deltablue.js 25.1 KB
Newer Older
1
// Copyright 2008 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright 1996 John Maloney and Mario Wolczko.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA


19 20 21 22
// This implementation of the DeltaBlue benchmark is derived
// from the Smalltalk implementation by John Maloney and Mario
// Wolczko. Some parts have been translated directly, whereas
// others have been modified more aggresively to make it feel
23 24 25
// more like a JavaScript program.


26
var DeltaBlue = new BenchmarkSuite('DeltaBlue', 66118, [
27 28 29 30 31
  new Benchmark('DeltaBlue', deltaBlue)
]);


/**
32
 * A JavaScript implementation of the DeltaBlue constraint-solving
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 * algorithm, as described in:
 *
 * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
 *   Bjorn N. Freeman-Benson and John Maloney
 *   January 1990 Communications of the ACM,
 *   also available as University of Washington TR 89-08-06.
 *
 * Beware: this benchmark is written in a grotesque style where
 * the constraint model is built by side-effects from constructors.
 * I've kept it this way to avoid deviating too much from the original
 * implementation.
 */


/* --- O b j e c t   M o d e l --- */

49
Object.prototype.inheritsFrom = function (shuper) {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  function Inheriter() { }
  Inheriter.prototype = shuper.prototype;
  this.prototype = new Inheriter();
  this.superConstructor = shuper;
}

function OrderedCollection() {
  this.elms = new Array();
}

OrderedCollection.prototype.add = function (elm) {
  this.elms.push(elm);
}

OrderedCollection.prototype.at = function (index) {
  return this.elms[index];
}

OrderedCollection.prototype.size = function () {
  return this.elms.length;
}

OrderedCollection.prototype.removeFirst = function () {
  return this.elms.pop();
}

OrderedCollection.prototype.remove = function (elm) {
  var index = 0, skipped = 0;
  for (var i = 0; i < this.elms.length; i++) {
    var value = this.elms[i];
    if (value != elm) {
      this.elms[index] = value;
      index++;
    } else {
      skipped++;
    }
  }
  for (var i = 0; i < skipped; i++)
    this.elms.pop();
}

/* --- *
 * S t r e n g t h
 * --- */

/**
 * Strengths are used to measure the relative importance of constraints.
 * New strengths may be inserted in the strength hierarchy without
 * disrupting current constraints.  Strengths cannot be created outside
 * this class, so pointer comparison can be used for value comparison.
 */
function Strength(strengthValue, name) {
  this.strengthValue = strengthValue;
  this.name = name;
}

Strength.stronger = function (s1, s2) {
  return s1.strengthValue < s2.strengthValue;
}

Strength.weaker = function (s1, s2) {
  return s1.strengthValue > s2.strengthValue;
}

Strength.weakestOf = function (s1, s2) {
  return this.weaker(s1, s2) ? s1 : s2;
}

Strength.strongest = function (s1, s2) {
  return this.stronger(s1, s2) ? s1 : s2;
}

Strength.prototype.nextWeaker = function () {
  switch (this.strengthValue) {
    case 0: return Strength.WEAKEST;
    case 1: return Strength.WEAK_DEFAULT;
    case 2: return Strength.NORMAL;
    case 3: return Strength.STRONG_DEFAULT;
    case 4: return Strength.PREFERRED;
    case 5: return Strength.REQUIRED;
  }
}

// Strength constants.
Strength.REQUIRED        = new Strength(0, "required");
Strength.STONG_PREFERRED = new Strength(1, "strongPreferred");
Strength.PREFERRED       = new Strength(2, "preferred");
Strength.STRONG_DEFAULT  = new Strength(3, "strongDefault");
Strength.NORMAL          = new Strength(4, "normal");
Strength.WEAK_DEFAULT    = new Strength(5, "weakDefault");
Strength.WEAKEST         = new Strength(6, "weakest");

/* --- *
 * C o n s t r a i n t
 * --- */

/**
 * An abstract class representing a system-maintainable relationship
 * (or "constraint") between a set of variables. A constraint supplies
 * a strength instance variable; concrete subclasses provide a means
 * of storing the constrained variables and other information required
 * to represent a constraint.
 */
function Constraint(strength) {
  this.strength = strength;
}

/**
 * Activate this constraint and attempt to satisfy it.
 */
Constraint.prototype.addConstraint = function () {
  this.addToGraph();
  planner.incrementalAdd(this);
}

/**
 * Attempt to find a way to enforce this constraint. If successful,
 * record the solution, perhaps modifying the current dataflow
 * graph. Answer the constraint that this constraint overrides, if
 * there is one, or nil, if there isn't.
 * Assume: I am not already satisfied.
 */
Constraint.prototype.satisfy = function (mark) {
  this.chooseMethod(mark);
  if (!this.isSatisfied()) {
    if (this.strength == Strength.REQUIRED)
      alert("Could not satisfy a required constraint!");
    return null;
  }
  this.markInputs(mark);
  var out = this.output();
  var overridden = out.determinedBy;
  if (overridden != null) overridden.markUnsatisfied();
  out.determinedBy = this;
  if (!planner.addPropagate(this, mark))
    alert("Cycle encountered");
  out.mark = mark;
  return overridden;
}

Constraint.prototype.destroyConstraint = function () {
  if (this.isSatisfied()) planner.incrementalRemove(this);
  else this.removeFromGraph();
}

/**
 * Normal constraints are not input constraints.  An input constraint
 * is one that depends on external state, such as the mouse, the
 * keybord, a clock, or some arbitraty piece of imperative code.
 */
Constraint.prototype.isInput = function () {
  return false;
}

/* --- *
 * U n a r y   C o n s t r a i n t
 * --- */

/**
 * Abstract superclass for constraints having a single possible output
 * variable.
 */
function UnaryConstraint(v, strength) {
  UnaryConstraint.superConstructor.call(this, strength);
  this.myOutput = v;
  this.satisfied = false;
  this.addConstraint();
}

219
UnaryConstraint.inheritsFrom(Constraint);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

/**
 * Adds this constraint to the constraint graph
 */
UnaryConstraint.prototype.addToGraph = function () {
  this.myOutput.addConstraint(this);
  this.satisfied = false;
}

/**
 * Decides if this constraint can be satisfied and records that
 * decision.
 */
UnaryConstraint.prototype.chooseMethod = function (mark) {
  this.satisfied = (this.myOutput.mark != mark)
    && Strength.stronger(this.strength, this.myOutput.walkStrength);
}

/**
 * Returns true if this constraint is satisfied in the current solution.
 */
UnaryConstraint.prototype.isSatisfied = function () {
  return this.satisfied;
}

UnaryConstraint.prototype.markInputs = function (mark) {
  // has no inputs
}

/**
 * Returns the current output variable.
 */
UnaryConstraint.prototype.output = function () {
  return this.myOutput;
}

/**
 * Calculate the walkabout strength, the stay flag, and, if it is
 * 'stay', the value for the current output of this constraint. Assume
 * this constraint is satisfied.
 */
UnaryConstraint.prototype.recalculate = function () {
  this.myOutput.walkStrength = this.strength;
  this.myOutput.stay = !this.isInput();
  if (this.myOutput.stay) this.execute(); // Stay optimization
}

/**
 * Records that this constraint is unsatisfied
 */
UnaryConstraint.prototype.markUnsatisfied = function () {
  this.satisfied = false;
}

UnaryConstraint.prototype.inputsKnown = function () {
  return true;
}

UnaryConstraint.prototype.removeFromGraph = function () {
  if (this.myOutput != null) this.myOutput.removeConstraint(this);
  this.satisfied = false;
}

/* --- *
 * S t a y   C o n s t r a i n t
 * --- */

/**
 * Variables that should, with some level of preference, stay the same.
 * Planners may exploit the fact that instances, if satisfied, will not
 * change their output during plan execution.  This is called "stay
 * optimization".
 */
function StayConstraint(v, str) {
  StayConstraint.superConstructor.call(this, v, str);
}

297
StayConstraint.inheritsFrom(UnaryConstraint);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

StayConstraint.prototype.execute = function () {
  // Stay constraints do nothing
}

/* --- *
 * E d i t   C o n s t r a i n t
 * --- */

/**
 * A unary input constraint used to mark a variable that the client
 * wishes to change.
 */
function EditConstraint(v, str) {
  EditConstraint.superConstructor.call(this, v, str);
}

315
EditConstraint.inheritsFrom(UnaryConstraint);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

/**
 * Edits indicate that a variable is to be changed by imperative code.
 */
EditConstraint.prototype.isInput = function () {
  return true;
}

EditConstraint.prototype.execute = function () {
  // Edit constraints do nothing
}

/* --- *
 * B i n a r y   C o n s t r a i n t
 * --- */

var Direction = new Object();
Direction.NONE     = 0;
Direction.FORWARD  = 1;
Direction.BACKWARD = -1;

/**
 * Abstract superclass for constraints having two possible output
 * variables.
 */
function BinaryConstraint(var1, var2, strength) {
  BinaryConstraint.superConstructor.call(this, strength);
  this.v1 = var1;
  this.v2 = var2;
  this.direction = Direction.NONE;
  this.addConstraint();
}

349
BinaryConstraint.inheritsFrom(Constraint);
350 351

/**
352
 * Decides if this constraint can be satisfied and which way it
353 354 355 356 357
 * should flow based on the relative strength of the variables related,
 * and record that decision.
 */
BinaryConstraint.prototype.chooseMethod = function (mark) {
  if (this.v1.mark == mark) {
358
    this.direction = (this.v2.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
      ? Direction.FORWARD
      : Direction.NONE;
  }
  if (this.v2.mark == mark) {
    this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
      ? Direction.BACKWARD
      : Direction.NONE;
  }
  if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
    this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
      ? Direction.BACKWARD
      : Direction.NONE;
  } else {
    this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
      ? Direction.FORWARD
      : Direction.BACKWARD
  }
}

/**
 * Add this constraint to the constraint graph
 */
BinaryConstraint.prototype.addToGraph = function () {
  this.v1.addConstraint(this);
  this.v2.addConstraint(this);
  this.direction = Direction.NONE;
}

/**
 * Answer true if this constraint is satisfied in the current solution.
 */
BinaryConstraint.prototype.isSatisfied = function () {
  return this.direction != Direction.NONE;
}

/**
 * Mark the input variable with the given mark.
 */
BinaryConstraint.prototype.markInputs = function (mark) {
  this.input().mark = mark;
}

/**
 * Returns the current input variable
 */
BinaryConstraint.prototype.input = function () {
  return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
}

/**
 * Returns the current output variable
 */
BinaryConstraint.prototype.output = function () {
  return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
}

/**
 * Calculate the walkabout strength, the stay flag, and, if it is
 * 'stay', the value for the current output of this
 * constraint. Assume this constraint is satisfied.
 */
BinaryConstraint.prototype.recalculate = function () {
  var ihn = this.input(), out = this.output();
  out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
  out.stay = ihn.stay;
  if (out.stay) this.execute();
}

/**
 * Record the fact that this constraint is unsatisfied.
 */
BinaryConstraint.prototype.markUnsatisfied = function () {
  this.direction = Direction.NONE;
}

BinaryConstraint.prototype.inputsKnown = function (mark) {
  var i = this.input();
  return i.mark == mark || i.stay || i.determinedBy == null;
}

BinaryConstraint.prototype.removeFromGraph = function () {
  if (this.v1 != null) this.v1.removeConstraint(this);
  if (this.v2 != null) this.v2.removeConstraint(this);
  this.direction = Direction.NONE;
}

/* --- *
 * S c a l e   C o n s t r a i n t
 * --- */

/**
 * Relates two variables by the linear scaling relationship: "v2 =
 * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
 * this relationship but the scale factor and offset are considered
 * read-only.
 */
function ScaleConstraint(src, scale, offset, dest, strength) {
  this.direction = Direction.NONE;
  this.scale = scale;
  this.offset = offset;
  ScaleConstraint.superConstructor.call(this, src, dest, strength);
}

462
ScaleConstraint.inheritsFrom(BinaryConstraint);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

/**
 * Adds this constraint to the constraint graph.
 */
ScaleConstraint.prototype.addToGraph = function () {
  ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
  this.scale.addConstraint(this);
  this.offset.addConstraint(this);
}

ScaleConstraint.prototype.removeFromGraph = function () {
  ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
  if (this.scale != null) this.scale.removeConstraint(this);
  if (this.offset != null) this.offset.removeConstraint(this);
}

ScaleConstraint.prototype.markInputs = function (mark) {
  ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
  this.scale.mark = this.offset.mark = mark;
}

/**
 * Enforce this constraint. Assume that it is satisfied.
 */
ScaleConstraint.prototype.execute = function () {
  if (this.direction == Direction.FORWARD) {
    this.v2.value = this.v1.value * this.scale.value + this.offset.value;
  } else {
    this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
  }
}

/**
 * Calculate the walkabout strength, the stay flag, and, if it is
 * 'stay', the value for the current output of this constraint. Assume
 * this constraint is satisfied.
 */
ScaleConstraint.prototype.recalculate = function () {
  var ihn = this.input(), out = this.output();
  out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
  out.stay = ihn.stay && this.scale.stay && this.offset.stay;
  if (out.stay) this.execute();
}

/* --- *
 * E q u a l i t  y   C o n s t r a i n t
 * --- */

/**
 * Constrains two variables to have the same value.
 */
function EqualityConstraint(var1, var2, strength) {
  EqualityConstraint.superConstructor.call(this, var1, var2, strength);
}

518
EqualityConstraint.inheritsFrom(BinaryConstraint);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

/**
 * Enforce this constraint. Assume that it is satisfied.
 */
EqualityConstraint.prototype.execute = function () {
  this.output().value = this.input().value;
}

/* --- *
 * V a r i a b l e
 * --- */

/**
 * A constrained variable. In addition to its value, it maintain the
 * structure of the constraint graph, the current dataflow graph, and
 * various parameters of interest to the DeltaBlue incremental
 * constraint solver.
 **/
function Variable(name, initialValue) {
  this.value = initialValue || 0;
  this.constraints = new OrderedCollection();
  this.determinedBy = null;
  this.mark = 0;
  this.walkStrength = Strength.WEAKEST;
  this.stay = true;
  this.name = name;
}

/**
 * Add the given constraint to the set of all constraints that refer
 * this variable.
 */
Variable.prototype.addConstraint = function (c) {
  this.constraints.add(c);
}

/**
 * Removes all traces of c from this variable.
 */
Variable.prototype.removeConstraint = function (c) {
  this.constraints.remove(c);
  if (this.determinedBy == c) this.determinedBy = null;
}

/* --- *
 * P l a n n e r
 * --- */

/**
 * The DeltaBlue planner
 */
function Planner() {
  this.currentMark = 0;
}

/**
 * Attempt to satisfy the given constraint and, if successful,
 * incrementally update the dataflow graph.  Details: If satifying
 * the constraint is successful, it may override a weaker constraint
 * on its output. The algorithm attempts to resatisfy that
 * constraint using some other method. This process is repeated
 * until either a) it reaches a variable that was not previously
 * determined by any constraint or b) it reaches a constraint that
 * is too weak to be satisfied using any of its methods. The
 * variables of constraints that have been processed are marked with
 * a unique mark value so that we know where we've been. This allows
 * the algorithm to avoid getting into an infinite loop even if the
 * constraint graph has an inadvertent cycle.
 */
Planner.prototype.incrementalAdd = function (c) {
  var mark = this.newMark();
  var overridden = c.satisfy(mark);
  while (overridden != null)
    overridden = overridden.satisfy(mark);
}

/**
 * Entry point for retracting a constraint. Remove the given
 * constraint and incrementally update the dataflow graph.
 * Details: Retracting the given constraint may allow some currently
 * unsatisfiable downstream constraint to be satisfied. We therefore collect
 * a list of unsatisfied downstream constraints and attempt to
 * satisfy each one in turn. This list is traversed by constraint
 * strength, strongest first, as a heuristic for avoiding
 * unnecessarily adding and then overriding weak constraints.
 * Assume: c is satisfied.
 */
Planner.prototype.incrementalRemove = function (c) {
  var out = c.output();
  c.markUnsatisfied();
  c.removeFromGraph();
  var unsatisfied = this.removePropagateFrom(out);
  var strength = Strength.REQUIRED;
  do {
    for (var i = 0; i < unsatisfied.size(); i++) {
      var u = unsatisfied.at(i);
      if (u.strength == strength)
        this.incrementalAdd(u);
    }
    strength = strength.nextWeaker();
  } while (strength != Strength.WEAKEST);
}

/**
 * Select a previously unused mark value.
 */
Planner.prototype.newMark = function () {
  return ++this.currentMark;
}

/**
 * Extract a plan for resatisfaction starting from the given source
 * constraints, usually a set of input constraints. This method
 * assumes that stay optimization is desired; the plan will contain
 * only constraints whose output variables are not stay. Constraints
 * that do no computation, such as stay and edit constraints, are
 * not included in the plan.
 * Details: The outputs of a constraint are marked when it is added
 * to the plan under construction. A constraint may be appended to
 * the plan when all its input variables are known. A variable is
 * known if either a) the variable is marked (indicating that has
 * been computed by a constraint appearing earlier in the plan), b)
 * the variable is 'stay' (i.e. it is a constant at plan execution
 * time), or c) the variable is not determined by any
 * constraint. The last provision is for past states of history
 * variables, which are not stay but which are also not computed by
 * any constraint.
 * Assume: sources are all satisfied.
 */
Planner.prototype.makePlan = function (sources) {
  var mark = this.newMark();
  var plan = new Plan();
  var todo = sources;
  while (todo.size() > 0) {
    var c = todo.removeFirst();
    if (c.output().mark != mark && c.inputsKnown(mark)) {
      plan.addConstraint(c);
      c.output().mark = mark;
      this.addConstraintsConsumingTo(c.output(), todo);
    }
  }
  return plan;
}

/**
 * Extract a plan for resatisfying starting from the output of the
 * given constraints, usually a set of input constraints.
 */
Planner.prototype.extractPlanFromConstraints = function (constraints) {
  var sources = new OrderedCollection();
  for (var i = 0; i < constraints.size(); i++) {
    var c = constraints.at(i);
    if (c.isInput() && c.isSatisfied())
      // not in plan already and eligible for inclusion
      sources.add(c);
  }
  return this.makePlan(sources);
}

/**
 * Recompute the walkabout strengths and stay flags of all variables
 * downstream of the given constraint and recompute the actual
 * values of all variables whose stay flag is true. If a cycle is
 * detected, remove the given constraint and answer
 * false. Otherwise, answer true.
 * Details: Cycles are detected when a marked variable is
 * encountered downstream of the given constraint. The sender is
 * assumed to have marked the inputs of the given constraint with
 * the given mark. Thus, encountering a marked node downstream of
 * the output constraint means that there is a path from the
 * constraint's output to one of its inputs.
 */
Planner.prototype.addPropagate = function (c, mark) {
  var todo = new OrderedCollection();
  todo.add(c);
  while (todo.size() > 0) {
    var d = todo.removeFirst();
    if (d.output().mark == mark) {
      this.incrementalRemove(c);
      return false;
    }
    d.recalculate();
    this.addConstraintsConsumingTo(d.output(), todo);
  }
  return true;
}


/**
 * Update the walkabout strengths and stay flags of all variables
 * downstream of the given constraint. Answer a collection of
 * unsatisfied constraints sorted in order of decreasing strength.
 */
Planner.prototype.removePropagateFrom = function (out) {
  out.determinedBy = null;
  out.walkStrength = Strength.WEAKEST;
  out.stay = true;
  var unsatisfied = new OrderedCollection();
  var todo = new OrderedCollection();
  todo.add(out);
  while (todo.size() > 0) {
    var v = todo.removeFirst();
    for (var i = 0; i < v.constraints.size(); i++) {
      var c = v.constraints.at(i);
      if (!c.isSatisfied())
        unsatisfied.add(c);
    }
    var determining = v.determinedBy;
    for (var i = 0; i < v.constraints.size(); i++) {
      var next = v.constraints.at(i);
      if (next != determining && next.isSatisfied()) {
        next.recalculate();
        todo.add(next.output());
      }
    }
  }
  return unsatisfied;
}

Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
  var determining = v.determinedBy;
  var cc = v.constraints;
  for (var i = 0; i < cc.size(); i++) {
    var c = cc.at(i);
    if (c != determining && c.isSatisfied())
      coll.add(c);
  }
}

/* --- *
 * P l a n
 * --- */

/**
 * A Plan is an ordered list of constraints to be executed in sequence
 * to resatisfy all currently satisfiable constraints in the face of
 * one or more changing inputs.
 */
function Plan() {
  this.v = new OrderedCollection();
}

Plan.prototype.addConstraint = function (c) {
  this.v.add(c);
}

Plan.prototype.size = function () {
  return this.v.size();
}

Plan.prototype.constraintAt = function (index) {
  return this.v.at(index);
}

Plan.prototype.execute = function () {
  for (var i = 0; i < this.size(); i++) {
    var c = this.constraintAt(i);
    c.execute();
  }
}

/* --- *
 * M a i n
 * --- */

/**
 * This is the standard DeltaBlue benchmark. A long chain of equality
 * constraints is constructed with a stay constraint on one end. An
 * edit constraint is then added to the opposite end and the time is
 * measured for adding and removing this constraint, and extracting
 * and executing a constraint satisfaction plan. There are two cases.
 * In case 1, the added constraint is stronger than the stay
 * constraint and values must propagate down the entire length of the
 * chain. In case 2, the added constraint is weaker than the stay
 * constraint so it cannot be accomodated. The cost in this case is,
 * of course, very low. Typical situations lie somewhere between these
 * two extremes.
 */
function chainTest(n) {
  planner = new Planner();
  var prev = null, first = null, last = null;

  // Build chain of n equality constraints
  for (var i = 0; i <= n; i++) {
    var name = "v" + i;
    var v = new Variable(name);
    if (prev != null)
      new EqualityConstraint(prev, v, Strength.REQUIRED);
    if (i == 0) first = v;
    if (i == n) last = v;
    prev = v;
  }

  new StayConstraint(last, Strength.STRONG_DEFAULT);
  var edit = new EditConstraint(first, Strength.PREFERRED);
  var edits = new OrderedCollection();
  edits.add(edit);
  var plan = planner.extractPlanFromConstraints(edits);
  for (var i = 0; i < 100; i++) {
    first.value = i;
    plan.execute();
    if (last.value != i)
      alert("Chain test failed.");
  }
}

/**
 * This test constructs a two sets of variables related to each
 * other by a simple linear transformation (scale and offset). The
 * time is measured to change a variable on either side of the
 * mapping and to change the scale and offset factors.
 */
function projectionTest(n) {
  planner = new Planner();
  var scale = new Variable("scale", 10);
  var offset = new Variable("offset", 1000);
  var src = null, dst = null;

  var dests = new OrderedCollection();
  for (var i = 0; i < n; i++) {
    src = new Variable("src" + i, i);
    dst = new Variable("dst" + i, i);
    dests.add(dst);
    new StayConstraint(src, Strength.NORMAL);
    new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
  }

  change(src, 17);
  if (dst.value != 1170) alert("Projection 1 failed");
  change(dst, 1050);
  if (src.value != 5) alert("Projection 2 failed");
  change(scale, 5);
  for (var i = 0; i < n - 1; i++) {
    if (dests.at(i).value != i * 5 + 1000)
      alert("Projection 3 failed");
  }
  change(offset, 2000);
  for (var i = 0; i < n - 1; i++) {
    if (dests.at(i).value != i * 5 + 2000)
      alert("Projection 4 failed");
  }
}

function change(v, newValue) {
  var edit = new EditConstraint(v, Strength.PREFERRED);
  var edits = new OrderedCollection();
  edits.add(edit);
  var plan = planner.extractPlanFromConstraints(edits);
  for (var i = 0; i < 10; i++) {
    v.value = newValue;
    plan.execute();
  }
  edit.destroyConstraint();
}

// Global variable holding the current planner.
var planner = null;

function deltaBlue() {
  chainTest(100);
  projectionTest(100);
}