regexp-compiler-tonode.cc 63.6 KB
Newer Older
1 2 3 4 5 6
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/regexp/regexp-compiler.h"

7
#include "src/execution/isolate.h"
8
#include "src/regexp/regexp.h"
9 10 11
#ifdef V8_INTL_SUPPORT
#include "src/regexp/special-case.h"
#endif  // V8_INTL_SUPPORT
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#include "src/strings/unicode-inl.h"
#include "src/zone/zone-list-inl.h"

#ifdef V8_INTL_SUPPORT
#include "unicode/locid.h"
#include "unicode/uniset.h"
#include "unicode/utypes.h"
#endif  // V8_INTL_SUPPORT

namespace v8 {
namespace internal {

using namespace regexp_compiler_constants;  // NOLINT(build/namespaces)

// -------------------------------------------------------------------
// Tree to graph conversion

RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
                               RegExpNode* on_success) {
  ZoneList<TextElement>* elms =
      new (compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
  elms->Add(TextElement::Atom(this), compiler->zone());
  return new (compiler->zone())
      TextNode(elms, compiler->read_backward(), on_success);
}

RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
                               RegExpNode* on_success) {
  return new (compiler->zone())
      TextNode(elements(), compiler->read_backward(), on_success);
}

static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
                                 const int* special_class, int length) {
  length--;  // Remove final marker.
  DCHECK_EQ(kRangeEndMarker, special_class[length]);
  DCHECK_NE(0, ranges->length());
  DCHECK_NE(0, length);
  DCHECK_NE(0, special_class[0]);
  if (ranges->length() != (length >> 1) + 1) {
    return false;
  }
  CharacterRange range = ranges->at(0);
  if (range.from() != 0) {
    return false;
  }
  for (int i = 0; i < length; i += 2) {
    if (special_class[i] != (range.to() + 1)) {
      return false;
    }
    range = ranges->at((i >> 1) + 1);
    if (special_class[i + 1] != range.from()) {
      return false;
    }
  }
  if (range.to() != String::kMaxCodePoint) {
    return false;
  }
  return true;
}

static bool CompareRanges(ZoneList<CharacterRange>* ranges,
                          const int* special_class, int length) {
  length--;  // Remove final marker.
  DCHECK_EQ(kRangeEndMarker, special_class[length]);
  if (ranges->length() * 2 != length) {
    return false;
  }
  for (int i = 0; i < length; i += 2) {
    CharacterRange range = ranges->at(i >> 1);
    if (range.from() != special_class[i] ||
        range.to() != special_class[i + 1] - 1) {
      return false;
    }
  }
  return true;
}

bool RegExpCharacterClass::is_standard(Zone* zone) {
  // TODO(lrn): Remove need for this function, by not throwing away information
  // along the way.
  if (is_negated()) {
    return false;
  }
  if (set_.is_standard()) {
    return true;
  }
  if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
    set_.set_standard_set_type('s');
    return true;
  }
  if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
    set_.set_standard_set_type('S');
    return true;
  }
  if (CompareInverseRanges(set_.ranges(zone), kLineTerminatorRanges,
                           kLineTerminatorRangeCount)) {
    set_.set_standard_set_type('.');
    return true;
  }
  if (CompareRanges(set_.ranges(zone), kLineTerminatorRanges,
                    kLineTerminatorRangeCount)) {
    set_.set_standard_set_type('n');
    return true;
  }
  if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
    set_.set_standard_set_type('w');
    return true;
  }
  if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
    set_.set_standard_set_type('W');
    return true;
  }
  return false;
}

128
UnicodeRangeSplitter::UnicodeRangeSplitter(ZoneList<CharacterRange>* base) {
129 130 131 132 133 134 135
  // The unicode range splitter categorizes given character ranges into:
  // - Code points from the BMP representable by one code unit.
  // - Code points outside the BMP that need to be split into surrogate pairs.
  // - Lone lead surrogates.
  // - Lone trail surrogates.
  // Lone surrogates are valid code points, even though no actual characters.
  // They require special matching to make sure we do not split surrogate pairs.
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

  for (int i = 0; i < base->length(); i++) AddRange(base->at(i));
}

void UnicodeRangeSplitter::AddRange(CharacterRange range) {
  static constexpr uc32 kBmp1Start = 0;
  static constexpr uc32 kBmp1End = kLeadSurrogateStart - 1;
  static constexpr uc32 kBmp2Start = kTrailSurrogateEnd + 1;
  static constexpr uc32 kBmp2End = kNonBmpStart - 1;

  // Ends are all inclusive.
  STATIC_ASSERT(kBmp1Start == 0);
  STATIC_ASSERT(kBmp1Start < kBmp1End);
  STATIC_ASSERT(kBmp1End + 1 == kLeadSurrogateStart);
  STATIC_ASSERT(kLeadSurrogateStart < kLeadSurrogateEnd);
  STATIC_ASSERT(kLeadSurrogateEnd + 1 == kTrailSurrogateStart);
  STATIC_ASSERT(kTrailSurrogateStart < kTrailSurrogateEnd);
  STATIC_ASSERT(kTrailSurrogateEnd + 1 == kBmp2Start);
  STATIC_ASSERT(kBmp2Start < kBmp2End);
  STATIC_ASSERT(kBmp2End + 1 == kNonBmpStart);
  STATIC_ASSERT(kNonBmpStart < kNonBmpEnd);

  static constexpr uc32 kStarts[] = {
      kBmp1Start, kLeadSurrogateStart, kTrailSurrogateStart,
      kBmp2Start, kNonBmpStart,
  };

  static constexpr uc32 kEnds[] = {
      kBmp1End, kLeadSurrogateEnd, kTrailSurrogateEnd, kBmp2End, kNonBmpEnd,
  };

  CharacterRangeVector* const kTargets[] = {
      &bmp_, &lead_surrogates_, &trail_surrogates_, &bmp_, &non_bmp_,
  };

  static constexpr int kCount = arraysize(kStarts);
  STATIC_ASSERT(kCount == arraysize(kEnds));
  STATIC_ASSERT(kCount == arraysize(kTargets));

  for (int i = 0; i < kCount; i++) {
    if (kStarts[i] > range.to()) break;
    const uc32 from = std::max(kStarts[i], range.from());
    const uc32 to = std::min(kEnds[i], range.to());
    if (from > to) continue;
    kTargets[i]->emplace_back(CharacterRange::Range(from, to));
181 182 183
  }
}

184 185 186 187 188 189 190 191 192 193 194
namespace {

// Translates between new and old V8-isms (SmallVector, ZoneList).
ZoneList<CharacterRange>* ToCanonicalZoneList(
    const UnicodeRangeSplitter::CharacterRangeVector* v, Zone* zone) {
  if (v->empty()) return nullptr;

  ZoneList<CharacterRange>* result =
      new (zone) ZoneList<CharacterRange>(static_cast<int>(v->size()), zone);
  for (size_t i = 0; i < v->size(); i++) {
    result->Add(v->at(i), zone);
195
  }
196 197 198

  CharacterRange::Canonicalize(result);
  return result;
199 200 201 202
}

void AddBmpCharacters(RegExpCompiler* compiler, ChoiceNode* result,
                      RegExpNode* on_success, UnicodeRangeSplitter* splitter) {
203 204
  ZoneList<CharacterRange>* bmp =
      ToCanonicalZoneList(splitter->bmp(), compiler->zone());
205 206 207 208 209 210 211 212 213 214
  if (bmp == nullptr) return;
  JSRegExp::Flags default_flags = JSRegExp::Flags();
  result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges(
      compiler->zone(), bmp, compiler->read_backward(), on_success,
      default_flags)));
}

void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result,
                             RegExpNode* on_success,
                             UnicodeRangeSplitter* splitter) {
215 216
  ZoneList<CharacterRange>* non_bmp =
      ToCanonicalZoneList(splitter->non_bmp(), compiler->zone());
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  if (non_bmp == nullptr) return;
  DCHECK(!compiler->one_byte());
  Zone* zone = compiler->zone();
  JSRegExp::Flags default_flags = JSRegExp::Flags();
  CharacterRange::Canonicalize(non_bmp);
  for (int i = 0; i < non_bmp->length(); i++) {
    // Match surrogate pair.
    // E.g. [\u10005-\u11005] becomes
    //      \ud800[\udc05-\udfff]|
    //      [\ud801-\ud803][\udc00-\udfff]|
    //      \ud804[\udc00-\udc05]
    uc32 from = non_bmp->at(i).from();
    uc32 to = non_bmp->at(i).to();
    uc16 from_l = unibrow::Utf16::LeadSurrogate(from);
    uc16 from_t = unibrow::Utf16::TrailSurrogate(from);
    uc16 to_l = unibrow::Utf16::LeadSurrogate(to);
    uc16 to_t = unibrow::Utf16::TrailSurrogate(to);
    if (from_l == to_l) {
      // The lead surrogate is the same.
      result->AddAlternative(
          GuardedAlternative(TextNode::CreateForSurrogatePair(
              zone, CharacterRange::Singleton(from_l),
              CharacterRange::Range(from_t, to_t), compiler->read_backward(),
              on_success, default_flags)));
    } else {
      if (from_t != kTrailSurrogateStart) {
        // Add [from_l][from_t-\udfff]
        result->AddAlternative(
            GuardedAlternative(TextNode::CreateForSurrogatePair(
                zone, CharacterRange::Singleton(from_l),
                CharacterRange::Range(from_t, kTrailSurrogateEnd),
                compiler->read_backward(), on_success, default_flags)));
        from_l++;
      }
      if (to_t != kTrailSurrogateEnd) {
        // Add [to_l][\udc00-to_t]
        result->AddAlternative(
            GuardedAlternative(TextNode::CreateForSurrogatePair(
                zone, CharacterRange::Singleton(to_l),
                CharacterRange::Range(kTrailSurrogateStart, to_t),
                compiler->read_backward(), on_success, default_flags)));
        to_l--;
      }
      if (from_l <= to_l) {
        // Add [from_l-to_l][\udc00-\udfff]
        result->AddAlternative(
            GuardedAlternative(TextNode::CreateForSurrogatePair(
                zone, CharacterRange::Range(from_l, to_l),
                CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
                compiler->read_backward(), on_success, default_flags)));
      }
    }
  }
}

RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch(
    RegExpCompiler* compiler, ZoneList<CharacterRange>* lookbehind,
    ZoneList<CharacterRange>* match, RegExpNode* on_success, bool read_backward,
    JSRegExp::Flags flags) {
  Zone* zone = compiler->zone();
  RegExpNode* match_node = TextNode::CreateForCharacterRanges(
      zone, match, read_backward, on_success, flags);
  int stack_register = compiler->UnicodeLookaroundStackRegister();
  int position_register = compiler->UnicodeLookaroundPositionRegister();
  RegExpLookaround::Builder lookaround(false, match_node, stack_register,
                                       position_register);
  RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
      zone, lookbehind, !read_backward, lookaround.on_match_success(), flags);
  return lookaround.ForMatch(negative_match);
}

RegExpNode* MatchAndNegativeLookaroundInReadDirection(
    RegExpCompiler* compiler, ZoneList<CharacterRange>* match,
    ZoneList<CharacterRange>* lookahead, RegExpNode* on_success,
    bool read_backward, JSRegExp::Flags flags) {
  Zone* zone = compiler->zone();
  int stack_register = compiler->UnicodeLookaroundStackRegister();
  int position_register = compiler->UnicodeLookaroundPositionRegister();
  RegExpLookaround::Builder lookaround(false, on_success, stack_register,
                                       position_register);
  RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
      zone, lookahead, read_backward, lookaround.on_match_success(), flags);
  return TextNode::CreateForCharacterRanges(
      zone, match, read_backward, lookaround.ForMatch(negative_match), flags);
}

void AddLoneLeadSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
                           RegExpNode* on_success,
                           UnicodeRangeSplitter* splitter) {
  JSRegExp::Flags default_flags = JSRegExp::Flags();
307 308
  ZoneList<CharacterRange>* lead_surrogates =
      ToCanonicalZoneList(splitter->lead_surrogates(), compiler->zone());
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  if (lead_surrogates == nullptr) return;
  Zone* zone = compiler->zone();
  // E.g. \ud801 becomes \ud801(?![\udc00-\udfff]).
  ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
      zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));

  RegExpNode* match;
  if (compiler->read_backward()) {
    // Reading backward. Assert that reading forward, there is no trail
    // surrogate, and then backward match the lead surrogate.
    match = NegativeLookaroundAgainstReadDirectionAndMatch(
        compiler, trail_surrogates, lead_surrogates, on_success, true,
        default_flags);
  } else {
    // Reading forward. Forward match the lead surrogate and assert that
    // no trail surrogate follows.
    match = MatchAndNegativeLookaroundInReadDirection(
        compiler, lead_surrogates, trail_surrogates, on_success, false,
        default_flags);
  }
  result->AddAlternative(GuardedAlternative(match));
}

void AddLoneTrailSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
                            RegExpNode* on_success,
                            UnicodeRangeSplitter* splitter) {
  JSRegExp::Flags default_flags = JSRegExp::Flags();
336 337
  ZoneList<CharacterRange>* trail_surrogates =
      ToCanonicalZoneList(splitter->trail_surrogates(), compiler->zone());
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
  if (trail_surrogates == nullptr) return;
  Zone* zone = compiler->zone();
  // E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01
  ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
      zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));

  RegExpNode* match;
  if (compiler->read_backward()) {
    // Reading backward. Backward match the trail surrogate and assert that no
    // lead surrogate precedes it.
    match = MatchAndNegativeLookaroundInReadDirection(
        compiler, trail_surrogates, lead_surrogates, on_success, true,
        default_flags);
  } else {
    // Reading forward. Assert that reading backward, there is no lead
    // surrogate, and then forward match the trail surrogate.
    match = NegativeLookaroundAgainstReadDirectionAndMatch(
        compiler, lead_surrogates, trail_surrogates, on_success, false,
        default_flags);
  }
  result->AddAlternative(GuardedAlternative(match));
}

RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler,
                              RegExpNode* on_success) {
  // This implements ES2015 21.2.5.2.3, AdvanceStringIndex.
  DCHECK(!compiler->read_backward());
  Zone* zone = compiler->zone();
  // Advance any character. If the character happens to be a lead surrogate and
  // we advanced into the middle of a surrogate pair, it will work out, as
  // nothing will match from there. We will have to advance again, consuming
  // the associated trail surrogate.
  ZoneList<CharacterRange>* range = CharacterRange::List(
      zone, CharacterRange::Range(0, String::kMaxUtf16CodeUnit));
  JSRegExp::Flags default_flags = JSRegExp::Flags();
  return TextNode::CreateForCharacterRanges(zone, range, false, on_success,
                                            default_flags);
}

void AddUnicodeCaseEquivalents(ZoneList<CharacterRange>* ranges, Zone* zone) {
#ifdef V8_INTL_SUPPORT
  DCHECK(CharacterRange::IsCanonical(ranges));

  // Micro-optimization to avoid passing large ranges to UnicodeSet::closeOver.
  // See also https://crbug.com/v8/6727.
  // TODO(jgruber): This only covers the special case of the {0,0x10FFFF} range,
  // which we use frequently internally. But large ranges can also easily be
  // created by the user. We might want to have a more general caching mechanism
  // for such ranges.
  if (ranges->length() == 1 && ranges->at(0).IsEverything(kNonBmpEnd)) return;

  // Use ICU to compute the case fold closure over the ranges.
  icu::UnicodeSet set;
  for (int i = 0; i < ranges->length(); i++) {
    set.add(ranges->at(i).from(), ranges->at(i).to());
  }
  ranges->Clear();
  set.closeOver(USET_CASE_INSENSITIVE);
  // Full case mapping map single characters to multiple characters.
  // Those are represented as strings in the set. Remove them so that
  // we end up with only simple and common case mappings.
  set.removeAllStrings();
  for (int i = 0; i < set.getRangeCount(); i++) {
    ranges->Add(CharacterRange::Range(set.getRangeStart(i), set.getRangeEnd(i)),
                zone);
  }
  // No errors and everything we collected have been ranges.
  CharacterRange::Canonicalize(ranges);
#endif  // V8_INTL_SUPPORT
}

409 410
}  // namespace

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
                                         RegExpNode* on_success) {
  set_.Canonicalize();
  Zone* zone = compiler->zone();
  ZoneList<CharacterRange>* ranges = this->ranges(zone);
  if (NeedsUnicodeCaseEquivalents(flags_)) {
    AddUnicodeCaseEquivalents(ranges, zone);
  }
  if (IsUnicode(flags_) && !compiler->one_byte() &&
      !contains_split_surrogate()) {
    if (is_negated()) {
      ZoneList<CharacterRange>* negated =
          new (zone) ZoneList<CharacterRange>(2, zone);
      CharacterRange::Negate(ranges, negated, zone);
      ranges = negated;
    }
    if (ranges->length() == 0) {
      JSRegExp::Flags default_flags;
      RegExpCharacterClass* fail =
          new (zone) RegExpCharacterClass(zone, ranges, default_flags);
      return new (zone) TextNode(fail, compiler->read_backward(), on_success);
    }
    if (standard_type() == '*') {
      return UnanchoredAdvance(compiler, on_success);
    } else {
      ChoiceNode* result = new (zone) ChoiceNode(2, zone);
437
      UnicodeRangeSplitter splitter(ranges);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
      AddBmpCharacters(compiler, result, on_success, &splitter);
      AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter);
      AddLoneLeadSurrogates(compiler, result, on_success, &splitter);
      AddLoneTrailSurrogates(compiler, result, on_success, &splitter);
      return result;
    }
  } else {
    return new (zone) TextNode(this, compiler->read_backward(), on_success);
  }
}

int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
  RegExpAtom* atom1 = (*a)->AsAtom();
  RegExpAtom* atom2 = (*b)->AsAtom();
  uc16 character1 = atom1->data().at(0);
  uc16 character2 = atom2->data().at(0);
  if (character1 < character2) return -1;
  if (character1 > character2) return 1;
  return 0;
}

#ifdef V8_INTL_SUPPORT

// Case Insensitve comparesion
int CompareFirstCharCaseInsensitve(RegExpTree* const* a, RegExpTree* const* b) {
  RegExpAtom* atom1 = (*a)->AsAtom();
  RegExpAtom* atom2 = (*b)->AsAtom();
  icu::UnicodeString character1(atom1->data().at(0));
  return character1.caseCompare(atom2->data().at(0), U_FOLD_CASE_DEFAULT);
}

#else

static unibrow::uchar Canonical(
    unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
    unibrow::uchar c) {
  unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
  int length = canonicalize->get(c, '\0', chars);
  DCHECK_LE(length, 1);
  unibrow::uchar canonical = c;
  if (length == 1) canonical = chars[0];
  return canonical;
}

int CompareFirstCharCaseIndependent(
    unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
    RegExpTree* const* a, RegExpTree* const* b) {
  RegExpAtom* atom1 = (*a)->AsAtom();
  RegExpAtom* atom2 = (*b)->AsAtom();
  unibrow::uchar character1 = atom1->data().at(0);
  unibrow::uchar character2 = atom2->data().at(0);
  if (character1 == character2) return 0;
  if (character1 >= 'a' || character2 >= 'a') {
    character1 = Canonical(canonicalize, character1);
    character2 = Canonical(canonicalize, character2);
  }
  return static_cast<int>(character1) - static_cast<int>(character2);
}
#endif  // V8_INTL_SUPPORT

// We can stable sort runs of atoms, since the order does not matter if they
// start with different characters.
// Returns true if any consecutive atoms were found.
bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
  ZoneList<RegExpTree*>* alternatives = this->alternatives();
  int length = alternatives->length();
  bool found_consecutive_atoms = false;
  for (int i = 0; i < length; i++) {
    while (i < length) {
      RegExpTree* alternative = alternatives->at(i);
      if (alternative->IsAtom()) break;
      i++;
    }
    // i is length or it is the index of an atom.
    if (i == length) break;
    int first_atom = i;
    JSRegExp::Flags flags = alternatives->at(i)->AsAtom()->flags();
    i++;
    while (i < length) {
      RegExpTree* alternative = alternatives->at(i);
      if (!alternative->IsAtom()) break;
      if (alternative->AsAtom()->flags() != flags) break;
      i++;
    }
    // Sort atoms to get ones with common prefixes together.
    // This step is more tricky if we are in a case-independent regexp,
    // because it would change /is|I/ to /I|is/, and order matters when
    // the regexp parts don't match only disjoint starting points. To fix
    // this we have a version of CompareFirstChar that uses case-
    // independent character classes for comparison.
    DCHECK_LT(first_atom, alternatives->length());
    DCHECK_LE(i, alternatives->length());
    DCHECK_LE(first_atom, i);
    if (IgnoreCase(flags)) {
#ifdef V8_INTL_SUPPORT
      alternatives->StableSort(CompareFirstCharCaseInsensitve, first_atom,
                               i - first_atom);
#else
      unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
          compiler->isolate()->regexp_macro_assembler_canonicalize();
      auto compare_closure = [canonicalize](RegExpTree* const* a,
                                            RegExpTree* const* b) {
        return CompareFirstCharCaseIndependent(canonicalize, a, b);
      };
      alternatives->StableSort(compare_closure, first_atom, i - first_atom);
#endif  // V8_INTL_SUPPORT
    } else {
      alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
    }
    if (i - first_atom > 1) found_consecutive_atoms = true;
  }
  return found_consecutive_atoms;
}

// Optimizes ab|ac|az to a(?:b|c|d).
void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
  Zone* zone = compiler->zone();
  ZoneList<RegExpTree*>* alternatives = this->alternatives();
  int length = alternatives->length();

  int write_posn = 0;
  int i = 0;
  while (i < length) {
    RegExpTree* alternative = alternatives->at(i);
    if (!alternative->IsAtom()) {
      alternatives->at(write_posn++) = alternatives->at(i);
      i++;
      continue;
    }
    RegExpAtom* const atom = alternative->AsAtom();
    JSRegExp::Flags flags = atom->flags();
#ifdef V8_INTL_SUPPORT
    icu::UnicodeString common_prefix(atom->data().at(0));
#else
    unibrow::uchar common_prefix = atom->data().at(0);
#endif  // V8_INTL_SUPPORT
    int first_with_prefix = i;
    int prefix_length = atom->length();
    i++;
    while (i < length) {
      alternative = alternatives->at(i);
      if (!alternative->IsAtom()) break;
      RegExpAtom* const atom = alternative->AsAtom();
      if (atom->flags() != flags) break;
#ifdef V8_INTL_SUPPORT
      icu::UnicodeString new_prefix(atom->data().at(0));
      if (new_prefix != common_prefix) {
        if (!IgnoreCase(flags)) break;
        if (common_prefix.caseCompare(new_prefix, U_FOLD_CASE_DEFAULT) != 0)
          break;
      }
#else
      unibrow::uchar new_prefix = atom->data().at(0);
      if (new_prefix != common_prefix) {
        if (!IgnoreCase(flags)) break;
        unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
            compiler->isolate()->regexp_macro_assembler_canonicalize();
        new_prefix = Canonical(canonicalize, new_prefix);
        common_prefix = Canonical(canonicalize, common_prefix);
        if (new_prefix != common_prefix) break;
      }
#endif  // V8_INTL_SUPPORT
      prefix_length = Min(prefix_length, atom->length());
      i++;
    }
    if (i > first_with_prefix + 2) {
      // Found worthwhile run of alternatives with common prefix of at least one
      // character.  The sorting function above did not sort on more than one
      // character for reasons of correctness, but there may still be a longer
      // common prefix if the terms were similar or presorted in the input.
      // Find out how long the common prefix is.
      int run_length = i - first_with_prefix;
      RegExpAtom* const atom = alternatives->at(first_with_prefix)->AsAtom();
      for (int j = 1; j < run_length && prefix_length > 1; j++) {
        RegExpAtom* old_atom =
            alternatives->at(j + first_with_prefix)->AsAtom();
        for (int k = 1; k < prefix_length; k++) {
          if (atom->data().at(k) != old_atom->data().at(k)) {
            prefix_length = k;
            break;
          }
        }
      }
      RegExpAtom* prefix = new (zone)
          RegExpAtom(atom->data().SubVector(0, prefix_length), flags);
      ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone);
      pair->Add(prefix, zone);
      ZoneList<RegExpTree*>* suffixes =
          new (zone) ZoneList<RegExpTree*>(run_length, zone);
      for (int j = 0; j < run_length; j++) {
        RegExpAtom* old_atom =
            alternatives->at(j + first_with_prefix)->AsAtom();
        int len = old_atom->length();
        if (len == prefix_length) {
          suffixes->Add(new (zone) RegExpEmpty(), zone);
        } else {
          RegExpTree* suffix = new (zone) RegExpAtom(
              old_atom->data().SubVector(prefix_length, old_atom->length()),
              flags);
          suffixes->Add(suffix, zone);
        }
      }
      pair->Add(new (zone) RegExpDisjunction(suffixes), zone);
      alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair);
    } else {
      // Just copy any non-worthwhile alternatives.
      for (int j = first_with_prefix; j < i; j++) {
        alternatives->at(write_posn++) = alternatives->at(j);
      }
    }
  }
  alternatives->Rewind(write_posn);  // Trim end of array.
}

// Optimizes b|c|z to [bcz].
void RegExpDisjunction::FixSingleCharacterDisjunctions(
    RegExpCompiler* compiler) {
  Zone* zone = compiler->zone();
  ZoneList<RegExpTree*>* alternatives = this->alternatives();
  int length = alternatives->length();

  int write_posn = 0;
  int i = 0;
  while (i < length) {
    RegExpTree* alternative = alternatives->at(i);
    if (!alternative->IsAtom()) {
      alternatives->at(write_posn++) = alternatives->at(i);
      i++;
      continue;
    }
    RegExpAtom* const atom = alternative->AsAtom();
    if (atom->length() != 1) {
      alternatives->at(write_posn++) = alternatives->at(i);
      i++;
      continue;
    }
    JSRegExp::Flags flags = atom->flags();
    DCHECK_IMPLIES(IsUnicode(flags),
                   !unibrow::Utf16::IsLeadSurrogate(atom->data().at(0)));
    bool contains_trail_surrogate =
        unibrow::Utf16::IsTrailSurrogate(atom->data().at(0));
    int first_in_run = i;
    i++;
    // Find a run of single-character atom alternatives that have identical
    // flags (case independence and unicode-ness).
    while (i < length) {
      alternative = alternatives->at(i);
      if (!alternative->IsAtom()) break;
      RegExpAtom* const atom = alternative->AsAtom();
      if (atom->length() != 1) break;
      if (atom->flags() != flags) break;
      DCHECK_IMPLIES(IsUnicode(flags),
                     !unibrow::Utf16::IsLeadSurrogate(atom->data().at(0)));
      contains_trail_surrogate |=
          unibrow::Utf16::IsTrailSurrogate(atom->data().at(0));
      i++;
    }
    if (i > first_in_run + 1) {
      // Found non-trivial run of single-character alternatives.
      int run_length = i - first_in_run;
      ZoneList<CharacterRange>* ranges =
          new (zone) ZoneList<CharacterRange>(2, zone);
      for (int j = 0; j < run_length; j++) {
        RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
        DCHECK_EQ(old_atom->length(), 1);
        ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
      }
      RegExpCharacterClass::CharacterClassFlags character_class_flags;
      if (IsUnicode(flags) && contains_trail_surrogate) {
        character_class_flags = RegExpCharacterClass::CONTAINS_SPLIT_SURROGATE;
      }
      alternatives->at(write_posn++) = new (zone)
          RegExpCharacterClass(zone, ranges, flags, character_class_flags);
    } else {
      // Just copy any trivial alternatives.
      for (int j = first_in_run; j < i; j++) {
        alternatives->at(write_posn++) = alternatives->at(j);
      }
    }
  }
  alternatives->Rewind(write_posn);  // Trim end of array.
}

RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
                                      RegExpNode* on_success) {
  ZoneList<RegExpTree*>* alternatives = this->alternatives();

  if (alternatives->length() > 2) {
    bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
    if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
    FixSingleCharacterDisjunctions(compiler);
    if (alternatives->length() == 1) {
      return alternatives->at(0)->ToNode(compiler, on_success);
    }
  }

  int length = alternatives->length();

  ChoiceNode* result =
      new (compiler->zone()) ChoiceNode(length, compiler->zone());
  for (int i = 0; i < length; i++) {
    GuardedAlternative alternative(
        alternatives->at(i)->ToNode(compiler, on_success));
    result->AddAlternative(alternative);
  }
  return result;
}

RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
                                     RegExpNode* on_success) {
  return ToNode(min(), max(), is_greedy(), body(), compiler, on_success);
}

namespace {
// Desugar \b to (?<=\w)(?=\W)|(?<=\W)(?=\w) and
//         \B to (?<=\w)(?=\w)|(?<=\W)(?=\W)
RegExpNode* BoundaryAssertionAsLookaround(RegExpCompiler* compiler,
                                          RegExpNode* on_success,
                                          RegExpAssertion::AssertionType type,
                                          JSRegExp::Flags flags) {
  DCHECK(NeedsUnicodeCaseEquivalents(flags));
  Zone* zone = compiler->zone();
  ZoneList<CharacterRange>* word_range =
      new (zone) ZoneList<CharacterRange>(2, zone);
  CharacterRange::AddClassEscape('w', word_range, true, zone);
  int stack_register = compiler->UnicodeLookaroundStackRegister();
  int position_register = compiler->UnicodeLookaroundPositionRegister();
  ChoiceNode* result = new (zone) ChoiceNode(2, zone);
  // Add two choices. The (non-)boundary could start with a word or
  // a non-word-character.
  for (int i = 0; i < 2; i++) {
    bool lookbehind_for_word = i == 0;
    bool lookahead_for_word =
        (type == RegExpAssertion::BOUNDARY) ^ lookbehind_for_word;
    // Look to the left.
    RegExpLookaround::Builder lookbehind(lookbehind_for_word, on_success,
                                         stack_register, position_register);
    RegExpNode* backward = TextNode::CreateForCharacterRanges(
        zone, word_range, true, lookbehind.on_match_success(), flags);
    // Look to the right.
    RegExpLookaround::Builder lookahead(lookahead_for_word,
                                        lookbehind.ForMatch(backward),
                                        stack_register, position_register);
    RegExpNode* forward = TextNode::CreateForCharacterRanges(
        zone, word_range, false, lookahead.on_match_success(), flags);
    result->AddAlternative(GuardedAlternative(lookahead.ForMatch(forward)));
  }
  return result;
}
}  // anonymous namespace

RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
                                    RegExpNode* on_success) {
  NodeInfo info;
  Zone* zone = compiler->zone();

  switch (assertion_type()) {
    case START_OF_LINE:
      return AssertionNode::AfterNewline(on_success);
    case START_OF_INPUT:
      return AssertionNode::AtStart(on_success);
    case BOUNDARY:
      return NeedsUnicodeCaseEquivalents(flags_)
                 ? BoundaryAssertionAsLookaround(compiler, on_success, BOUNDARY,
                                                 flags_)
                 : AssertionNode::AtBoundary(on_success);
    case NON_BOUNDARY:
      return NeedsUnicodeCaseEquivalents(flags_)
                 ? BoundaryAssertionAsLookaround(compiler, on_success,
                                                 NON_BOUNDARY, flags_)
                 : AssertionNode::AtNonBoundary(on_success);
    case END_OF_INPUT:
      return AssertionNode::AtEnd(on_success);
    case END_OF_LINE: {
      // Compile $ in multiline regexps as an alternation with a positive
      // lookahead in one side and an end-of-input on the other side.
      // We need two registers for the lookahead.
      int stack_pointer_register = compiler->AllocateRegister();
      int position_register = compiler->AllocateRegister();
      // The ChoiceNode to distinguish between a newline and end-of-input.
      ChoiceNode* result = new (zone) ChoiceNode(2, zone);
      // Create a newline atom.
      ZoneList<CharacterRange>* newline_ranges =
          new (zone) ZoneList<CharacterRange>(3, zone);
      CharacterRange::AddClassEscape('n', newline_ranges, false, zone);
      JSRegExp::Flags default_flags = JSRegExp::Flags();
      RegExpCharacterClass* newline_atom =
          new (zone) RegExpCharacterClass('n', default_flags);
      TextNode* newline_matcher =
          new (zone) TextNode(newline_atom, false,
                              ActionNode::PositiveSubmatchSuccess(
                                  stack_pointer_register, position_register,
                                  0,   // No captures inside.
                                  -1,  // Ignored if no captures.
                                  on_success));
      // Create an end-of-input matcher.
      RegExpNode* end_of_line = ActionNode::BeginSubmatch(
          stack_pointer_register, position_register, newline_matcher);
      // Add the two alternatives to the ChoiceNode.
      GuardedAlternative eol_alternative(end_of_line);
      result->AddAlternative(eol_alternative);
      GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
      result->AddAlternative(end_alternative);
      return result;
    }
    default:
      UNREACHABLE();
  }
  return on_success;
}

RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
                                        RegExpNode* on_success) {
  return new (compiler->zone())
      BackReferenceNode(RegExpCapture::StartRegister(index()),
                        RegExpCapture::EndRegister(index()), flags_,
                        compiler->read_backward(), on_success);
}

RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
                                RegExpNode* on_success) {
  return on_success;
}

RegExpLookaround::Builder::Builder(bool is_positive, RegExpNode* on_success,
                                   int stack_pointer_register,
                                   int position_register,
                                   int capture_register_count,
                                   int capture_register_start)
    : is_positive_(is_positive),
      on_success_(on_success),
      stack_pointer_register_(stack_pointer_register),
      position_register_(position_register) {
  if (is_positive_) {
    on_match_success_ = ActionNode::PositiveSubmatchSuccess(
        stack_pointer_register, position_register, capture_register_count,
        capture_register_start, on_success_);
  } else {
    Zone* zone = on_success_->zone();
    on_match_success_ = new (zone) NegativeSubmatchSuccess(
        stack_pointer_register, position_register, capture_register_count,
        capture_register_start, zone);
  }
}

RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) {
  if (is_positive_) {
    return ActionNode::BeginSubmatch(stack_pointer_register_,
                                     position_register_, match);
  } else {
    Zone* zone = on_success_->zone();
    // We use a ChoiceNode to represent the negative lookaround. The first
    // alternative is the negative match. On success, the end node backtracks.
    // On failure, the second alternative is tried and leads to success.
    // NegativeLookaheadChoiceNode is a special ChoiceNode that ignores the
    // first exit when calculating quick checks.
    ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode(
        GuardedAlternative(match), GuardedAlternative(on_success_), zone);
    return ActionNode::BeginSubmatch(stack_pointer_register_,
                                     position_register_, choice_node);
  }
}

RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
                                     RegExpNode* on_success) {
  int stack_pointer_register = compiler->AllocateRegister();
  int position_register = compiler->AllocateRegister();

  const int registers_per_capture = 2;
  const int register_of_first_capture = 2;
  int register_count = capture_count_ * registers_per_capture;
  int register_start =
      register_of_first_capture + capture_from_ * registers_per_capture;

  RegExpNode* result;
  bool was_reading_backward = compiler->read_backward();
  compiler->set_read_backward(type() == LOOKBEHIND);
  Builder builder(is_positive(), on_success, stack_pointer_register,
                  position_register, register_count, register_start);
  RegExpNode* match = body_->ToNode(compiler, builder.on_match_success());
  result = builder.ForMatch(match);
  compiler->set_read_backward(was_reading_backward);
  return result;
}

RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
                                  RegExpNode* on_success) {
  return ToNode(body(), index(), compiler, on_success);
}

RegExpNode* RegExpCapture::ToNode(RegExpTree* body, int index,
                                  RegExpCompiler* compiler,
                                  RegExpNode* on_success) {
  DCHECK_NOT_NULL(body);
  int start_reg = RegExpCapture::StartRegister(index);
  int end_reg = RegExpCapture::EndRegister(index);
  if (compiler->read_backward()) std::swap(start_reg, end_reg);
  RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
  RegExpNode* body_node = body->ToNode(compiler, store_end);
  return ActionNode::StorePosition(start_reg, true, body_node);
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
namespace {

class AssertionSequenceRewriter final {
 public:
  // TODO(jgruber): Consider moving this to a separate AST tree rewriter pass
  // instead of sprinkling rewrites into the AST->Node conversion process.
  static void MaybeRewrite(ZoneList<RegExpTree*>* terms, Zone* zone) {
    AssertionSequenceRewriter rewriter(terms, zone);

    static constexpr int kNoIndex = -1;
    int from = kNoIndex;

    for (int i = 0; i < terms->length(); i++) {
      RegExpTree* t = terms->at(i);
      if (from == kNoIndex && t->IsAssertion()) {
        from = i;  // Start a sequence.
      } else if (from != kNoIndex && !t->IsAssertion()) {
        // Terminate and process the sequence.
        if (i - from > 1) rewriter.Rewrite(from, i);
        from = kNoIndex;
      }
    }

    if (from != kNoIndex && terms->length() - from > 1) {
      rewriter.Rewrite(from, terms->length());
    }
  }

  // All assertions are zero width. A consecutive sequence of assertions is
  // order-independent. There's two ways we can optimize here:
  // 1. fold all identical assertions.
  // 2. if any assertion combinations are known to fail (e.g. \b\B), the entire
  //    sequence fails.
  void Rewrite(int from, int to) {
    DCHECK_GT(to, from + 1);

    // Bitfield of all seen assertions.
    uint32_t seen_assertions = 0;
    STATIC_ASSERT(RegExpAssertion::LAST_TYPE < kUInt32Size * kBitsPerByte);

    // Flags must match for folding.
    JSRegExp::Flags flags = terms_->at(from)->AsAssertion()->flags();
    bool saw_mismatched_flags = false;

    for (int i = from; i < to; i++) {
      RegExpAssertion* t = terms_->at(i)->AsAssertion();
      if (t->flags() != flags) saw_mismatched_flags = true;
      const uint32_t bit = 1 << t->assertion_type();

      if ((seen_assertions & bit) && !saw_mismatched_flags) {
        // Fold duplicates.
        terms_->Set(i, new (zone_) RegExpEmpty());
      }

      seen_assertions |= bit;
    }

    // Collapse failures.
    const uint32_t always_fails_mask =
        1 << RegExpAssertion::BOUNDARY | 1 << RegExpAssertion::NON_BOUNDARY;
    if ((seen_assertions & always_fails_mask) == always_fails_mask) {
      ReplaceSequenceWithFailure(from, to);
    }
  }

  void ReplaceSequenceWithFailure(int from, int to) {
    // Replace the entire sequence with a single node that always fails.
    // TODO(jgruber): Consider adding an explicit Fail kind. Until then, the
    // negated '*' (everything) range serves the purpose.
    ZoneList<CharacterRange>* ranges =
        new (zone_) ZoneList<CharacterRange>(0, zone_);
    RegExpCharacterClass* cc =
        new (zone_) RegExpCharacterClass(zone_, ranges, JSRegExp::Flags());
    terms_->Set(from, cc);

    // Zero out the rest.
    RegExpEmpty* empty = new (zone_) RegExpEmpty();
    for (int i = from + 1; i < to; i++) terms_->Set(i, empty);
  }

 private:
  AssertionSequenceRewriter(ZoneList<RegExpTree*>* terms, Zone* zone)
      : zone_(zone), terms_(terms) {}

  Zone* zone_;
  ZoneList<RegExpTree*>* terms_;
};

}  // namespace

1030 1031 1032
RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
                                      RegExpNode* on_success) {
  ZoneList<RegExpTree*>* children = nodes();
1033 1034 1035

  AssertionSequenceRewriter::MaybeRewrite(children, compiler->zone());

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
  RegExpNode* current = on_success;
  if (compiler->read_backward()) {
    for (int i = 0; i < children->length(); i++) {
      current = children->at(i)->ToNode(compiler, current);
    }
  } else {
    for (int i = children->length() - 1; i >= 0; i--) {
      current = children->at(i)->ToNode(compiler, current);
    }
  }
  return current;
}

static void AddClass(const int* elmv, int elmc,
                     ZoneList<CharacterRange>* ranges, Zone* zone) {
  elmc--;
  DCHECK_EQ(kRangeEndMarker, elmv[elmc]);
  for (int i = 0; i < elmc; i += 2) {
    DCHECK(elmv[i] < elmv[i + 1]);
    ranges->Add(CharacterRange::Range(elmv[i], elmv[i + 1] - 1), zone);
  }
}

static void AddClassNegated(const int* elmv, int elmc,
                            ZoneList<CharacterRange>* ranges, Zone* zone) {
  elmc--;
  DCHECK_EQ(kRangeEndMarker, elmv[elmc]);
  DCHECK_NE(0x0000, elmv[0]);
  DCHECK_NE(String::kMaxCodePoint, elmv[elmc - 1]);
  uc16 last = 0x0000;
  for (int i = 0; i < elmc; i += 2) {
    DCHECK(last <= elmv[i] - 1);
    DCHECK(elmv[i] < elmv[i + 1]);
    ranges->Add(CharacterRange::Range(last, elmv[i] - 1), zone);
    last = elmv[i + 1];
  }
  ranges->Add(CharacterRange::Range(last, String::kMaxCodePoint), zone);
}

void CharacterRange::AddClassEscape(char type, ZoneList<CharacterRange>* ranges,
                                    bool add_unicode_case_equivalents,
                                    Zone* zone) {
  if (add_unicode_case_equivalents && (type == 'w' || type == 'W')) {
    // See #sec-runtime-semantics-wordcharacters-abstract-operation
    // In case of unicode and ignore_case, we need to create the closure over
    // case equivalent characters before negating.
    ZoneList<CharacterRange>* new_ranges =
        new (zone) ZoneList<CharacterRange>(2, zone);
    AddClass(kWordRanges, kWordRangeCount, new_ranges, zone);
    AddUnicodeCaseEquivalents(new_ranges, zone);
    if (type == 'W') {
      ZoneList<CharacterRange>* negated =
          new (zone) ZoneList<CharacterRange>(2, zone);
      CharacterRange::Negate(new_ranges, negated, zone);
      new_ranges = negated;
    }
    ranges->AddAll(*new_ranges, zone);
    return;
  }
  AddClassEscape(type, ranges, zone);
}

void CharacterRange::AddClassEscape(char type, ZoneList<CharacterRange>* ranges,
                                    Zone* zone) {
  switch (type) {
    case 's':
      AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
      break;
    case 'S':
      AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
      break;
    case 'w':
      AddClass(kWordRanges, kWordRangeCount, ranges, zone);
      break;
    case 'W':
      AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
      break;
    case 'd':
      AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
      break;
    case 'D':
      AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
      break;
    case '.':
      AddClassNegated(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges,
                      zone);
      break;
    // This is not a character range as defined by the spec but a
    // convenient shorthand for a character class that matches any
    // character.
    case '*':
      ranges->Add(CharacterRange::Everything(), zone);
      break;
    // This is the set of characters matched by the $ and ^ symbols
    // in multiline mode.
    case 'n':
      AddClass(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges, zone);
      break;
    default:
      UNREACHABLE();
  }
}

Vector<const int> CharacterRange::GetWordBounds() {
  return Vector<const int>(kWordRanges, kWordRangeCount - 1);
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
#ifdef V8_INTL_SUPPORT
struct IgnoreSet {
  IgnoreSet() : set(BuildIgnoreSet()) {}
  const icu::UnicodeSet set;
};

struct SpecialAddSet {
  SpecialAddSet() : set(BuildSpecialAddSet()) {}
  const icu::UnicodeSet set;
};

icu::UnicodeSet BuildAsciiAToZSet() {
  icu::UnicodeSet set('a', 'z');
  set.add('A', 'Z');
  set.freeze();
  return set;
}

struct AsciiAToZSet {
  AsciiAToZSet() : set(BuildAsciiAToZSet()) {}
  const icu::UnicodeSet set;
};

static base::LazyInstance<IgnoreSet>::type ignore_set =
    LAZY_INSTANCE_INITIALIZER;

static base::LazyInstance<SpecialAddSet>::type special_add_set =
    LAZY_INSTANCE_INITIALIZER;

static base::LazyInstance<AsciiAToZSet>::type ascii_a_to_z_set =
    LAZY_INSTANCE_INITIALIZER;
#endif  // V8_INTL_SUPPORT

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
// static
void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
                                        ZoneList<CharacterRange>* ranges,
                                        bool is_one_byte) {
  CharacterRange::Canonicalize(ranges);
  int range_count = ranges->length();
#ifdef V8_INTL_SUPPORT
  icu::UnicodeSet others;
  for (int i = 0; i < range_count; i++) {
    CharacterRange range = ranges->at(i);
1186 1187 1188
    uc32 from = range.from();
    if (from > String::kMaxUtf16CodeUnit) continue;
    uc32 to = Min(range.to(), String::kMaxUtf16CodeUnit);
1189
    // Nothing to be done for surrogates.
1190
    if (from >= kLeadSurrogateStart && to <= kTrailSurrogateEnd) continue;
1191
    if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
      if (from > String::kMaxOneByteCharCode) continue;
      if (to > String::kMaxOneByteCharCode) to = String::kMaxOneByteCharCode;
    }
    others.add(from, to);
  }

  // Set of characters already added to ranges that do not need to be added
  // again.
  icu::UnicodeSet already_added(others);

  // Set of characters in ranges that are in the 52 ASCII characters [a-zA-Z].
  icu::UnicodeSet in_ascii_a_to_z(others);
  in_ascii_a_to_z.retainAll(ascii_a_to_z_set.Pointer()->set);

  // Remove all chars in [a-zA-Z] from others.
  others.removeAll(in_ascii_a_to_z);

  // Set of characters in ranges that are overlapping with special add set.
  icu::UnicodeSet in_special_add(others);
  in_special_add.retainAll(special_add_set.Pointer()->set);

  others.removeAll(in_special_add);

  // Ignore all chars in ignore set.
  others.removeAll(ignore_set.Pointer()->set);

  // For most of the chars in ranges that is still in others, find the case
  // equivlant set by calling closeOver(USET_CASE_INSENSITIVE).
  others.closeOver(USET_CASE_INSENSITIVE);

  // Because closeOver(USET_CASE_INSENSITIVE) may add ASCII [a-zA-Z] to others,
  // but ECMA262 "i" mode won't consider that, remove them from others.
  // Ex: U+017F add 'S' and 's' to others.
  others.removeAll(ascii_a_to_z_set.Pointer()->set);

  // Special handling for in_ascii_a_to_z.
  for (int32_t i = 0; i < in_ascii_a_to_z.getRangeCount(); i++) {
    UChar32 start = in_ascii_a_to_z.getRangeStart(i);
    UChar32 end = in_ascii_a_to_z.getRangeEnd(i);
    // Check if it is uppercase A-Z by checking bit 6.
    if (start & 0x0020) {
      // Add the lowercases
      others.add(start & 0x005F, end & 0x005F);
    } else {
      // Add the uppercases
      others.add(start | 0x0020, end | 0x0020);
1238
    }
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
  }

  // Special handling for chars in "Special Add" set.
  for (int32_t i = 0; i < in_special_add.getRangeCount(); i++) {
    UChar32 end = in_special_add.getRangeEnd(i);
    for (UChar32 ch = in_special_add.getRangeStart(i); ch <= end; ch++) {
      // Add the uppercase of this character if itself is not an uppercase
      // character.
      // Note: The if condiction cannot be u_islower(ch) because ch could be
      // neither uppercase nor lowercase but Mn.
      if (!u_isupper(ch)) {
        others.add(u_toupper(ch));
      }
      icu::UnicodeSet candidates(ch, ch);
      candidates.closeOver(USET_CASE_INSENSITIVE);
      for (int32_t j = 0; j < candidates.getRangeCount(); j++) {
        UChar32 end2 = candidates.getRangeEnd(j);
        for (UChar32 ch2 = candidates.getRangeStart(j); ch2 <= end2; ch2++) {
          // Add character that is not uppercase to others.
          if (!u_isupper(ch2)) {
            others.add(ch2);
1260 1261 1262 1263 1264
          }
        }
      }
    }
  }
1265 1266

  // Remove all characters which already in the ranges.
1267
  others.removeAll(already_added);
1268 1269

  // Add others to the ranges
1270
  for (int32_t i = 0; i < others.getRangeCount(); i++) {
1271 1272 1273 1274
    UChar32 from = others.getRangeStart(i);
    UChar32 to = others.getRangeEnd(i);
    if (from == to) {
      ranges->Add(CharacterRange::Singleton(from), zone);
1275
    } else {
1276
      ranges->Add(CharacterRange::Range(from, to), zone);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
    }
  }
#else
  for (int i = 0; i < range_count; i++) {
    CharacterRange range = ranges->at(i);
    uc32 bottom = range.from();
    if (bottom > String::kMaxUtf16CodeUnit) continue;
    uc32 top = Min(range.to(), String::kMaxUtf16CodeUnit);
    // Nothing to be done for surrogates.
    if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) continue;
    if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
      if (bottom > String::kMaxOneByteCharCode) continue;
      if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
    }
    unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
    if (top == bottom) {
      // If this is a singleton we just expand the one character.
      int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
      for (int i = 0; i < length; i++) {
        uc32 chr = chars[i];
        if (chr != bottom) {
          ranges->Add(CharacterRange::Singleton(chars[i]), zone);
        }
      }
    } else {
      // If this is a range we expand the characters block by block, expanding
      // contiguous subranges (blocks) one at a time.  The approach is as
      // follows.  For a given start character we look up the remainder of the
      // block that contains it (represented by the end point), for instance we
      // find 'z' if the character is 'c'.  A block is characterized by the
      // property that all characters uncanonicalize in the same way, except
      // that each entry in the result is incremented by the distance from the
      // first element.  So a-z is a block because 'a' uncanonicalizes to ['a',
      // 'A'] and the k'th letter uncanonicalizes to ['a' + k, 'A' + k].  Once
      // we've found the end point we look up its uncanonicalization and
      // produce a range for each element.  For instance for [c-f] we look up
      // ['z', 'Z'] and produce [c-f] and [C-F].  We then only add a range if
      // it is not already contained in the input, so [c-f] will be skipped but
      // [C-F] will be added.  If this range is not completely contained in a
      // block we do this for all the blocks covered by the range (handling
      // characters that is not in a block as a "singleton block").
      unibrow::uchar equivalents[unibrow::Ecma262UnCanonicalize::kMaxWidth];
      int pos = bottom;
      while (pos <= top) {
        int length =
            isolate->jsregexp_canonrange()->get(pos, '\0', equivalents);
        uc32 block_end;
        if (length == 0) {
          block_end = pos;
        } else {
          DCHECK_EQ(1, length);
          block_end = equivalents[0];
        }
        int end = (block_end > top) ? top : block_end;
        length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0',
                                                         equivalents);
        for (int i = 0; i < length; i++) {
          uc32 c = equivalents[i];
          uc32 range_from = c - (block_end - pos);
          uc32 range_to = c - (block_end - end);
          if (!(bottom <= range_from && range_to <= top)) {
            ranges->Add(CharacterRange::Range(range_from, range_to), zone);
          }
        }
        pos = end + 1;
      }
    }
  }
#endif  // V8_INTL_SUPPORT
}

bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
  DCHECK_NOT_NULL(ranges);
  int n = ranges->length();
  if (n <= 1) return true;
  int max = ranges->at(0).to();
  for (int i = 1; i < n; i++) {
    CharacterRange next_range = ranges->at(i);
    if (next_range.from() <= max + 1) return false;
    max = next_range.to();
  }
  return true;
}

ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
  if (ranges_ == nullptr) {
    ranges_ = new (zone) ZoneList<CharacterRange>(2, zone);
    CharacterRange::AddClassEscape(standard_set_type_, ranges_, false, zone);
  }
  return ranges_;
}

// Move a number of elements in a zonelist to another position
// in the same list. Handles overlapping source and target areas.
static void MoveRanges(ZoneList<CharacterRange>* list, int from, int to,
                       int count) {
  // Ranges are potentially overlapping.
  if (from < to) {
    for (int i = count - 1; i >= 0; i--) {
      list->at(to + i) = list->at(from + i);
    }
  } else {
    for (int i = 0; i < count; i++) {
      list->at(to + i) = list->at(from + i);
    }
  }
}

static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, int count,
                                      CharacterRange insert) {
  // Inserts a range into list[0..count[, which must be sorted
  // by from value and non-overlapping and non-adjacent, using at most
  // list[0..count] for the result. Returns the number of resulting
  // canonicalized ranges. Inserting a range may collapse existing ranges into
  // fewer ranges, so the return value can be anything in the range 1..count+1.
  uc32 from = insert.from();
  uc32 to = insert.to();
  int start_pos = 0;
  int end_pos = count;
  for (int i = count - 1; i >= 0; i--) {
    CharacterRange current = list->at(i);
    if (current.from() > to + 1) {
      end_pos = i;
    } else if (current.to() + 1 < from) {
      start_pos = i + 1;
      break;
    }
  }

  // Inserted range overlaps, or is adjacent to, ranges at positions
  // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
  // not affected by the insertion.
  // If start_pos == end_pos, the range must be inserted before start_pos.
  // if start_pos < end_pos, the entire range from start_pos to end_pos
  // must be merged with the insert range.

  if (start_pos == end_pos) {
    // Insert between existing ranges at position start_pos.
    if (start_pos < count) {
      MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
    }
    list->at(start_pos) = insert;
    return count + 1;
  }
  if (start_pos + 1 == end_pos) {
    // Replace single existing range at position start_pos.
    CharacterRange to_replace = list->at(start_pos);
    int new_from = Min(to_replace.from(), from);
    int new_to = Max(to_replace.to(), to);
    list->at(start_pos) = CharacterRange::Range(new_from, new_to);
    return count;
  }
  // Replace a number of existing ranges from start_pos to end_pos - 1.
  // Move the remaining ranges down.

  int new_from = Min(list->at(start_pos).from(), from);
  int new_to = Max(list->at(end_pos - 1).to(), to);
  if (end_pos < count) {
    MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
  }
  list->at(start_pos) = CharacterRange::Range(new_from, new_to);
  return count - (end_pos - start_pos) + 1;
}

void CharacterSet::Canonicalize() {
  // Special/default classes are always considered canonical. The result
  // of calling ranges() will be sorted.
  if (ranges_ == nullptr) return;
  CharacterRange::Canonicalize(ranges_);
}

void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
  if (character_ranges->length() <= 1) return;
  // Check whether ranges are already canonical (increasing, non-overlapping,
  // non-adjacent).
  int n = character_ranges->length();
  int max = character_ranges->at(0).to();
  int i = 1;
  while (i < n) {
    CharacterRange current = character_ranges->at(i);
    if (current.from() <= max + 1) {
      break;
    }
    max = current.to();
    i++;
  }
  // Canonical until the i'th range. If that's all of them, we are done.
  if (i == n) return;

  // The ranges at index i and forward are not canonicalized. Make them so by
  // doing the equivalent of insertion sort (inserting each into the previous
  // list, in order).
  // Notice that inserting a range can reduce the number of ranges in the
  // result due to combining of adjacent and overlapping ranges.
  int read = i;           // Range to insert.
  int num_canonical = i;  // Length of canonicalized part of list.
  do {
    num_canonical = InsertRangeInCanonicalList(character_ranges, num_canonical,
                                               character_ranges->at(read));
    read++;
  } while (read < n);
  character_ranges->Rewind(num_canonical);

  DCHECK(CharacterRange::IsCanonical(character_ranges));
}

void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
                            ZoneList<CharacterRange>* negated_ranges,
                            Zone* zone) {
  DCHECK(CharacterRange::IsCanonical(ranges));
  DCHECK_EQ(0, negated_ranges->length());
  int range_count = ranges->length();
  uc32 from = 0;
  int i = 0;
  if (range_count > 0 && ranges->at(0).from() == 0) {
    from = ranges->at(0).to() + 1;
    i = 1;
  }
  while (i < range_count) {
    CharacterRange range = ranges->at(i);
    negated_ranges->Add(CharacterRange::Range(from, range.from() - 1), zone);
    from = range.to() + 1;
    i++;
  }
  if (from < String::kMaxCodePoint) {
    negated_ranges->Add(CharacterRange::Range(from, String::kMaxCodePoint),
                        zone);
  }
}

// Scoped object to keep track of how much we unroll quantifier loops in the
// regexp graph generator.
class RegExpExpansionLimiter {
 public:
  static const int kMaxExpansionFactor = 6;
  RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
      : compiler_(compiler),
        saved_expansion_factor_(compiler->current_expansion_factor()),
        ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
    DCHECK_LT(0, factor);
    if (ok_to_expand_) {
      if (factor > kMaxExpansionFactor) {
        // Avoid integer overflow of the current expansion factor.
        ok_to_expand_ = false;
        compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
      } else {
        int new_factor = saved_expansion_factor_ * factor;
        ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
        compiler->set_current_expansion_factor(new_factor);
      }
    }
  }

  ~RegExpExpansionLimiter() {
    compiler_->set_current_expansion_factor(saved_expansion_factor_);
  }

  bool ok_to_expand() { return ok_to_expand_; }

 private:
  RegExpCompiler* compiler_;
  int saved_expansion_factor_;
  bool ok_to_expand_;

  DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
};

RegExpNode* RegExpQuantifier::ToNode(int min, int max, bool is_greedy,
                                     RegExpTree* body, RegExpCompiler* compiler,
                                     RegExpNode* on_success,
                                     bool not_at_start) {
  // x{f, t} becomes this:
  //
  //             (r++)<-.
  //               |     `
  //               |     (x)
  //               v     ^
  //      (r=0)-->(?)---/ [if r < t]
  //               |
  //   [if r >= f] \----> ...
  //

  // 15.10.2.5 RepeatMatcher algorithm.
  // The parser has already eliminated the case where max is 0.  In the case
  // where max_match is zero the parser has removed the quantifier if min was
  // > 0 and removed the atom if min was 0.  See AddQuantifierToAtom.

  // If we know that we cannot match zero length then things are a little
  // simpler since we don't need to make the special zero length match check
  // from step 2.1.  If the min and max are small we can unroll a little in
  // this case.
  static const int kMaxUnrolledMinMatches = 3;  // Unroll (foo)+ and (foo){3,}
  static const int kMaxUnrolledMaxMatches = 3;  // Unroll (foo)? and (foo){x,3}
  if (max == 0) return on_success;  // This can happen due to recursion.
  bool body_can_be_empty = (body->min_match() == 0);
  int body_start_reg = RegExpCompiler::kNoRegister;
  Interval capture_registers = body->CaptureRegisters();
  bool needs_capture_clearing = !capture_registers.is_empty();
  Zone* zone = compiler->zone();

  if (body_can_be_empty) {
    body_start_reg = compiler->AllocateRegister();
  } else if (compiler->optimize() && !needs_capture_clearing) {
    // Only unroll if there are no captures and the body can't be
    // empty.
    {
      RegExpExpansionLimiter limiter(compiler, min + ((max != min) ? 1 : 0));
      if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
        int new_max = (max == kInfinity) ? max : max - min;
        // Recurse once to get the loop or optional matches after the fixed
        // ones.
        RegExpNode* answer =
            ToNode(0, new_max, is_greedy, body, compiler, on_success, true);
        // Unroll the forced matches from 0 to min.  This can cause chains of
        // TextNodes (which the parser does not generate).  These should be
        // combined if it turns out they hinder good code generation.
        for (int i = 0; i < min; i++) {
          answer = body->ToNode(compiler, answer);
        }
        return answer;
      }
    }
    if (max <= kMaxUnrolledMaxMatches && min == 0) {
      DCHECK_LT(0, max);  // Due to the 'if' above.
      RegExpExpansionLimiter limiter(compiler, max);
      if (limiter.ok_to_expand()) {
        // Unroll the optional matches up to max.
        RegExpNode* answer = on_success;
        for (int i = 0; i < max; i++) {
          ChoiceNode* alternation = new (zone) ChoiceNode(2, zone);
          if (is_greedy) {
            alternation->AddAlternative(
                GuardedAlternative(body->ToNode(compiler, answer)));
            alternation->AddAlternative(GuardedAlternative(on_success));
          } else {
            alternation->AddAlternative(GuardedAlternative(on_success));
            alternation->AddAlternative(
                GuardedAlternative(body->ToNode(compiler, answer)));
          }
          answer = alternation;
          if (not_at_start && !compiler->read_backward()) {
            alternation->set_not_at_start();
          }
        }
        return answer;
      }
    }
  }
  bool has_min = min > 0;
  bool has_max = max < RegExpTree::kInfinity;
  bool needs_counter = has_min || has_max;
  int reg_ctr = needs_counter ? compiler->AllocateRegister()
                              : RegExpCompiler::kNoRegister;
1630 1631
  LoopChoiceNode* center = new (zone) LoopChoiceNode(
      body->min_match() == 0, compiler->read_backward(), min, zone);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
  if (not_at_start && !compiler->read_backward()) center->set_not_at_start();
  RegExpNode* loop_return =
      needs_counter ? static_cast<RegExpNode*>(
                          ActionNode::IncrementRegister(reg_ctr, center))
                    : static_cast<RegExpNode*>(center);
  if (body_can_be_empty) {
    // If the body can be empty we need to check if it was and then
    // backtrack.
    loop_return =
        ActionNode::EmptyMatchCheck(body_start_reg, reg_ctr, min, loop_return);
  }
  RegExpNode* body_node = body->ToNode(compiler, loop_return);
  if (body_can_be_empty) {
    // If the body can be empty we need to store the start position
    // so we can bail out if it was empty.
    body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
  }
  if (needs_capture_clearing) {
    // Before entering the body of this loop we need to clear captures.
    body_node = ActionNode::ClearCaptures(capture_registers, body_node);
  }
  GuardedAlternative body_alt(body_node);
  if (has_max) {
    Guard* body_guard = new (zone) Guard(reg_ctr, Guard::LT, max);
    body_alt.AddGuard(body_guard, zone);
  }
  GuardedAlternative rest_alt(on_success);
  if (has_min) {
    Guard* rest_guard = new (compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
    rest_alt.AddGuard(rest_guard, zone);
  }
  if (is_greedy) {
    center->AddLoopAlternative(body_alt);
    center->AddContinueAlternative(rest_alt);
  } else {
    center->AddContinueAlternative(rest_alt);
    center->AddLoopAlternative(body_alt);
  }
  if (needs_counter) {
1671
    return ActionNode::SetRegisterForLoop(reg_ctr, 0, center);
1672 1673 1674 1675 1676 1677 1678
  } else {
    return center;
  }
}

}  // namespace internal
}  // namespace v8