1;
StreamBuilder m(this, kMachInt64, kMachInt64); StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64And(m.Word64Shr(m.Parameter(0), m.Int64Constant(shift)), m.Return(m.Word64And(m.Word64Shr(m.Parameter(0), m.Int64Constant(lsb)),
m.Int64Constant(msk))); m.Int64Constant(msk)));
Stream s = m.Build(); Stream s = m.Build();
ASSERT_EQ(1U, s.size()); ASSERT_EQ(1U, s.size());
...@@ -2345,14 +2325,12 @@ TEST_F(InstructionSelectorTest, Word64AndWithImmediateWithWord64Shr) { ...@@ -2345,14 +2325,12 @@ TEST_F(InstructionSelectorTest, Word64AndWithImmediateWithWord64Shr) {
EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2))); EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2)));
} }
} }
TRACED_FORRANGE(int64_t, shift, -64, 127) { TRACED_FORRANGE(int64_t, lsb, 1, 63) {
int64_t lsb = shift & 0x3f;
TRACED_FORRANGE(int64_t, width, 1, 63) { TRACED_FORRANGE(int64_t, width, 1, 63) {
uint64_t msk = (V8_UINT64_C(1) << width) - 1; uint64_t msk = (V8_UINT64_C(1) << width) - 1;
StreamBuilder m(this, kMachInt64, kMachInt64); StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return( m.Return(m.Word64And(m.Int64Constant(msk),
m.Word64And(m.Int64Constant(msk), m.Word64Shr(m.Parameter(0), m.Int64Constant(lsb))));
m.Word64Shr(m.Parameter(0), m.Int64Constant(shift))));
Stream s = m.Build(); Stream s = m.Build();
ASSERT_EQ(1U, s.size()); ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode());
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment