Commit 088afd03 authored by floitschV8@gmail.com's avatar floitschV8@gmail.com

Revert grisu commits.

Review URL: http://codereview.chromium.org/804005

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4092 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 7c173eec
......@@ -63,7 +63,6 @@ SOURCES = {
full-codegen.cc
func-name-inferrer.cc
global-handles.cc
grisu3.cc
handles.cc
hashmap.cc
heap-profiler.cc
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_CACHED_POWERS_H_
#define V8_CACHED_POWERS_H_
#include "diy_fp.h"
namespace v8 {
namespace internal {
struct CachedPower {
uint64_t significand;
int16_t binary_exponent;
int16_t decimal_exponent;
};
// The following defines implement the interface between this file and the
// generated 'powers_ten.h'.
// GRISU_CACHE_NAME(1) contains all possible cached powers.
// GRISU_CACHE_NAME(i) contains GRISU_CACHE_NAME(1) where only every 'i'th
// element is kept. More formally GRISU_CACHE_NAME(i) contains the elements j*i
// with 0 <= j < k with k such that j*k < the size of GRISU_CACHE_NAME(1).
// The higher 'i' is the fewer elements we use.
// Given that there are less elements, the exponent-distance between two
// elements in the cache grows. The variable GRISU_CACHE_MAX_DISTANCE(i) stores
// the maximum distance between two elements.
#define GRISU_CACHE_STRUCT CachedPower
#define GRISU_CACHE_NAME(i) kCachedPowers##i
#define GRISU_CACHE_MAX_DISTANCE(i) kCachedPowersMaxDistance##i
#define GRISU_CACHE_OFFSET kCachedPowerOffset
#define GRISU_UINT64_C V8_2PART_UINT64_C
// The following include imports the precompiled cached powers.
#include "powers_ten.h" // NOLINT
static const double kD_1_LOG2_10 = 0.30102999566398114; // 1 / lg(10)
// We can't use a function since we reference variables depending on the 'i'.
// This way the compiler is able to see at compile time that only one
// cache-array variable is used and thus can remove all the others.
#define COMPUTE_FOR_CACHE(i) \
if (!found && (gamma - alpha + 1 >= GRISU_CACHE_MAX_DISTANCE(i))) { \
int kQ = DiyFp::kSignificandSize; \
int k = ceiling((alpha - e + kQ - 1) * kD_1_LOG2_10); \
int index = (GRISU_CACHE_OFFSET + k - 1) / i + 1; \
cached_power = GRISU_CACHE_NAME(i)[index]; \
found = true; \
} \
static void GetCachedPower(int e, int alpha, int gamma, int* mk, DiyFp* c_mk) {
// The following if statement should be optimized by the compiler so that only
// one array is referenced and the others are not included in the object file.
bool found = false;
CachedPower cached_power;
COMPUTE_FOR_CACHE(20);
COMPUTE_FOR_CACHE(19);
COMPUTE_FOR_CACHE(18);
COMPUTE_FOR_CACHE(17);
COMPUTE_FOR_CACHE(16);
COMPUTE_FOR_CACHE(15);
COMPUTE_FOR_CACHE(14);
COMPUTE_FOR_CACHE(13);
COMPUTE_FOR_CACHE(12);
COMPUTE_FOR_CACHE(11);
COMPUTE_FOR_CACHE(10);
COMPUTE_FOR_CACHE(9);
COMPUTE_FOR_CACHE(8);
COMPUTE_FOR_CACHE(7);
COMPUTE_FOR_CACHE(6);
COMPUTE_FOR_CACHE(5);
COMPUTE_FOR_CACHE(4);
COMPUTE_FOR_CACHE(3);
COMPUTE_FOR_CACHE(2);
COMPUTE_FOR_CACHE(1);
if (!found) {
UNIMPLEMENTED();
// Silence compiler warnings.
cached_power.significand = 0;
cached_power.binary_exponent = 0;
cached_power.decimal_exponent = 0;
}
*c_mk = DiyFp(cached_power.significand, cached_power.binary_exponent);
*mk = cached_power.decimal_exponent;
ASSERT((alpha <= c_mk->e() + e) && (c_mk->e() + e <= gamma));
}
#undef GRISU_REDUCTION
#undef GRISU_CACHE_STRUCT
#undef GRISU_CACHE_NAME
#undef GRISU_CACHE_MAX_DISTANCE
#undef GRISU_CACHE_OFFSET
#undef GRISU_UINT64_C
} } // namespace v8::internal
#endif // V8_CACHED_POWERS_H_
......@@ -80,7 +80,6 @@ static inline void CheckEqualsHelper(const char* file, int line,
}
}
// Helper function used by the CHECK_EQ function when given int64_t
// arguments. Should not be called directly.
static inline void CheckEqualsHelper(const char* file, int line,
......@@ -203,27 +202,6 @@ static inline void CheckEqualsHelper(const char* file,
}
static inline void CheckNonEqualsHelper(const char* file,
int line,
const char* expected_source,
double expected,
const char* value_source,
double value) {
// Force values to 64 bit memory to truncate 80 bit precision on IA32.
volatile double* exp = new double[1];
*exp = expected;
volatile double* val = new double[1];
*val = value;
if (*exp == *val) {
V8_Fatal(file, line,
"CHECK_NE(%s, %s) failed\n# Value: %f",
expected_source, value_source, *val);
}
delete[] exp;
delete[] val;
}
namespace v8 {
class Value;
template <class T> class Handle;
......
......@@ -31,7 +31,6 @@
#include "conversions-inl.h"
#include "factory.h"
#include "grisu3.h"
#include "scanner.h"
namespace v8 {
......@@ -383,17 +382,8 @@ const char* DoubleToCString(double v, Vector<char> buffer) {
int decimal_point;
int sign;
char* decimal_rep;
bool used_dtoa = false;
char grisu_buffer[kGrisu3MaximalLength + 1];
int length;
if (grisu3(v, grisu_buffer, &sign, &length, &decimal_point)) {
decimal_rep = grisu_buffer;
} else {
decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL);
used_dtoa = true;
length = StrLength(decimal_rep);
}
char* decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL);
int length = StrLength(decimal_rep);
if (sign) builder.AddCharacter('-');
......@@ -428,7 +418,7 @@ const char* DoubleToCString(double v, Vector<char> buffer) {
builder.AddFormatted("%d", exponent);
}
if (used_dtoa) freedtoa(decimal_rep);
freedtoa(decimal_rep);
}
}
return builder.Finalize();
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_DIY_FP_H_
#define V8_DIY_FP_H_
namespace v8 {
namespace internal {
// This "Do It Yourself Floating Point" class implements a floating-point number
// with a uint64 significand and an int exponent. Normalized DiyFp numbers will
// have the most significant bit of the significand set.
// Multiplication and Subtraction do not normalize their results.
// DiyFp are not designed to contain special doubles (NaN and Infinity).
class DiyFp {
public:
static const int kSignificandSize = 64;
DiyFp() : f_(0), e_(0) {}
DiyFp(uint64_t f, int e) : f_(f), e_(e) {}
// this = this - other.
// The exponents of both numbers must be the same and the significand of this
// must be bigger than the significand of other.
// The result will not be normalized.
void Subtract(const DiyFp& other) {
ASSERT(e_ == other.e_);
ASSERT(f_ >= other.f_);
f_ -= other.f_;
}
// Returns a - b.
// The exponents of both numbers must be the same and this must be bigger
// than other. The result will not be normalized.
static DiyFp Minus(const DiyFp& a, const DiyFp& b) {
DiyFp result = a;
result.Subtract(b);
return result;
}
// this = this * other.
void Multiply(const DiyFp& other) {
// Simply "emulates" a 128 bit multiplication.
// However: the resulting number only contains 64 bits. The least
// significant 64 bits are only used for rounding the most significant 64
// bits.
const uint64_t kM32 = 0xFFFFFFFFu;
uint64_t a = f_ >> 32;
uint64_t b = f_ & kM32;
uint64_t c = other.f_ >> 32;
uint64_t d = other.f_ & kM32;
uint64_t ac = a * c;
uint64_t bc = b * c;
uint64_t ad = a * d;
uint64_t bd = b * d;
uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32);
tmp += 1U << 31; // round
uint64_t result_f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32);
e_ += other.e_ + 64;
f_ = result_f;
}
// returns a * b;
static DiyFp Times(const DiyFp& a, const DiyFp& b) {
DiyFp result = a;
result.Multiply(b);
return result;
}
void Normalize() {
ASSERT(f_ != 0);
uint64_t f = f_;
int e = e_;
// This method is mainly called for normalizing boundaries. In general
// boundaries need to be shifted by 10 bits. We thus optimize for this case.
const uint64_t k10MSBits = V8_2PART_UINT64_C(0xFFC00000, 00000000);
while ((f & k10MSBits) == 0) {
f <<= 10;
e -= 10;
}
while ((f & kUint64MSB) == 0) {
f <<= 1;
e--;
}
f_ = f;
e_ = e;
}
static DiyFp Normalize(const DiyFp& a) {
DiyFp result = a;
result.Normalize();
return result;
}
uint64_t f() const { return f_; }
int e() const { return e_; }
void set_f(uint64_t new_value) { f_ = new_value; }
void set_e(int new_value) { e_ = new_value; }
private:
static const uint64_t kUint64MSB = V8_2PART_UINT64_C(0x80000000, 00000000);
uint64_t f_;
int e_;
};
} } // namespace v8::internal
#endif // V8_DIY_FP_H_
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_DOUBLE_H_
#define V8_DOUBLE_H_
#include "diy_fp.h"
namespace v8 {
namespace internal {
// We assume that doubles and uint64_t have the same endianness.
static uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); }
static double uint64_to_double(uint64_t d64) { return bit_cast<double>(d64); }
// Helper functions for doubles.
class Double {
public:
static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000);
static const uint64_t kSignificandMask =
V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
Double() : d64_(0.0) {}
explicit Double(double d) : d64_(double_to_uint64(d)) {}
explicit Double(uint64_t d64) : d64_(d64) {}
DiyFp AsDiyFp() const {
ASSERT(!IsSpecial());
return DiyFp(Significand(), Exponent());
}
// this->Significand() must not be 0.
DiyFp AsNormalizedDiyFp() const {
uint64_t f = Significand();
int e = Exponent();
ASSERT(f != 0);
// The current double could be a denormal.
while ((f & kHiddenBit) == 0) {
f <<= 1;
e--;
}
// Do the final shifts in one go. Don't forget the hidden bit (the '-1').
f <<= DiyFp::kSignificandSize - kSignificandSize - 1;
e -= DiyFp::kSignificandSize - kSignificandSize - 1;
return DiyFp(f, e);
}
// Returns the double's bit as uint64.
uint64_t AsUint64() const {
return d64_;
}
int Exponent() const {
if (IsDenormal()) return kDenormalExponent;
uint64_t d64 = AsUint64();
int biased_e = (d64 & kExponentMask) >> kSignificandSize;
return biased_e - kExponentBias;
}
uint64_t Significand() const {
uint64_t d64 = AsUint64();
uint64_t significand = d64 & kSignificandMask;
if (!IsDenormal()) {
return significand + kHiddenBit;
} else {
return significand;
}
}
// Returns true if the double is a denormal.
bool IsDenormal() const {
uint64_t d64 = AsUint64();
return (d64 & kExponentMask) == 0;
}
// We consider denormals not to be special.
// Hence only Infinity and NaN are special.
bool IsSpecial() const {
uint64_t d64 = AsUint64();
return (d64 & kExponentMask) == kExponentMask;
}
bool IsNan() const {
uint64_t d64 = AsUint64();
return ((d64 & kExponentMask) == kExponentMask) &&
((d64 & kSignificandMask) != 0);
}
bool IsInfinite() const {
uint64_t d64 = AsUint64();
return ((d64 & kExponentMask) == kExponentMask) &&
((d64 & kSignificandMask) == 0);
}
int Sign() const {
uint64_t d64 = AsUint64();
return (d64 & kSignMask) == 0? 1: -1;
}
// Returns the two boundaries of this.
// The bigger boundary (m_plus) is normalized. The lower boundary has the same
// exponent as m_plus.
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
DiyFp v = this->AsDiyFp();
bool significand_is_zero = (v.f() == kHiddenBit);
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
DiyFp m_minus;
if (significand_is_zero && v.e() != kDenormalExponent) {
// The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
// at a distance of 1e8.
// The only exception is for the smallest normal: the largest denormal is
// at the same distance as its successor.
// Note: denormals have the same exponent as the smallest normals.
m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
} else {
m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
}
m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
m_minus.set_e(m_plus.e());
*out_m_plus = m_plus;
*out_m_minus = m_minus;
}
double value() const { return uint64_to_double(d64_); }
private:
static const int kSignificandSize = 52; // Excludes the hidden bit.
static const int kExponentBias = 0x3FF + kSignificandSize;
static const int kDenormalExponent = -kExponentBias + 1;
uint64_t d64_;
};
} } // namespace v8::internal
#endif // V8_DOUBLE_H_
......@@ -98,11 +98,6 @@ typedef byte* Address;
#define V8_PTR_PREFIX ""
#endif // V8_HOST_ARCH_64_BIT
// The following macro works on both 32 and 64-bit platforms.
// Usage: instead of writing 0x1234567890123456
// write V8_2PART_UINT64_C(0x12345678,90123456);
#define V8_2PART_UINT64_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
#define V8PRIxPTR V8_PTR_PREFIX "x"
#define V8PRIdPTR V8_PTR_PREFIX "d"
......
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "grisu3.h"
#include "cached_powers.h"
#include "diy_fp.h"
#include "double.h"
namespace v8 {
namespace internal {
template <int alpha = -60, int gamma = -32>
class Grisu3 {
public:
// Provides a decimal representation of v.
// Returns true if it succeeds, otherwise the result can not be trusted.
// There will be *length digits inside the buffer (not null-terminated).
// If the function returns true then
// v == (double) (buffer * 10^decimal_exponent).
// The digits in the buffer are the shortest representation possible: no
// 0.099999999999 instead of 0.1.
// The last digit will be closest to the actual v. That is, even if several
// digits might correctly yield 'v' when read again, the closest will be
// computed.
static bool grisu3(double v,
char* buffer, int* length, int* decimal_exponent);
private:
// Rounds the buffer according to the rest.
// If there is too much imprecision to round then false is returned.
// Similarily false is returned when the buffer is not within Delta.
static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta,
uint64_t rest, uint64_t ten_kappa, uint64_t ulp);
// Dispatches to the a specialized digit-generation routine. The chosen
// routine depends on w.e (which in turn depends on alpha and gamma).
// Currently there is only one digit-generation routine, but it would be easy
// to add others.
static bool DigitGen(DiyFp low, DiyFp w, DiyFp high,
char* buffer, int* len, int* kappa);
// Generates w's digits. The result is the shortest in the interval low-high.
// All DiyFp are assumed to be imprecise and this function takes this
// imprecision into account. If the function cannot compute the best
// representation (due to the imprecision) then false is returned.
static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high,
char* buffer, int* length, int* kappa);
};
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::grisu3(
double v, char* buffer, int* length, int* decimal_exponent) {
DiyFp w = Double(v).AsNormalizedDiyFp();
// boundary_minus and boundary_plus are the boundaries between v and its
// neighbors. Any number strictly between boundary_minus and boundary_plus
// will round to v when read as double.
// Grisu3 will never output representations that lie exactly on a boundary.
DiyFp boundary_minus, boundary_plus;
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
ASSERT(boundary_plus.e() == w.e());
DiyFp ten_mk; // Cached power of ten: 10^-k
int mk; // -k
GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk);
ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize &&
gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize);
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
// off by a small amount.
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
DiyFp scaled_w = DiyFp::Times(w, ten_mk);
ASSERT(scaled_w.e() ==
boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
// In theory it would be possible to avoid some recomputations by computing
// the difference between w and boundary_minus/plus (a power of 2) and to
// compute scaled_boundary_minus/plus by subtracting/adding from
// scaled_w. However the code becomes much less readable and the speed
// enhancements are not terriffic.
DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
// DigitGen will generate the digits of scaled_w. Therefore we have
// v == (double) (scaled_w * 10^-mk).
// Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
// integer than it will be updated. For instance if scaled_w == 1.23 then
// the buffer will be filled with "123" und the decimal_exponent will be
// decreased by 2.
int kappa;
bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
buffer, length, &kappa);
*decimal_exponent = -mk + kappa;
return result;
}
// Generates the digits of input number w.
// w is a floating-point number (DiyFp), consisting of a significand and an
// exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63
// and gamma <= 3.
// Returns false if it fails, in which case the generated digits in the buffer
// should not be used.
// Preconditions:
// * low, w and high are correct up to 1 ulp (unit in the last place). That
// is, their error must be less that a unit of their last digits.
// * low.e() == w.e() == high.e()
// * low < w < high, and taking into account their error: low~ <= high~
// * alpha <= w.e() <= gamma
// Postconditions: returns false if procedure fails.
// otherwise:
// * buffer is not null-terminated, but len contains the number of digits.
// * buffer contains the shortest possible decimal digit-sequence
// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
// correct values of low and high (without their error).
// * if more than one decimal representation gives the minimal number of
// decimal digits then the one closest to W (where W is the correct value
// of w) is chosen.
// Remark: this procedure takes into account the imprecision of its input
// numbers. If the precision is not enough to guarantee all the postconditions
// then false is returned. This usually happens rarely (~0.5%).
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::DigitGen(
DiyFp low, DiyFp w, DiyFp high, char* buffer, int* len, int* kappa) {
ASSERT(low.e() == w.e() && w.e() == high.e());
ASSERT(low.f() + 1 <= high.f() - 1);
ASSERT(alpha <= w.e() && w.e() <= gamma);
// The following tests use alpha and gamma to avoid unnecessary dynamic tests.
if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32
(alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region.
-60 <= w.e() && w.e() <= -32)) {
return DigitGen_m60_m32(low, w, high, buffer, len, kappa);
} else {
// A simple adaption of the special case -60/-32 would allow greater ranges
// of alpha/gamma and thus reduce the number of precomputed cached powers of
// ten.
UNIMPLEMENTED();
return false;
}
}
static const uint32_t kTen4 = 10000;
static const uint32_t kTen5 = 100000;
static const uint32_t kTen6 = 1000000;
static const uint32_t kTen7 = 10000000;
static const uint32_t kTen8 = 100000000;
static const uint32_t kTen9 = 1000000000;
// Returns the biggest power of ten that is <= than the given number. We
// furthermore receive the maximum number of bits 'number' has.
// If number_bits == 0 then 0^-1 is returned
// The number of bits must be <= 32.
static void BiggestPowerTen(uint32_t number, int number_bits,
uint32_t* power, int* exponent) {
switch (number_bits) {
case 32:
case 31:
case 30:
if (kTen9 <= number) {
*power = kTen9;
*exponent = 9;
break;
} // else fallthrough
case 29:
case 28:
case 27:
if (kTen8 <= number) {
*power = kTen8;
*exponent = 8;
break;
} // else fallthrough
case 26:
case 25:
case 24:
if (kTen7 <= number) {
*power = kTen7;
*exponent = 7;
break;
} // else fallthrough
case 23:
case 22:
case 21:
case 20:
if (kTen6 <= number) {
*power = kTen6;
*exponent = 6;
break;
} // else fallthrough
case 19:
case 18:
case 17:
if (kTen5 <= number) {
*power = kTen5;
*exponent = 5;
break;
} // else fallthrough
case 16:
case 15:
case 14:
if (kTen4 <= number) {
*power = kTen4;
*exponent = 4;
break;
} // else fallthrough
case 13:
case 12:
case 11:
case 10:
if (1000 <= number) {
*power = 1000;
*exponent = 3;
break;
} // else fallthrough
case 9:
case 8:
case 7:
if (100 <= number) {
*power = 100;
*exponent = 2;
break;
} // else fallthrough
case 6:
case 5:
case 4:
if (10 <= number) {
*power = 10;
*exponent = 1;
break;
} // else fallthrough
case 3:
case 2:
case 1:
if (1 <= number) {
*power = 1;
*exponent = 0;
break;
} // else fallthrough
case 0:
*power = 0;
*exponent = -1;
break;
default:
// Following assignments are here to silence compiler warnings.
*power = 0;
*exponent = 0;
UNREACHABLE();
}
}
// Same comments as for DigitGen but with additional precondition:
// -60 <= w.e() <= -32
//
// Say, for the sake of example, that
// w.e() == -48, and w.f() == 0x1234567890abcdef
// w's value can be computed by w.f() * 2^w.e()
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
// -> w's integral part is 0x1234
// w's fractional part is therefore 0x567890abcdef.
// Printing w's integral part is easy (simply print 0x1234 in decimal).
// In order to print its fraction we repeatedly multiply the fraction by 10 and
// get each digit. Example the first digit after the comma would be computed by
// (0x567890abcdef * 10) >> 48. -> 3
// The whole thing becomes slightly more complicated because we want to stop
// once we have enough digits. That is, once the digits inside the buffer
// represent 'w' we can stop. Everything inside the interval low - high
// represents w. However we have to pay attention to low, high and w's
// imprecision.
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::DigitGen_m60_m32(
DiyFp low, DiyFp w, DiyFp high, char* buffer, int* length, int* kappa) {
// low, w and high are imprecise, but by less than one ulp (unit in the last
// place).
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
// the new numbers are outside of the interval we want the final
// representation to lie in.
// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
// numbers that are certain to lie in the interval. We will use this fact
// later on.
// We will now start by generating the digits within the uncertain
// interval. Later we will weed out representations that lie outside the safe
// interval and thus _might_ lie outside the correct interval.
uint64_t unit = 1;
DiyFp too_low = DiyFp(low.f() - unit, low.e());
DiyFp too_high = DiyFp(high.f() + unit, high.e());
// too_low and too_high are guaranteed to lie outside the interval we want the
// generated number in.
DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
// We now cut the input number into two parts: the integral digits and the
// fractionals. We will not write any decimal separator though, but adapt
// kappa instead.
// Reminder: we are currently computing the digits (stored inside the buffer)
// such that: too_low < buffer * 10^kappa < too_high
// We use too_high for the digit_generation and stop as soon as possible.
// If we stop early we effectively round down.
DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
uint32_t integrals = too_high.f() >> -one.e(); // Division by one.
uint64_t fractionals = too_high.f() & (one.f() - 1); // Modulo by one.
uint32_t divider;
int divider_exponent;
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
&divider, &divider_exponent);
*kappa = divider_exponent + 1;
*length = 0;
// Loop invariant: buffer = too_high / 10^kappa (integer division)
// The invariant holds for the first iteration: kappa has been initialized
// with the divider exponent + 1. And the divider is the biggest power of ten
// that fits into the bits that had been reserved for the integrals.
while (*kappa > 0) {
int digit = integrals / divider;
buffer[*length] = '0' + digit;
(*length)++;
integrals %= divider;
(*kappa)--;
// Note that kappa now equals the exponent of the divider and that the
// invariant thus holds again.
uint64_t rest =
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
// Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
// Reminder: unsafe_interval.e() == one.e()
if (rest < unsafe_interval.f()) {
// Rounding down (by not emitting the remaining digits) yields a number
// that lies within the unsafe interval.
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
unsafe_interval.f(), rest,
static_cast<uint64_t>(divider) << -one.e(), unit);
}
divider /= 10;
}
// The integrals have been generated. We are at the point of the decimal
// separator. In the following loop we simply multiply the remaining digits by
// 10 and divide by one. We just need to pay attention to multiply associated
// data (like the interval or 'unit'), too.
// Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
// increase its (imaginary) exponent. At the same time we decrease the
// divider's (one's) exponent and shift its significand.
// Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
// fractionals.f *= 10;
// fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
// one.f >>= 1; one.e++; // value remains unchanged.
// and we have again fractionals.e == one.e which allows us to divide
// fractionals.f() by one.f()
// We simply combine the *= 10 and the >>= 1.
while (true) {
fractionals *= 5;
unit *= 5;
unsafe_interval.set_f(unsafe_interval.f() * 5);
unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out.
one.set_f(one.f() >> 1);
one.set_e(one.e() + 1);
int digit = fractionals >> -one.e(); // Integer division by one.
buffer[*length] = '0' + digit;
(*length)++;
fractionals &= one.f() - 1; // Modulo by one.
(*kappa)--;
if (fractionals < unsafe_interval.f()) {
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
unsafe_interval.f(), fractionals, one.f(), unit);
}
}
}
// Rounds the given generated digits in the buffer and weeds out generated
// digits that are not in the safe interval, or where we cannot find a rounded
// representation.
// Input: * buffer containing the digits of too_high / 10^kappa
// * the buffer's length
// * distance_too_high_w == (too_high - w).f() * unit
// * unsafe_interval == (too_high - too_low).f() * unit
// * rest = (too_high - buffer * 10^kappa).f() * unit
// * ten_kappa = 10^kappa * unit
// * unit = the common multiplier
// Output: returns true on success.
// Modifies the generated digits in the buffer to approach (round towards) w.
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::RoundWeed(
char* buffer, int length, uint64_t distance_too_high_w,
uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa,
uint64_t unit) {
uint64_t small_distance = distance_too_high_w - unit;
uint64_t big_distance = distance_too_high_w + unit;
// Let w- = too_high - big_distance, and
// w+ = too_high - small_distance.
// Note: w- < w < w+
//
// The real w (* unit) must lie somewhere inside the interval
// ]w-; w+[ (often written as "(w-; w+)")
// Basically the buffer currently contains a number in the unsafe interval
// ]too_low; too_high[ with too_low < w < too_high
//
// By generating the digits of too_high we got the biggest last digit.
// In the case that w+ < buffer < too_high we try to decrement the buffer.
// This way the buffer approaches (rounds towards) w.
// There are 3 conditions that stop the decrementation process:
// 1) the buffer is already below w+
// 2) decrementing the buffer would make it leave the unsafe interval
// 3) decrementing the buffer would yield a number below w+ and farther away
// than the current number. In other words:
// (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+
// Instead of using the buffer directly we use its distance to too_high.
// Conceptually rest ~= too_high - buffer
while (rest < small_distance && // Negated condition 1
unsafe_interval - rest >= ten_kappa && // Negated condition 2
(rest + ten_kappa < small_distance || // buffer{-1} > w+
small_distance - rest >= rest + ten_kappa - small_distance)) {
buffer[length - 1]--;
rest += ten_kappa;
}
// We have approached w+ as much as possible. We now test if approaching w-
// would require changing the buffer. If yes, then we have two possible
// representations close to w, but we cannot decide which one is closer.
if (rest < big_distance &&
unsafe_interval - rest >= ten_kappa &&
(rest + ten_kappa < big_distance ||
big_distance - rest > rest + ten_kappa - big_distance)) {
return false;
}
// Weeding test.
// The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
// Since too_low = too_high - unsafe_interval this is equivalent too
// [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
// Conceptually we have: rest ~= too_high - buffer
return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
}
bool grisu3(double v,
char* buffer, int* sign, int* length, int* decimal_point) {
ASSERT(v != 0);
ASSERT(!Double(v).IsSpecial());
if (v < 0) {
v = -v;
*sign = 1;
} else {
*sign = 0;
}
int decimal_exponent;
bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &decimal_exponent);
*decimal_point = *length + decimal_exponent;
buffer[*length] = '\0';
return result;
}
} } // namespace v8::internal
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_GRISU3_H_
#define V8_GRISU3_H_
namespace v8 {
namespace internal {
// Grisu3 will produce at most kGrisu3MaximalLength digits. This does not
// include the terminating '\0' character.
static const int kGrisu3MaximalLength = 17;
// Provides a decimal representation of v.
// v must satisfy v != 0 and it must not be Infinity or NaN.
// Returns true if it succeeds, otherwise the result can not be trusted.
// There will be *length digits inside the buffer followed by a null terminator.
// If the function returns true then
// v == (double) (buffer * 10^(decimal-point - length)).
// The digits in the buffer are the shortest representation possible: no
// 0.099999999999 instead of 0.1.
// The last digit will be closest to the actual v. That is, even if several
// digits might correctly yield 'v' when read again, the buffer will contain the
// one closest to v.
// The variable 'sign' will be '0' if the given number is positive, and '1'
// otherwise.
bool grisu3(double d, char* buffer, int* sign, int* length, int* decimal_point);
} } // namespace v8::internal
#endif // V8_GRISU3_H_
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -43,11 +43,8 @@ SOURCES = {
'test-dataflow.cc',
'test-debug.cc',
'test-decls.cc',
'test-diy_fp.cc',
'test-double.cc',
'test-flags.cc',
'test-func-name-inference.cc',
'test-grisu3.cc',
'test-hashmap.cc',
'test-heap.cc',
'test-heap-profiler.cc',
......
// Copyright 2006-2008 the V8 project authors. All rights reserved.
#include <stdlib.h>
#include "v8.h"
#include "platform.h"
#include "cctest.h"
#include "diy_fp.h"
using namespace v8::internal;
TEST(Subtract) {
DiyFp diy_fp1 = DiyFp(3, 0);
DiyFp diy_fp2 = DiyFp(1, 0);
DiyFp diff = DiyFp::Minus(diy_fp1, diy_fp2);
CHECK(2 == diff.f());
CHECK_EQ(0, diff.e());
diy_fp1.Subtract(diy_fp2);
CHECK(2 == diy_fp1.f());
CHECK_EQ(0, diy_fp1.e());
}
TEST(Multiply) {
DiyFp diy_fp1 = DiyFp(3, 0);
DiyFp diy_fp2 = DiyFp(2, 0);
DiyFp product = DiyFp::Times(diy_fp1, diy_fp2);
CHECK(0 == product.f());
CHECK_EQ(64, product.e());
diy_fp1.Multiply(diy_fp2);
CHECK(0 == diy_fp1.f());
CHECK_EQ(64, diy_fp1.e());
diy_fp1 = DiyFp(V8_2PART_UINT64_C(0x80000000, 00000000), 11);
diy_fp2 = DiyFp(2, 13);
product = DiyFp::Times(diy_fp1, diy_fp2);
CHECK(1 == product.f());
CHECK_EQ(11 + 13 + 64, product.e());
// Test rounding.
diy_fp1 = DiyFp(V8_2PART_UINT64_C(0x80000000, 00000001), 11);
diy_fp2 = DiyFp(1, 13);
product = DiyFp::Times(diy_fp1, diy_fp2);
CHECK(1 == product.f());
CHECK_EQ(11 + 13 + 64, product.e());
diy_fp1 = DiyFp(V8_2PART_UINT64_C(0x7fffffff, ffffffff), 11);
diy_fp2 = DiyFp(1, 13);
product = DiyFp::Times(diy_fp1, diy_fp2);
CHECK(0 == product.f());
CHECK_EQ(11 + 13 + 64, product.e());
// Halfway cases are allowed to round either way. So don't check for it.
// Big numbers.
diy_fp1 = DiyFp(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF), 11);
diy_fp2 = DiyFp(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF), 13);
// 128bit result: 0xfffffffffffffffe0000000000000001
product = DiyFp::Times(diy_fp1, diy_fp2);
CHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFe) == product.f());
CHECK_EQ(11 + 13 + 64, product.e());
}
// Copyright 2006-2008 the V8 project authors. All rights reserved.
#include <stdlib.h>
#include "v8.h"
#include "platform.h"
#include "cctest.h"
#include "diy_fp.h"
#include "double.h"
using namespace v8::internal;
TEST(Uint64Conversions) {
// Start by checking the byte-order.
uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
CHECK_EQ(3512700564088504e-318, Double(ordered).value());
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
CHECK_EQ(5e-324, Double(min_double64).value());
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
CHECK_EQ(1.7976931348623157e308, Double(max_double64).value());
}
TEST(AsDiyFp) {
uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
DiyFp diy_fp = Double(ordered).AsDiyFp();
CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e());
// The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64.
CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f());
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
diy_fp = Double(min_double64).AsDiyFp();
CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e());
// This is a denormal; so no hidden bit.
CHECK(1 == diy_fp.f());
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
diy_fp = Double(max_double64).AsDiyFp();
CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e());
CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f());
}
TEST(AsNormalizedDiyFp) {
uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp();
CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e());
CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) == diy_fp.f());
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
diy_fp = Double(min_double64).AsNormalizedDiyFp();
CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e());
// This is a denormal; so no hidden bit.
CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f());
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
diy_fp = Double(max_double64).AsNormalizedDiyFp();
CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e());
CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) == diy_fp.f());
}
TEST(IsDenormal) {
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
CHECK(Double(min_double64).IsDenormal());
uint64_t bits = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
CHECK(Double(bits).IsDenormal());
bits = V8_2PART_UINT64_C(0x00100000, 00000000);
CHECK(!Double(bits).IsDenormal());
}
TEST(IsSpecial) {
CHECK(Double(V8_INFINITY).IsSpecial());
CHECK(Double(-V8_INFINITY).IsSpecial());
CHECK(Double(OS::nan_value()).IsSpecial());
uint64_t bits = V8_2PART_UINT64_C(0xFFF12345, 00000000);
CHECK(Double(bits).IsSpecial());
// Denormals are not special:
CHECK(!Double(5e-324).IsSpecial());
CHECK(!Double(-5e-324).IsSpecial());
// And some random numbers:
CHECK(!Double(0.0).IsSpecial());
CHECK(!Double(-0.0).IsSpecial());
CHECK(!Double(1.0).IsSpecial());
CHECK(!Double(-1.0).IsSpecial());
CHECK(!Double(1000000.0).IsSpecial());
CHECK(!Double(-1000000.0).IsSpecial());
CHECK(!Double(1e23).IsSpecial());
CHECK(!Double(-1e23).IsSpecial());
CHECK(!Double(1.7976931348623157e308).IsSpecial());
CHECK(!Double(-1.7976931348623157e308).IsSpecial());
}
TEST(IsInfinite) {
CHECK(Double(V8_INFINITY).IsInfinite());
CHECK(Double(-V8_INFINITY).IsInfinite());
CHECK(!Double(OS::nan_value()).IsInfinite());
CHECK(!Double(0.0).IsInfinite());
CHECK(!Double(-0.0).IsInfinite());
CHECK(!Double(1.0).IsInfinite());
CHECK(!Double(-1.0).IsInfinite());
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
CHECK(!Double(min_double64).IsInfinite());
}
TEST(IsNan) {
CHECK(Double(OS::nan_value()).IsNan());
uint64_t other_nan = V8_2PART_UINT64_C(0xFFFFFFFF, 00000001);
CHECK(Double(other_nan).IsNan());
CHECK(!Double(V8_INFINITY).IsNan());
CHECK(!Double(-V8_INFINITY).IsNan());
CHECK(!Double(0.0).IsNan());
CHECK(!Double(-0.0).IsNan());
CHECK(!Double(1.0).IsNan());
CHECK(!Double(-1.0).IsNan());
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
CHECK(!Double(min_double64).IsNan());
}
TEST(Sign) {
CHECK_EQ(1, Double(1.0).Sign());
CHECK_EQ(1, Double(V8_INFINITY).Sign());
CHECK_EQ(-1, Double(-V8_INFINITY).Sign());
CHECK_EQ(1, Double(0.0).Sign());
CHECK_EQ(-1, Double(-0.0).Sign());
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
CHECK_EQ(1, Double(min_double64).Sign());
}
TEST(NormalizedBoundaries) {
DiyFp boundary_plus;
DiyFp boundary_minus;
DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp();
Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// 1.5 does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f());
diy_fp = Double(1.0).AsNormalizedDiyFp();
Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// 1.0 does have a significand of the form 2^p (for some p).
// Therefore its lower boundary is twice as close as the upper boundary.
CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f());
CHECK((1 << 9) == diy_fp.f() - boundary_minus.f());
CHECK((1 << 10) == boundary_plus.f() - diy_fp.f());
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
diy_fp = Double(min_double64).AsNormalizedDiyFp();
Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// min-value does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
// Denormals have their boundaries much closer.
CHECK((static_cast<uint64_t>(1) << 62) == diy_fp.f() - boundary_minus.f());
uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000);
diy_fp = Double(smallest_normal64).AsNormalizedDiyFp();
Double(smallest_normal64).NormalizedBoundaries(&boundary_minus,
&boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// Even though the significand is of the form 2^p (for some p), its boundaries
// are at the same distance. (This is the only exception).
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f());
uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
diy_fp = Double(largest_denormal64).AsNormalizedDiyFp();
Double(largest_denormal64).NormalizedBoundaries(&boundary_minus,
&boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 11) == diy_fp.f() - boundary_minus.f());
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
diy_fp = Double(max_double64).AsNormalizedDiyFp();
Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// max-value does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f());
}
static const int kBufferSize = 50;
static double ComposeDouble(char* buffer, int sign, int length, int point) {
int k = point - length;
// Integrate exponent into buffer.
buffer[length] = 'e';
snprintf(&buffer[length+1], kBufferSize - length - 1, "%d", k);
double result;
sscanf(buffer, "%lf", &result); // NOLINT
if (sign) {
result *= -1;
}
return result;
}
static bool IsCorrect(double v, char* buffer, int sign, int length, int point) {
return v == ComposeDouble(buffer, sign, length, point);
}
// The precision of long doubles is not enough to ensure the correct rounding.
static bool IsRounded(double v, char* buffer, int sign, int length, int point) {
// We don't test when v is 0.
if (v == 0) return true;
// Simplify things by working with positive numbers.
if (v < 0) v = -v;
char correct_buffer[100];
snprintf(correct_buffer, sizeof(correct_buffer), "%.90e", v);
// Get rid of the '.'
correct_buffer[1] = correct_buffer[0];
char* correct_str = &correct_buffer[1];
int i = 0;
while (true) {
if (correct_str[i] == '\0' || correct_str[i] == 'e') {
// We should never need all digits.
return false;
}
if (buffer[i] == '\0' || buffer[i] == 'e') {
// Verify that the remaining correct digits are small enough.
if (correct_str[i] < '5') return true;
return false; // For simplicity we assume that '5' is rounded up.
}
if (buffer[i] != correct_str[i]) {
if (buffer[i] < correct_str[i]) return false;
if (buffer[i] - correct_str[i] != 1) return false;
if (correct_str[i+1] < '5') return false;
return true;
}
// Both characters are equal
i++;
}
}
static bool IsShortest(double v,
char* buffer,
int sign,
int length,
int point) {
// Now test if a shorter version would still yield the same result.
// Not an exhaustive test, but better than nothing.
if (length == 1) return true;
char last_digit = buffer[length - 1];
if (buffer[length - 1] == '0') return false;
if (v == ComposeDouble(buffer, sign, length - 1, point)) {
return false;
}
bool result = true;
if (buffer[length-2] != '9') {
buffer[length - 2]++;
double changed_value = ComposeDouble(buffer, sign, length-1, point);
if (v == changed_value) {
printf("ROUNDED FAILED DEBUG: %s\n", buffer);
result = false;
}
buffer[length - 2]--;
}
buffer[length - 1] = last_digit;
return result;
}
// Copyright 2006-2008 the V8 project authors. All rights reserved.
#include <stdlib.h>
#include "v8.h"
#include "platform.h"
#include "cctest.h"
#include "diy_fp.h"
#include "double.h"
#include "grisu3.h"
#include "test-dtoa.h"
using namespace v8::internal;
TEST(DoubleExtremes) {
char buffer[kBufferSize];
int length;
int sign;
int point;
bool status;
double min_double = 5e-324;
status = grisu3(min_double, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("5", buffer);
CHECK_EQ(-323, point);
double max_double = 1.7976931348623157e308;
status = grisu3(max_double, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("17976931348623157", buffer);
CHECK_EQ(309, point);
}
TEST(DoubleTestFunctions) {
char buffer[kBufferSize];
strncpy(buffer, "12345", kBufferSize);
CHECK(IsCorrect(123.45, buffer, 0, 5, 3));
strncpy(buffer, "12345", kBufferSize);
CHECK(IsCorrect(1.2345, buffer, 0, 5, 1));
strncpy(buffer, "12345", kBufferSize);
CHECK(!IsCorrect(1.2344, buffer, 0, 5, 1));
strncpy(buffer, "12345", kBufferSize);
CHECK(!IsCorrect(1.2345, buffer, 0, 5, 2));
strncpy(buffer, "12345", kBufferSize);
CHECK(!IsCorrect(1.2345, buffer, 0, 4, 1));
strncpy(buffer, "1234", kBufferSize);
CHECK(IsRounded(123.44, buffer, 0, 4, 3));
strncpy(buffer, "1234", kBufferSize);
CHECK(!IsRounded(123.4500000000001, buffer, 0, 4, 3));
strncpy(buffer, "1234", kBufferSize);
CHECK(IsRounded(123.44999999, buffer, 0, 4, 3));
strncpy(buffer, "1234", kBufferSize);
CHECK(IsRounded(123.44999999, buffer, 0, 3, 3));
strncpy(buffer, "1234567000000000000000000001", kBufferSize);
CHECK(IsShortest(123.45, buffer, 0, 5, 3));
strncpy(buffer, "1234567000000000000000000001", kBufferSize);
CHECK(IsShortest(123.4567, buffer, 0, 7, 3));
strncpy(buffer, "1234567000000000000000000001", kBufferSize);
CHECK(!IsShortest(123.4567, buffer, 0, strlen(buffer), 3));
strncpy(buffer, "123456699999999999999999999999999999", kBufferSize);
CHECK(!IsShortest(123.4567, buffer, 0, strlen(buffer), 3));
strncpy(buffer, "123456699999999999999999999999999999", kBufferSize);
CHECK(IsShortest(123.456, buffer, 0, 6, 3));
}
TEST(VariousDoubles) {
char buffer[kBufferSize];
int sign;
int length;
int point;
int status;
status = grisu3(4294967272.0, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("4294967272", buffer);
CHECK_EQ(10, point);
status = grisu3(4.1855804968213567e298, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("4185580496821357", buffer);
CHECK_EQ(299, point);
status = grisu3(5.5626846462680035e-309, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("5562684646268003", buffer);
CHECK_EQ(-308, point);
status = grisu3(2147483648.0, buffer, &sign, &length, &point);
CHECK(status);
CHECK_EQ(0, sign);
CHECK_EQ("2147483648", buffer);
CHECK_EQ(10, point);
status = grisu3(3.5844466002796428e+298, buffer, &sign, &length, &point);
if (status) { // Not all grisu3 variants manage to compute this number.
CHECK_EQ("35844466002796428", buffer);
CHECK_EQ(0, sign);
CHECK_EQ(299, point);
}
uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000);
double v = Double(smallest_normal64).value();
status = grisu3(v, buffer, &sign, &length, &point);
if (status) {
CHECK_EQ(0, sign);
CHECK(IsCorrect(v, buffer, 0, length, point));
CHECK(IsRounded(v, buffer, 0, length, point));
CHECK(IsShortest(v, buffer, 0, length, point));
}
uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
v = Double(largest_denormal64).value();
status = grisu3(v, buffer, &sign, &length, &point);
if (status) {
CHECK_EQ(0, sign);
CHECK(IsCorrect(v, buffer, 0, length, point));
CHECK(IsRounded(v, buffer, 0, length, point));
CHECK(IsShortest(v, buffer, 0, length, point));
}
}
static double random_double() {
uint64_t double64 = 0;
for (int i = 0; i < 8; i++) {
double64 <<= 8;
double64 += rand() % 256; // NOLINT
}
return Double(double64).value();
}
TEST(RandomDoubles) {
// For a more thorough testing increase the iteration count.
// We also check kGrisu3MaximalLength in here.
const int kIterationCount = 100000;
int succeeded = 0;
int total = 0;
char buffer[kBufferSize];
int length;
int sign;
int point;
bool needed_max_length = false;
for (int i = 0; i < kIterationCount; ++i) {
double v = random_double();
if (v != v) continue; // NaN
if (v == 0.0) continue;
if (v < 0) v = -v;
total++;
int status = grisu3(v, buffer, &sign, &length, &point);
CHECK_GE(kGrisu3MaximalLength, length);
if (length == kGrisu3MaximalLength) needed_max_length = true;
if (!status) continue;
succeeded++;
CHECK(IsCorrect(v, buffer, 0, length, point));
CHECK(IsRounded(v, buffer, 0, length, point));
CHECK(IsShortest(v, buffer, 0, length, point));
}
CHECK_GT(succeeded*1.0/total, 0.99);
CHECK(needed_max_length);
}
;; Copyright 2010 the V8 project authors. All rights reserved.
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are
;; met:
;;
;; * Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;; * Redistributions in binary form must reproduce the above
;; copyright notice, this list of conditions and the following
;; disclaimer in the documentation and/or other materials provided
;; with the distribution.
;; * Neither the name of Google Inc. nor the names of its
;; contributors may be used to endorse or promote products derived
;; from this software without specific prior written permission.
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
;; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
;; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
;; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
;; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
;; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
;; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
;; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
;; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
;; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;; This is a Scheme script for the Bigloo compiler. Bigloo must be compiled with
;; support for bignums. The compilation of the script can be done as follows:
;; bigloo -static-bigloo -o generate-ten-powers generate-ten-powers.scm
;;
;; Generate approximations of 10^k.
(module gen-ten-powers
(static (class Cached-Fast
v::bignum
e::bint
exact?::bool))
(main my-main))
;;----------------bignum shifts -----------------------------------------------
(define (bit-lshbx::bignum x::bignum by::bint)
(if (<fx by 0)
#z0
(*bx x (exptbx #z2 (fixnum->bignum by)))))
(define (bit-rshbx::bignum x::bignum by::bint)
(if (<fx by 0)
#z0
(/bx x (exptbx #z2 (fixnum->bignum by)))))
;;----------------the actual power generation -------------------------------
;; e should be an indication. it might be too small.
(define (round-n-cut n e nb-bits)
(define max-container (- (bit-lshbx #z1 nb-bits) 1))
(define (round n)
(case *round*
((down) n)
((up)
(+bx n
;; with the -1 it will only round up if the cut off part is
;; non-zero
(-bx (bit-lshbx #z1
(-fx (+fx e nb-bits) 1))
#z1)))
((round)
(+bx n
(bit-lshbx #z1
(-fx (+fx e nb-bits) 2))))))
(let* ((shift (-fx (+fx e nb-bits) 1))
(cut (bit-rshbx (round n) shift))
(exact? (=bx n (bit-lshbx cut shift))))
(if (<=bx cut max-container)
(values cut e exact?)
(round-n-cut n (+fx e 1) nb-bits))))
(define (rounded-/bx x y)
(case *round*
((down) (/bx x y))
((up) (+bx (/bx x y) #z1))
((round) (let ((tmp (/bx (*bx #z2 x) y)))
(if (zerobx? (remainderbx tmp #z2))
(/bx tmp #z2)
(+bx (/bx tmp #z2) #z1))))))
(define (generate-powers from to mantissa-size)
(let* ((nb-bits mantissa-size)
(offset (- from))
(nb-elements (+ (- from) to 1))
(vec (make-vector nb-elements))
(max-container (- (bit-lshbx #z1 nb-bits) 1)))
;; the negative ones. 10^-1, 10^-2, etc.
;; We already know, that we can't be exact, so exact? will always be #f.
;; Basically we will have a ten^i that we will *10 at each iteration. We
;; want to create the matissa of 1/ten^i. However the mantissa must be
;; normalized (start with a 1). -> we have to shift the number.
;; We shift by multiplying with two^e. -> We encode two^e*(1/ten^i) ==
;; two^e/ten^i.
(let loop ((i 1)
(ten^i #z10)
(two^e #z1)
(e 0))
(unless (< (- i) from)
(if (>bx (/bx (*bx #z2 two^e) ten^i) max-container)
;; another shift would make the number too big. We are
;; hence normalized now.
(begin
(vector-set! vec (-fx offset i)
(instantiate::Cached-Fast
(v (rounded-/bx two^e ten^i))
(e (negfx e))
(exact? #f)))
(loop (+fx i 1) (*bx ten^i #z10) two^e e))
(loop i ten^i (bit-lshbx two^e 1) (+fx e 1)))))
;; the positive ones 10^0, 10^1, etc.
;; start with 1.0. mantissa: 10...0 (1 followed by nb-bits-1 bits)
;; -> e = -(nb-bits-1)
;; exact? is true when the container can still hold the complete 10^i
(let loop ((i 0)
(n (bit-lshbx #z1 (-fx nb-bits 1)))
(e (-fx 1 nb-bits)))
(when (<= i to)
(receive (cut e exact?)
(round-n-cut n e nb-bits)
(vector-set! vec (+fx i offset)
(instantiate::Cached-Fast
(v cut)
(e e)
(exact? exact?)))
(loop (+fx i 1) (*bx n #z10) e))))
vec))
(define (print-c powers from to struct-type
cache-name max-distance-name offset-name macro64)
(define (display-power power k)
(with-access::Cached-Fast power (v e exact?)
(let ((tmp-p (open-output-string)))
;; really hackish way of getting the digits
(display (format "~x" v) tmp-p)
(let ((str (close-output-port tmp-p)))
(printf " {~a(0x~a, ~a), ~a, ~a},\n"
macro64
(substring str 0 8)
(substring str 8 16)
e
k)))))
(define (print-powers-reduced n)
(print "static const " struct-type " " cache-name
"(" n ")"
"[] = {")
(let loop ((i 0)
(nb-elements 0)
(last-e 0)
(max-distance 0))
(cond
((>= i (vector-length powers))
(print " };")
(print "static const int " max-distance-name "(" n ") = "
max-distance ";")
(print "// nb elements (" n "): " nb-elements))
(else
(let* ((power (vector-ref powers i))
(e (Cached-Fast-e power)))
(display-power power (+ i from))
(loop (+ i n)
(+ nb-elements 1)
e
(cond
((=fx i 0) max-distance)
((> (- e last-e) max-distance) (- e last-e))
(else max-distance))))))))
(print "// ------------ GENERATED FILE ----------------")
(print "// command used:")
(print "// "
(apply string-append (map (lambda (str)
(string-append " " str))
*main-args*))
" // NOLINT")
(print)
(print
"// This file is intended to be included inside another .h or .cc files\n"
"// with the following defines set:\n"
"// GRISU_CACHE_STRUCT: should expand to the name of a struct that will\n"
"// hold the cached powers of ten. Each entry will hold a 64-bit\n"
"// significand, a 16-bit signed binary exponent, and a 16-bit\n"
"// signed decimal exponent. Each entry will be constructed as follows:\n"
"// { significand, binary_exponent, decimal_exponent }.\n"
"// GRISU_CACHE_NAME(i): generates the name for the different caches.\n"
"// The parameter i will be a number in the range 1-20. A cache will\n"
"// hold every i'th element of a full cache. GRISU_CACHE_NAME(1) will\n"
"// thus hold all elements. The higher i the fewer elements it has.\n"
"// Ideally the user should only reference one cache and let the\n"
"// compiler remove the unused ones.\n"
"// GRISU_CACHE_MAX_DISTANCE(i): generates the name for the maximum\n"
"// binary exponent distance between all elements of a given cache.\n"
"// GRISU_CACHE_OFFSET: is used as variable name for the decimal\n"
"// exponent offset. It is equal to -cache[0].decimal_exponent.\n"
"// GRISU_UINT64_C: used to construct 64-bit values in a platform\n"
"// independent way. In order to encode 0x123456789ABCDEF0 the macro\n"
"// will be invoked as follows: GRISU_UINT64_C(0x12345678,9ABCDEF0).\n")
(print)
(print-powers-reduced 1)
(print-powers-reduced 2)
(print-powers-reduced 3)
(print-powers-reduced 4)
(print-powers-reduced 5)
(print-powers-reduced 6)
(print-powers-reduced 7)
(print-powers-reduced 8)
(print-powers-reduced 9)
(print-powers-reduced 10)
(print-powers-reduced 11)
(print-powers-reduced 12)
(print-powers-reduced 13)
(print-powers-reduced 14)
(print-powers-reduced 15)
(print-powers-reduced 16)
(print-powers-reduced 17)
(print-powers-reduced 18)
(print-powers-reduced 19)
(print-powers-reduced 20)
(print "static const int GRISU_CACHE_OFFSET = " (- from) ";"))
;;----------------main --------------------------------------------------------
(define *main-args* #f)
(define *mantissa-size* #f)
(define *dest* #f)
(define *round* #f)
(define *from* #f)
(define *to* #f)
(define (my-main args)
(set! *main-args* args)
(args-parse (cdr args)
(section "Help")
(("?") (args-parse-usage #f))
((("-h" "--help") (help "?, -h, --help" "This help message"))
(args-parse-usage #f))
(section "Misc")
(("-o" ?file (help "The output file"))
(set! *dest* file))
(("--mantissa-size" ?size (help "Container-size in bits"))
(set! *mantissa-size* (string->number size)))
(("--round" ?direction (help "Round bignums (down, round or up)"))
(set! *round* (string->symbol direction)))
(("--from" ?from (help "start at 10^from"))
(set! *from* (string->number from)))
(("--to" ?to (help "go up to 10^to"))
(set! *to* (string->number to)))
(else
(print "Illegal argument `" else "'. Usage:")
(args-parse-usage #f)))
(when (not *from*)
(error "generate-ten-powers"
"Missing from"
#f))
(when (not *to*)
(error "generate-ten-powers"
"Missing to"
#f))
(when (not *mantissa-size*)
(error "generate-ten-powers"
"Missing mantissa size"
#f))
(when (not (memv *round* '(up down round)))
(error "generate-ten-powers"
"Missing round-method"
*round*))
(let ((dividers (generate-powers *from* *to* *mantissa-size*))
(p (if (not *dest*)
(current-output-port)
(open-output-file *dest*))))
(unwind-protect
(with-output-to-port p
(lambda ()
(print-c dividers *from* *to*
"GRISU_CACHE_STRUCT" "GRISU_CACHE_NAME"
"GRISU_CACHE_MAX_DISTANCE" "GRISU_CACHE_OFFSET"
"GRISU_UINT64_C"
)))
(if *dest*
(close-output-port p)))))
......@@ -229,7 +229,6 @@
'../../src/builtins.cc',
'../../src/builtins.h',
'../../src/bytecodes-irregexp.h',
'../../src/cached_powers.h',
'../../src/char-predicates-inl.h',
'../../src/char-predicates.h',
'../../src/checks.cc',
......@@ -265,8 +264,6 @@
'../../src/disassembler.cc',
'../../src/disassembler.h',
'../../src/dtoa-config.c',
'../../src/diy_fp.h',
'../../src/double.h',
'../../src/execution.cc',
'../../src/execution.h',
'../../src/factory.cc',
......@@ -287,8 +284,6 @@
'../../src/global-handles.cc',
'../../src/global-handles.h',
'../../src/globals.h',
'../../src/grisu3.h',
'../../src/grisu3.cc',
'../../src/handles-inl.h',
'../../src/handles.cc',
'../../src/handles.h',
......@@ -335,7 +330,6 @@
'../../src/parser.cc',
'../../src/parser.h',
'../../src/platform.h',
'../../src/powers_ten.h',
'../../src/prettyprinter.cc',
'../../src/prettyprinter.h',
'../../src/property.cc',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment