platform-freebsd.cc 15.9 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

28 29
// Platform specific code for FreeBSD goes here. For the POSIX comaptible parts
// the implementation is in platform-posix.cc.
30 31 32 33 34 35

#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/resource.h>
36
#include <sys/types.h>
37 38 39 40 41 42 43 44
#include <sys/ucontext.h>
#include <stdlib.h>

#include <sys/types.h>  // mmap & munmap
#include <sys/mman.h>   // mmap & munmap
#include <sys/stat.h>   // open
#include <sys/fcntl.h>  // open
#include <unistd.h>     // getpagesize
45
// If you don't have execinfo.h then you need devel/libexecinfo from ports.
46 47 48 49 50 51 52 53 54
#include <execinfo.h>   // backtrace, backtrace_symbols
#include <strings.h>    // index
#include <errno.h>
#include <stdarg.h>
#include <limits.h>

#undef MAP_TYPE

#include "v8.h"
55
#include "v8threads.h"
56

57
#include "platform-posix.h"
58
#include "platform.h"
59
#include "vm-state-inl.h"
60 61


62 63
namespace v8 {
namespace internal {
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

// 0 is never a valid thread id on FreeBSD since tids and pids share a
// name space and pid 0 is used to kill the group (see man 2 kill).
static const pthread_t kNoThread = (pthread_t) 0;


double ceiling(double x) {
    // Correct as on OS X
    if (-1.0 < x && x < 0.0) {
        return -0.0;
    } else {
        return ceil(x);
    }
}


80 81 82
static Mutex* limit_mutex = NULL;


83
void OS::PostSetUp() {
84
  POSIXPostSetUp();
85 86 87
}


88 89 90 91 92
uint64_t OS::CpuFeaturesImpliedByPlatform() {
  return 0;  // FreeBSD runs on anything.
}


93 94 95 96 97 98
int OS::ActivationFrameAlignment() {
  // 16 byte alignment on FreeBSD
  return 16;
}


99
const char* OS::LocalTimezone(double time) {
100
  if (std::isnan(time)) return "";
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  time_t tv = static_cast<time_t>(floor(time/msPerSecond));
  struct tm* t = localtime(&tv);
  if (NULL == t) return "";
  return t->tm_zone;
}


double OS::LocalTimeOffset() {
  time_t tv = time(NULL);
  struct tm* t = localtime(&tv);
  // tm_gmtoff includes any daylight savings offset, so subtract it.
  return static_cast<double>(t->tm_gmtoff * msPerSecond -
                             (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
}


117 118
// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
119
// and verification).  The estimate is conservative, i.e., not all addresses in
120 121 122 123 124 125 126
// 'allocated' space are actually allocated to our heap.  The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);


static void UpdateAllocatedSpaceLimits(void* address, int size) {
127 128 129
  ASSERT(limit_mutex != NULL);
  ScopedLock lock(limit_mutex);

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  lowest_ever_allocated = Min(lowest_ever_allocated, address);
  highest_ever_allocated =
      Max(highest_ever_allocated,
          reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}


bool OS::IsOutsideAllocatedSpace(void* address) {
  return address < lowest_ever_allocated || address >= highest_ever_allocated;
}


size_t OS::AllocateAlignment() {
  return getpagesize();
}


void* OS::Allocate(const size_t requested,
                   size_t* allocated,
                   bool executable) {
  const size_t msize = RoundUp(requested, getpagesize());
  int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
  void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);

  if (mbase == MAP_FAILED) {
155
    LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
156 157 158 159 160 161 162 163 164 165
    return NULL;
  }
  *allocated = msize;
  UpdateAllocatedSpaceLimits(mbase, msize);
  return mbase;
}


void OS::Free(void* buf, const size_t length) {
  // TODO(1240712): munmap has a return value which is ignored here.
166 167 168
  int result = munmap(buf, length);
  USE(result);
  ASSERT(result == 0);
169 170 171 172 173 174 175 176 177
}


void OS::Sleep(int milliseconds) {
  unsigned int ms = static_cast<unsigned int>(milliseconds);
  usleep(1000 * ms);
}


178 179 180 181 182
int OS::NumberOfCores() {
  return sysconf(_SC_NPROCESSORS_ONLN);
}


183 184 185 186 187 188 189
void OS::Abort() {
  // Redirect to std abort to signal abnormal program termination.
  abort();
}


void OS::DebugBreak() {
190
#if (defined(__arm__) || defined(__thumb__))
191 192 193 194 195 196 197
  asm("bkpt 0");
#else
  asm("int $3");
#endif
}


198
void OS::DumpBacktrace() {
199
  POSIXBacktraceHelper<backtrace, backtrace_symbols>::DumpBacktrace();
200 201 202
}


203 204 205 206 207 208
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
 public:
  PosixMemoryMappedFile(FILE* file, void* memory, int size)
    : file_(file), memory_(memory), size_(size) { }
  virtual ~PosixMemoryMappedFile();
  virtual void* memory() { return memory_; }
209
  virtual int size() { return size_; }
210 211 212 213 214 215 216
 private:
  FILE* file_;
  void* memory_;
  int size_;
};


217
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
218
  FILE* file = fopen(name, "r+");
219 220 221 222 223 224 225 226 227 228 229
  if (file == NULL) return NULL;

  fseek(file, 0, SEEK_END);
  int size = ftell(file);

  void* memory =
      mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
  return new PosixMemoryMappedFile(file, memory, size);
}


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
    void* initial) {
  FILE* file = fopen(name, "w+");
  if (file == NULL) return NULL;
  int result = fwrite(initial, size, 1, file);
  if (result < 1) {
    fclose(file);
    return NULL;
  }
  void* memory =
      mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
  return new PosixMemoryMappedFile(file, memory, size);
}


PosixMemoryMappedFile::~PosixMemoryMappedFile() {
  if (memory_) munmap(memory_, size_);
  fclose(file_);
}


static unsigned StringToLong(char* buffer) {
  return static_cast<unsigned>(strtol(buffer, NULL, 16));  // NOLINT
}


void OS::LogSharedLibraryAddresses() {
  static const int MAP_LENGTH = 1024;
  int fd = open("/proc/self/maps", O_RDONLY);
  if (fd < 0) return;
  while (true) {
    char addr_buffer[11];
    addr_buffer[0] = '0';
    addr_buffer[1] = 'x';
    addr_buffer[10] = 0;
    int result = read(fd, addr_buffer + 2, 8);
    if (result < 8) break;
    unsigned start = StringToLong(addr_buffer);
    result = read(fd, addr_buffer + 2, 1);
    if (result < 1) break;
    if (addr_buffer[2] != '-') break;
    result = read(fd, addr_buffer + 2, 8);
    if (result < 8) break;
    unsigned end = StringToLong(addr_buffer);
    char buffer[MAP_LENGTH];
    int bytes_read = -1;
    do {
      bytes_read++;
      if (bytes_read >= MAP_LENGTH - 1)
        break;
      result = read(fd, buffer + bytes_read, 1);
      if (result < 1) break;
    } while (buffer[bytes_read] != '\n');
    buffer[bytes_read] = 0;
    // Ignore mappings that are not executable.
    if (buffer[3] != 'x') continue;
    char* start_of_path = index(buffer, '/');
    // There may be no filename in this line.  Skip to next.
    if (start_of_path == NULL) continue;
    buffer[bytes_read] = 0;
290
    LOG(i::Isolate::Current(), SharedLibraryEvent(start_of_path, start, end));
291 292 293 294 295
  }
  close(fd);
}


296 297 298 299
void OS::SignalCodeMovingGC() {
}


300
int OS::StackWalk(Vector<OS::StackFrame> frames) {
301
  return POSIXBacktraceHelper<backtrace, backtrace_symbols>::StackWalk(frames);
302 303 304 305 306 307 308
}


// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;

309

310
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
311

312 313 314

VirtualMemory::VirtualMemory(size_t size)
    : address_(ReserveRegion(size)), size_(size) { }
315 316


317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
    : address_(NULL), size_(0) {
  ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
  size_t request_size = RoundUp(size + alignment,
                                static_cast<intptr_t>(OS::AllocateAlignment()));
  void* reservation = mmap(OS::GetRandomMmapAddr(),
                           request_size,
                           PROT_NONE,
                           MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
                           kMmapFd,
                           kMmapFdOffset);
  if (reservation == MAP_FAILED) return;

  Address base = static_cast<Address>(reservation);
  Address aligned_base = RoundUp(base, alignment);
  ASSERT_LE(base, aligned_base);

  // Unmap extra memory reserved before and after the desired block.
  if (aligned_base != base) {
    size_t prefix_size = static_cast<size_t>(aligned_base - base);
    OS::Free(base, prefix_size);
    request_size -= prefix_size;
  }

  size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
  ASSERT_LE(aligned_size, request_size);

  if (aligned_size != request_size) {
    size_t suffix_size = request_size - aligned_size;
    OS::Free(aligned_base + aligned_size, suffix_size);
    request_size -= suffix_size;
  }

  ASSERT(aligned_size == request_size);

  address_ = static_cast<void*>(aligned_base);
  size_ = aligned_size;
}


357 358
VirtualMemory::~VirtualMemory() {
  if (IsReserved()) {
359 360 361
    bool result = ReleaseRegion(address(), size());
    ASSERT(result);
    USE(result);
362 363 364 365 366
  }
}


bool VirtualMemory::IsReserved() {
367
  return address_ != NULL;
368 369 370
}


371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
void VirtualMemory::Reset() {
  address_ = NULL;
  size_ = 0;
}


bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
  return CommitRegion(address, size, is_executable);
}


bool VirtualMemory::Uncommit(void* address, size_t size) {
  return UncommitRegion(address, size);
}


387 388 389 390 391 392
bool VirtualMemory::Guard(void* address) {
  OS::Guard(address, OS::CommitPageSize());
  return true;
}


393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
void* VirtualMemory::ReserveRegion(size_t size) {
  void* result = mmap(OS::GetRandomMmapAddr(),
                      size,
                      PROT_NONE,
                      MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
                      kMmapFd,
                      kMmapFdOffset);

  if (result == MAP_FAILED) return NULL;

  return result;
}


bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
  if (MAP_FAILED == mmap(base,
                         size,
                         prot,
412
                         MAP_PRIVATE | MAP_ANON | MAP_FIXED,
413 414
                         kMmapFd,
                         kMmapFdOffset)) {
415 416 417
    return false;
  }

418
  UpdateAllocatedSpaceLimits(base, size);
419 420 421 422
  return true;
}


423 424 425 426
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
  return mmap(base,
              size,
              PROT_NONE,
427
              MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
428 429 430 431 432 433 434
              kMmapFd,
              kMmapFdOffset) != MAP_FAILED;
}


bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
  return munmap(base, size) == 0;
435 436 437
}


438 439 440 441 442 443
bool VirtualMemory::HasLazyCommits() {
  // TODO(alph): implement for the platform.
  return false;
}


444
class Thread::PlatformData : public Malloced {
445 446 447 448 449
 public:
  pthread_t thread_;  // Thread handle for pthread.
};


450
Thread::Thread(const Options& options)
451
    : data_(new PlatformData),
452 453
      stack_size_(options.stack_size()),
      start_semaphore_(NULL) {
454
  set_name(options.name());
455 456 457 458
}


Thread::~Thread() {
459
  delete data_;
460 461 462 463 464 465 466 467
}


static void* ThreadEntry(void* arg) {
  Thread* thread = reinterpret_cast<Thread*>(arg);
  // This is also initialized by the first argument to pthread_create() but we
  // don't know which thread will run first (the original thread or the new
  // one) so we initialize it here too.
468 469
  thread->data()->thread_ = pthread_self();
  ASSERT(thread->data()->thread_ != kNoThread);
470
  thread->NotifyStartedAndRun();
471 472 473 474
  return NULL;
}


475 476 477 478 479 480
void Thread::set_name(const char* name) {
  strncpy(name_, name, sizeof(name_));
  name_[sizeof(name_) - 1] = '\0';
}


481
void Thread::Start() {
482 483 484 485 486 487 488
  pthread_attr_t* attr_ptr = NULL;
  pthread_attr_t attr;
  if (stack_size_ > 0) {
    pthread_attr_init(&attr);
    pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
    attr_ptr = &attr;
  }
489 490
  pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
  ASSERT(data_->thread_ != kNoThread);
491 492 493 494
}


void Thread::Join() {
495
  pthread_join(data_->thread_, NULL);
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
}


Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
  pthread_key_t key;
  int result = pthread_key_create(&key, NULL);
  USE(result);
  ASSERT(result == 0);
  return static_cast<LocalStorageKey>(key);
}


void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
  int result = pthread_key_delete(pthread_key);
  USE(result);
  ASSERT(result == 0);
}


void* Thread::GetThreadLocal(LocalStorageKey key) {
  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
  return pthread_getspecific(pthread_key);
}


void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
  pthread_setspecific(pthread_key, value);
}


class FreeBSDSemaphore : public Semaphore {
 public:
  explicit FreeBSDSemaphore(int count) {  sem_init(&sem_, 0, count); }
  virtual ~FreeBSDSemaphore() { sem_destroy(&sem_); }

  virtual void Wait();
534
  virtual bool Wait(int timeout);
535 536 537 538 539
  virtual void Signal() { sem_post(&sem_); }
 private:
  sem_t sem_;
};

540

541 542 543 544 545 546 547 548
void FreeBSDSemaphore::Wait() {
  while (true) {
    int result = sem_wait(&sem_);
    if (result == 0) return;  // Successfully got semaphore.
    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
  }
}

549 550 551 552 553

bool FreeBSDSemaphore::Wait(int timeout) {
  const long kOneSecondMicros = 1000000;  // NOLINT

  // Split timeout into second and nanosecond parts.
554 555 556
  struct timeval delta;
  delta.tv_usec = timeout % kOneSecondMicros;
  delta.tv_sec = timeout / kOneSecondMicros;
557

558 559 560
  struct timeval current_time;
  // Get the current time.
  if (gettimeofday(&current_time, NULL) == -1) {
561 562 563
    return false;
  }

564 565 566
  // Calculate time for end of timeout.
  struct timeval end_time;
  timeradd(&current_time, &delta, &end_time);
567

568 569
  struct timespec ts;
  TIMEVAL_TO_TIMESPEC(&end_time, &ts);
570 571 572 573 574 575 576 577 578
  while (true) {
    int result = sem_timedwait(&sem_, &ts);
    if (result == 0) return true;  // Successfully got semaphore.
    if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
  }
}


579 580 581 582
Semaphore* OS::CreateSemaphore(int count) {
  return new FreeBSDSemaphore(count);
}

583

584 585 586 587 588 589 590 591 592 593 594 595
void OS::SetUp() {
  // Seed the random number generator.
  // Convert the current time to a 64-bit integer first, before converting it
  // to an unsigned. Going directly can cause an overflow and the seed to be
  // set to all ones. The seed will be identical for different instances that
  // call this setup code within the same millisecond.
  uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
  srandom(static_cast<unsigned int>(seed));
  limit_mutex = CreateMutex();
}


596 597 598 599 600
void OS::TearDown() {
  delete limit_mutex;
}


601
} }  // namespace v8::internal