/* * RoQ Video Encoder. * * Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com> * Copyright (C) 2004-2007 Eric Lasota * Based on RoQ specs (C) 2001 Tim Ferguson * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * id RoQ encoder by Vitor. Based on the Switchblade3 library and the * Switchblade3 Libav glue by Eric Lasota. */ /* * COSTS: * Level 1: * SKIP - 2 bits * MOTION - 2 + 8 bits * CODEBOOK - 2 + 8 bits * SUBDIVIDE - 2 + combined subcel cost * * Level 2: * SKIP - 2 bits * MOTION - 2 + 8 bits * CODEBOOK - 2 + 8 bits * SUBDIVIDE - 2 + 4*8 bits * * Maximum cost: 138 bits per cel * * Proper evaluation requires LCD fraction comparison, which requires * Squared Error (SE) loss * savings increase * * Maximum savings increase: 136 bits * Maximum SE loss without overflow: 31580641 * Components in 8x8 supercel: 192 * Maximum SE precision per component: 164482 * >65025, so no truncation is needed (phew) */ #include <string.h> #include "libavutil/attributes.h" #include "roqvideo.h" #include "bytestream.h" #include "elbg.h" #include "internal.h" #include "mathops.h" #define CHROMA_BIAS 1 /** * Maximum number of generated 4x4 codebooks. Can't be 256 to workaround a * Quake 3 bug. */ #define MAX_CBS_4x4 255 #define MAX_CBS_2x2 256 ///< Maximum number of 2x2 codebooks. /* The cast is useful when multiplying it by INT_MAX */ #define ROQ_LAMBDA_SCALE ((uint64_t) FF_LAMBDA_SCALE) /* Macroblock support functions */ static void unpack_roq_cell(roq_cell *cell, uint8_t u[4*3]) { memcpy(u , cell->y, 4); memset(u+4, cell->u, 4); memset(u+8, cell->v, 4); } static void unpack_roq_qcell(uint8_t cb2[], roq_qcell *qcell, uint8_t u[4*4*3]) { int i,cp; static const int offsets[4] = {0, 2, 8, 10}; for (cp=0; cp<3; cp++) for (i=0; i<4; i++) { u[4*4*cp + offsets[i] ] = cb2[qcell->idx[i]*2*2*3 + 4*cp ]; u[4*4*cp + offsets[i]+1] = cb2[qcell->idx[i]*2*2*3 + 4*cp+1]; u[4*4*cp + offsets[i]+4] = cb2[qcell->idx[i]*2*2*3 + 4*cp+2]; u[4*4*cp + offsets[i]+5] = cb2[qcell->idx[i]*2*2*3 + 4*cp+3]; } } static void enlarge_roq_mb4(uint8_t base[3*16], uint8_t u[3*64]) { int x,y,cp; for(cp=0; cp<3; cp++) for(y=0; y<8; y++) for(x=0; x<8; x++) *u++ = base[(y/2)*4 + (x/2) + 16*cp]; } static inline int square(int x) { return x*x; } static inline int eval_sse(const uint8_t *a, const uint8_t *b, int count) { int diff=0; while(count--) diff += square(*b++ - *a++); return diff; } // FIXME Could use DSPContext.sse, but it is not so speed critical (used // just for motion estimation). static int block_sse(uint8_t * const *buf1, uint8_t * const *buf2, int x1, int y1, int x2, int y2, const int *stride1, const int *stride2, int size) { int i, k; int sse=0; for (k=0; k<3; k++) { int bias = (k ? CHROMA_BIAS : 4); for (i=0; i<size; i++) sse += bias*eval_sse(buf1[k] + (y1+i)*stride1[k] + x1, buf2[k] + (y2+i)*stride2[k] + x2, size); } return sse; } static int eval_motion_dist(RoqContext *enc, int x, int y, motion_vect vect, int size) { int mx=vect.d[0]; int my=vect.d[1]; if (mx < -7 || mx > 7) return INT_MAX; if (my < -7 || my > 7) return INT_MAX; mx += x; my += y; if ((unsigned) mx > enc->width-size || (unsigned) my > enc->height-size) return INT_MAX; return block_sse(enc->frame_to_enc->data, enc->last_frame->data, x, y, mx, my, enc->frame_to_enc->linesize, enc->last_frame->linesize, size); } /** * @return distortion between two macroblocks */ static inline int squared_diff_macroblock(uint8_t a[], uint8_t b[], int size) { int cp, sdiff=0; for(cp=0;cp<3;cp++) { int bias = (cp ? CHROMA_BIAS : 4); sdiff += bias*eval_sse(a, b, size*size); a += size*size; b += size*size; } return sdiff; } typedef struct SubcelEvaluation { int eval_dist[4]; int best_bit_use; int best_coding; int subCels[4]; motion_vect motion; int cbEntry; } SubcelEvaluation; typedef struct CelEvaluation { int eval_dist[4]; int best_coding; SubcelEvaluation subCels[4]; motion_vect motion; int cbEntry; int sourceX, sourceY; } CelEvaluation; typedef struct RoqCodebooks { int numCB4; int numCB2; int usedCB2[MAX_CBS_2x2]; int usedCB4[MAX_CBS_4x4]; uint8_t unpacked_cb2[MAX_CBS_2x2*2*2*3]; uint8_t unpacked_cb4[MAX_CBS_4x4*4*4*3]; uint8_t unpacked_cb4_enlarged[MAX_CBS_4x4*8*8*3]; } RoqCodebooks; /** * Temporary vars */ typedef struct RoqTempData { CelEvaluation *cel_evals; int f2i4[MAX_CBS_4x4]; int i2f4[MAX_CBS_4x4]; int f2i2[MAX_CBS_2x2]; int i2f2[MAX_CBS_2x2]; int mainChunkSize; int numCB4; int numCB2; RoqCodebooks codebooks; int *closest_cb2; int used_option[4]; } RoqTempdata; /** * Initialize cel evaluators and set their source coordinates */ static int create_cel_evals(RoqContext *enc, RoqTempdata *tempData) { int n=0, x, y, i; tempData->cel_evals = av_malloc(enc->width*enc->height/64 * sizeof(CelEvaluation)); if (!tempData->cel_evals) return AVERROR(ENOMEM); /* Map to the ROQ quadtree order */ for (y=0; y<enc->height; y+=16) for (x=0; x<enc->width; x+=16) for(i=0; i<4; i++) { tempData->cel_evals[n ].sourceX = x + (i&1)*8; tempData->cel_evals[n++].sourceY = y + (i&2)*4; } return 0; } /** * Get macroblocks from parts of the image */ static void get_frame_mb(const AVFrame *frame, int x, int y, uint8_t mb[], int dim) { int i, j, cp; for (cp=0; cp<3; cp++) { int stride = frame->linesize[cp]; for (i=0; i<dim; i++) for (j=0; j<dim; j++) *mb++ = frame->data[cp][(y+i)*stride + x + j]; } } /** * Find the codebook with the lowest distortion from an image */ static int index_mb(uint8_t cluster[], uint8_t cb[], int numCB, int *outIndex, int dim) { int i, lDiff = INT_MAX, pick=0; /* Diff against the others */ for (i=0; i<numCB; i++) { int diff = squared_diff_macroblock(cluster, cb + i*dim*dim*3, dim); if (diff < lDiff) { lDiff = diff; pick = i; } } *outIndex = pick; return lDiff; } #define EVAL_MOTION(MOTION) \ do { \ diff = eval_motion_dist(enc, j, i, MOTION, blocksize); \ \ if (diff < lowestdiff) { \ lowestdiff = diff; \ bestpick = MOTION; \ } \ } while(0) static void motion_search(RoqContext *enc, int blocksize) { static const motion_vect offsets[8] = { {{ 0,-1}}, {{ 0, 1}}, {{-1, 0}}, {{ 1, 0}}, {{-1, 1}}, {{ 1,-1}}, {{-1,-1}}, {{ 1, 1}}, }; int diff, lowestdiff, oldbest; int off[3]; motion_vect bestpick = {{0,0}}; int i, j, k, offset; motion_vect *last_motion; motion_vect *this_motion; motion_vect vect, vect2; int max=(enc->width/blocksize)*enc->height/blocksize; if (blocksize == 4) { last_motion = enc->last_motion4; this_motion = enc->this_motion4; } else { last_motion = enc->last_motion8; this_motion = enc->this_motion8; } for (i=0; i<enc->height; i+=blocksize) for (j=0; j<enc->width; j+=blocksize) { lowestdiff = eval_motion_dist(enc, j, i, (motion_vect) {{0,0}}, blocksize); bestpick.d[0] = 0; bestpick.d[1] = 0; if (blocksize == 4) EVAL_MOTION(enc->this_motion8[(i/8)*(enc->width/8) + j/8]); offset = (i/blocksize)*enc->width/blocksize + j/blocksize; if (offset < max && offset >= 0) EVAL_MOTION(last_motion[offset]); offset++; if (offset < max && offset >= 0) EVAL_MOTION(last_motion[offset]); offset = (i/blocksize + 1)*enc->width/blocksize + j/blocksize; if (offset < max && offset >= 0) EVAL_MOTION(last_motion[offset]); off[0]= (i/blocksize)*enc->width/blocksize + j/blocksize - 1; off[1]= off[0] - enc->width/blocksize + 1; off[2]= off[1] + 1; if (i) { for(k=0; k<2; k++) vect.d[k]= mid_pred(this_motion[off[0]].d[k], this_motion[off[1]].d[k], this_motion[off[2]].d[k]); EVAL_MOTION(vect); for(k=0; k<3; k++) EVAL_MOTION(this_motion[off[k]]); } else if(j) EVAL_MOTION(this_motion[off[0]]); vect = bestpick; oldbest = -1; while (oldbest != lowestdiff) { oldbest = lowestdiff; for (k=0; k<8; k++) { vect2 = vect; vect2.d[0] += offsets[k].d[0]; vect2.d[1] += offsets[k].d[1]; EVAL_MOTION(vect2); } vect = bestpick; } offset = (i/blocksize)*enc->width/blocksize + j/blocksize; this_motion[offset] = bestpick; } } /** * Get distortion for all options available to a subcel */ static void gather_data_for_subcel(SubcelEvaluation *subcel, int x, int y, RoqContext *enc, RoqTempdata *tempData) { uint8_t mb4[4*4*3]; uint8_t mb2[2*2*3]; int cluster_index; int i, best_dist; static const int bitsUsed[4] = {2, 10, 10, 34}; if (enc->framesSinceKeyframe >= 1) { subcel->motion = enc->this_motion4[y*enc->width/16 + x/4]; subcel->eval_dist[RoQ_ID_FCC] = eval_motion_dist(enc, x, y, enc->this_motion4[y*enc->width/16 + x/4], 4); } else subcel->eval_dist[RoQ_ID_FCC] = INT_MAX; if (enc->framesSinceKeyframe >= 2) subcel->eval_dist[RoQ_ID_MOT] = block_sse(enc->frame_to_enc->data, enc->current_frame->data, x, y, x, y, enc->frame_to_enc->linesize, enc->current_frame->linesize, 4); else subcel->eval_dist[RoQ_ID_MOT] = INT_MAX; cluster_index = y*enc->width/16 + x/4; get_frame_mb(enc->frame_to_enc, x, y, mb4, 4); subcel->eval_dist[RoQ_ID_SLD] = index_mb(mb4, tempData->codebooks.unpacked_cb4, tempData->codebooks.numCB4, &subcel->cbEntry, 4); subcel->eval_dist[RoQ_ID_CCC] = 0; for(i=0;i<4;i++) { subcel->subCels[i] = tempData->closest_cb2[cluster_index*4+i]; get_frame_mb(enc->frame_to_enc, x+2*(i&1), y+(i&2), mb2, 2); subcel->eval_dist[RoQ_ID_CCC] += squared_diff_macroblock(tempData->codebooks.unpacked_cb2 + subcel->subCels[i]*2*2*3, mb2, 2); } best_dist = INT_MAX; for (i=0; i<4; i++) if (ROQ_LAMBDA_SCALE*subcel->eval_dist[i] + enc->lambda*bitsUsed[i] < best_dist) { subcel->best_coding = i; subcel->best_bit_use = bitsUsed[i]; best_dist = ROQ_LAMBDA_SCALE*subcel->eval_dist[i] + enc->lambda*bitsUsed[i]; } } /** * Get distortion for all options available to a cel */ static void gather_data_for_cel(CelEvaluation *cel, RoqContext *enc, RoqTempdata *tempData) { uint8_t mb8[8*8*3]; int index = cel->sourceY*enc->width/64 + cel->sourceX/8; int i, j, best_dist, divide_bit_use; int bitsUsed[4] = {2, 10, 10, 0}; if (enc->framesSinceKeyframe >= 1) { cel->motion = enc->this_motion8[index]; cel->eval_dist[RoQ_ID_FCC] = eval_motion_dist(enc, cel->sourceX, cel->sourceY, enc->this_motion8[index], 8); } else cel->eval_dist[RoQ_ID_FCC] = INT_MAX; if (enc->framesSinceKeyframe >= 2) cel->eval_dist[RoQ_ID_MOT] = block_sse(enc->frame_to_enc->data, enc->current_frame->data, cel->sourceX, cel->sourceY, cel->sourceX, cel->sourceY, enc->frame_to_enc->linesize, enc->current_frame->linesize,8); else cel->eval_dist[RoQ_ID_MOT] = INT_MAX; get_frame_mb(enc->frame_to_enc, cel->sourceX, cel->sourceY, mb8, 8); cel->eval_dist[RoQ_ID_SLD] = index_mb(mb8, tempData->codebooks.unpacked_cb4_enlarged, tempData->codebooks.numCB4, &cel->cbEntry, 8); gather_data_for_subcel(cel->subCels + 0, cel->sourceX+0, cel->sourceY+0, enc, tempData); gather_data_for_subcel(cel->subCels + 1, cel->sourceX+4, cel->sourceY+0, enc, tempData); gather_data_for_subcel(cel->subCels + 2, cel->sourceX+0, cel->sourceY+4, enc, tempData); gather_data_for_subcel(cel->subCels + 3, cel->sourceX+4, cel->sourceY+4, enc, tempData); cel->eval_dist[RoQ_ID_CCC] = 0; divide_bit_use = 0; for (i=0; i<4; i++) { cel->eval_dist[RoQ_ID_CCC] += cel->subCels[i].eval_dist[cel->subCels[i].best_coding]; divide_bit_use += cel->subCels[i].best_bit_use; } best_dist = INT_MAX; bitsUsed[3] = 2 + divide_bit_use; for (i=0; i<4; i++) if (ROQ_LAMBDA_SCALE*cel->eval_dist[i] + enc->lambda*bitsUsed[i] < best_dist) { cel->best_coding = i; best_dist = ROQ_LAMBDA_SCALE*cel->eval_dist[i] + enc->lambda*bitsUsed[i]; } tempData->used_option[cel->best_coding]++; tempData->mainChunkSize += bitsUsed[cel->best_coding]; if (cel->best_coding == RoQ_ID_SLD) tempData->codebooks.usedCB4[cel->cbEntry]++; if (cel->best_coding == RoQ_ID_CCC) for (i=0; i<4; i++) { if (cel->subCels[i].best_coding == RoQ_ID_SLD) tempData->codebooks.usedCB4[cel->subCels[i].cbEntry]++; else if (cel->subCels[i].best_coding == RoQ_ID_CCC) for (j=0; j<4; j++) tempData->codebooks.usedCB2[cel->subCels[i].subCels[j]]++; } } static void remap_codebooks(RoqContext *enc, RoqTempdata *tempData) { int i, j, idx=0; /* Make remaps for the final codebook usage */ for (i=0; i<MAX_CBS_4x4; i++) { if (tempData->codebooks.usedCB4[i]) { tempData->i2f4[i] = idx; tempData->f2i4[idx] = i; for (j=0; j<4; j++) tempData->codebooks.usedCB2[enc->cb4x4[i].idx[j]]++; idx++; } } tempData->numCB4 = idx; idx = 0; for (i=0; i<MAX_CBS_2x2; i++) { if (tempData->codebooks.usedCB2[i]) { tempData->i2f2[i] = idx; tempData->f2i2[idx] = i; idx++; } } tempData->numCB2 = idx; } /** * Write codebook chunk */ static void write_codebooks(RoqContext *enc, RoqTempdata *tempData) { int i, j; uint8_t **outp= &enc->out_buf; if (tempData->numCB2) { bytestream_put_le16(outp, RoQ_QUAD_CODEBOOK); bytestream_put_le32(outp, tempData->numCB2*6 + tempData->numCB4*4); bytestream_put_byte(outp, tempData->numCB4); bytestream_put_byte(outp, tempData->numCB2); for (i=0; i<tempData->numCB2; i++) { bytestream_put_buffer(outp, enc->cb2x2[tempData->f2i2[i]].y, 4); bytestream_put_byte(outp, enc->cb2x2[tempData->f2i2[i]].u); bytestream_put_byte(outp, enc->cb2x2[tempData->f2i2[i]].v); } for (i=0; i<tempData->numCB4; i++) for (j=0; j<4; j++) bytestream_put_byte(outp, tempData->i2f2[enc->cb4x4[tempData->f2i4[i]].idx[j]]); } } static inline uint8_t motion_arg(motion_vect mot) { uint8_t ax = 8 - ((uint8_t) mot.d[0]); uint8_t ay = 8 - ((uint8_t) mot.d[1]); return ((ax&15)<<4) | (ay&15); } typedef struct CodingSpool { int typeSpool; int typeSpoolLength; uint8_t argumentSpool[64]; uint8_t *args; uint8_t **pout; } CodingSpool; /* NOTE: Typecodes must be spooled AFTER arguments!! */ static void write_typecode(CodingSpool *s, uint8_t type) { s->typeSpool |= (type & 3) << (14 - s->typeSpoolLength); s->typeSpoolLength += 2; if (s->typeSpoolLength == 16) { bytestream_put_le16(s->pout, s->typeSpool); bytestream_put_buffer(s->pout, s->argumentSpool, s->args - s->argumentSpool); s->typeSpoolLength = 0; s->typeSpool = 0; s->args = s->argumentSpool; } } static void reconstruct_and_encode_image(RoqContext *enc, RoqTempdata *tempData, int w, int h, int numBlocks) { int i, j, k; int x, y; int subX, subY; int dist=0; roq_qcell *qcell; CelEvaluation *eval; CodingSpool spool; spool.typeSpool=0; spool.typeSpoolLength=0; spool.args = spool.argumentSpool; spool.pout = &enc->out_buf; if (tempData->used_option[RoQ_ID_CCC]%2) tempData->mainChunkSize+=8; //FIXME /* Write the video chunk header */ bytestream_put_le16(&enc->out_buf, RoQ_QUAD_VQ); bytestream_put_le32(&enc->out_buf, tempData->mainChunkSize/8); bytestream_put_byte(&enc->out_buf, 0x0); bytestream_put_byte(&enc->out_buf, 0x0); for (i=0; i<numBlocks; i++) { eval = tempData->cel_evals + i; x = eval->sourceX; y = eval->sourceY; dist += eval->eval_dist[eval->best_coding]; switch (eval->best_coding) { case RoQ_ID_MOT: write_typecode(&spool, RoQ_ID_MOT); break; case RoQ_ID_FCC: bytestream_put_byte(&spool.args, motion_arg(eval->motion)); write_typecode(&spool, RoQ_ID_FCC); ff_apply_motion_8x8(enc, x, y, eval->motion.d[0], eval->motion.d[1]); break; case RoQ_ID_SLD: bytestream_put_byte(&spool.args, tempData->i2f4[eval->cbEntry]); write_typecode(&spool, RoQ_ID_SLD); qcell = enc->cb4x4 + eval->cbEntry; ff_apply_vector_4x4(enc, x , y , enc->cb2x2 + qcell->idx[0]); ff_apply_vector_4x4(enc, x+4, y , enc->cb2x2 + qcell->idx[1]); ff_apply_vector_4x4(enc, x , y+4, enc->cb2x2 + qcell->idx[2]); ff_apply_vector_4x4(enc, x+4, y+4, enc->cb2x2 + qcell->idx[3]); break; case RoQ_ID_CCC: write_typecode(&spool, RoQ_ID_CCC); for (j=0; j<4; j++) { subX = x + 4*(j&1); subY = y + 2*(j&2); switch(eval->subCels[j].best_coding) { case RoQ_ID_MOT: break; case RoQ_ID_FCC: bytestream_put_byte(&spool.args, motion_arg(eval->subCels[j].motion)); ff_apply_motion_4x4(enc, subX, subY, eval->subCels[j].motion.d[0], eval->subCels[j].motion.d[1]); break; case RoQ_ID_SLD: bytestream_put_byte(&spool.args, tempData->i2f4[eval->subCels[j].cbEntry]); qcell = enc->cb4x4 + eval->subCels[j].cbEntry; ff_apply_vector_2x2(enc, subX , subY , enc->cb2x2 + qcell->idx[0]); ff_apply_vector_2x2(enc, subX+2, subY , enc->cb2x2 + qcell->idx[1]); ff_apply_vector_2x2(enc, subX , subY+2, enc->cb2x2 + qcell->idx[2]); ff_apply_vector_2x2(enc, subX+2, subY+2, enc->cb2x2 + qcell->idx[3]); break; case RoQ_ID_CCC: for (k=0; k<4; k++) { int cb_idx = eval->subCels[j].subCels[k]; bytestream_put_byte(&spool.args, tempData->i2f2[cb_idx]); ff_apply_vector_2x2(enc, subX + 2*(k&1), subY + (k&2), enc->cb2x2 + cb_idx); } break; } write_typecode(&spool, eval->subCels[j].best_coding); } break; } } /* Flush the remainder of the argument/type spool */ while (spool.typeSpoolLength) write_typecode(&spool, 0x0); #if 0 uint8_t *fdata[3] = {enc->frame_to_enc->data[0], enc->frame_to_enc->data[1], enc->frame_to_enc->data[2]}; uint8_t *cdata[3] = {enc->current_frame->data[0], enc->current_frame->data[1], enc->current_frame->data[2]}; av_log(enc->avctx, AV_LOG_ERROR, "Expected distortion: %i Actual: %i\n", dist, block_sse(fdata, cdata, 0, 0, 0, 0, enc->frame_to_enc->linesize, enc->current_frame->linesize, enc->width)); //WARNING: Square dimensions implied... #endif } /** * Create a single YUV cell from a 2x2 section of the image */ static inline void frame_block_to_cell(uint8_t *block, uint8_t * const *data, int top, int left, const int *stride) { int i, j, u=0, v=0; for (i=0; i<2; i++) for (j=0; j<2; j++) { int x = (top+i)*stride[0] + left + j; *block++ = data[0][x]; x = (top+i)*stride[1] + left + j; u += data[1][x]; v += data[2][x]; } *block++ = (u+2)/4; *block++ = (v+2)/4; } /** * Create YUV clusters for the entire image */ static void create_clusters(const AVFrame *frame, int w, int h, uint8_t *yuvClusters) { int i, j, k, l; for (i=0; i<h; i+=4) for (j=0; j<w; j+=4) { for (k=0; k < 2; k++) for (l=0; l < 2; l++) frame_block_to_cell(yuvClusters + (l + 2*k)*6, frame->data, i+2*k, j+2*l, frame->linesize); yuvClusters += 24; } } static int generate_codebook(RoqContext *enc, RoqTempdata *tempdata, int *points, int inputCount, roq_cell *results, int size, int cbsize) { int i, j, k, ret = 0; int c_size = size*size/4; int *buf; int *codebook = av_malloc(6*c_size*cbsize*sizeof(int)); int *closest_cb; if (!codebook) return AVERROR(ENOMEM); if (size == 4) { closest_cb = av_malloc(6*c_size*inputCount*sizeof(int)); if (!closest_cb) { ret = AVERROR(ENOMEM); goto out; } } else closest_cb = tempdata->closest_cb2; ret = ff_init_elbg(points, 6 * c_size, inputCount, codebook, cbsize, 1, closest_cb, &enc->randctx); if (ret < 0) goto out; ret = ff_do_elbg(points, 6 * c_size, inputCount, codebook, cbsize, 1, closest_cb, &enc->randctx); if (ret < 0) goto out; buf = codebook; for (i=0; i<cbsize; i++) for (k=0; k<c_size; k++) { for(j=0; j<4; j++) results->y[j] = *buf++; results->u = (*buf++ + CHROMA_BIAS/2)/CHROMA_BIAS; results->v = (*buf++ + CHROMA_BIAS/2)/CHROMA_BIAS; results++; } out: if (size == 4) av_free(closest_cb); av_free(codebook); return ret; } static int generate_new_codebooks(RoqContext *enc, RoqTempdata *tempData) { int i, j, ret = 0; RoqCodebooks *codebooks = &tempData->codebooks; int max = enc->width*enc->height/16; uint8_t mb2[3*4]; roq_cell *results4 = av_malloc(sizeof(roq_cell)*MAX_CBS_4x4*4); uint8_t *yuvClusters=av_malloc(sizeof(int)*max*6*4); int *points = av_malloc(max*6*4*sizeof(int)); int bias; if (!results4 || !yuvClusters || !points) { ret = AVERROR(ENOMEM); goto out; } /* Subsample YUV data */ create_clusters(enc->frame_to_enc, enc->width, enc->height, yuvClusters); /* Cast to integer and apply chroma bias */ for (i=0; i<max*24; i++) { bias = ((i%6)<4) ? 1 : CHROMA_BIAS; points[i] = bias*yuvClusters[i]; } /* Create 4x4 codebooks */ if ((ret = generate_codebook(enc, tempData, points, max, results4, 4, MAX_CBS_4x4)) < 0) goto out; codebooks->numCB4 = MAX_CBS_4x4; tempData->closest_cb2 = av_malloc(max*4*sizeof(int)); if (!tempData->closest_cb2) { ret = AVERROR(ENOMEM); goto out; } /* Create 2x2 codebooks */ if ((ret = generate_codebook(enc, tempData, points, max * 4, enc->cb2x2, 2, MAX_CBS_2x2)) < 0) goto out; codebooks->numCB2 = MAX_CBS_2x2; /* Unpack 2x2 codebook clusters */ for (i=0; i<codebooks->numCB2; i++) unpack_roq_cell(enc->cb2x2 + i, codebooks->unpacked_cb2 + i*2*2*3); /* Index all 4x4 entries to the 2x2 entries, unpack, and enlarge */ for (i=0; i<codebooks->numCB4; i++) { for (j=0; j<4; j++) { unpack_roq_cell(&results4[4*i + j], mb2); index_mb(mb2, codebooks->unpacked_cb2, codebooks->numCB2, &enc->cb4x4[i].idx[j], 2); } unpack_roq_qcell(codebooks->unpacked_cb2, enc->cb4x4 + i, codebooks->unpacked_cb4 + i*4*4*3); enlarge_roq_mb4(codebooks->unpacked_cb4 + i*4*4*3, codebooks->unpacked_cb4_enlarged + i*8*8*3); } out: av_free(yuvClusters); av_free(points); av_free(results4); return ret; } static int roq_encode_video(RoqContext *enc) { RoqTempdata *tempData = enc->tmpData; int i, ret; memset(tempData, 0, sizeof(*tempData)); ret = create_cel_evals(enc, tempData); if (ret < 0) return ret; ret = generate_new_codebooks(enc, tempData); if (ret < 0) return ret; if (enc->framesSinceKeyframe >= 1) { motion_search(enc, 8); motion_search(enc, 4); } retry_encode: for (i=0; i<enc->width*enc->height/64; i++) gather_data_for_cel(tempData->cel_evals + i, enc, tempData); /* Quake 3 can't handle chunks bigger than 65535 bytes */ if (tempData->mainChunkSize/8 > 65535) { av_log(enc->avctx, AV_LOG_ERROR, "Warning, generated a frame too big (%d > 65535), " "try using a smaller qscale value.\n", tempData->mainChunkSize/8); enc->lambda *= 1.5; tempData->mainChunkSize = 0; memset(tempData->used_option, 0, sizeof(tempData->used_option)); memset(tempData->codebooks.usedCB4, 0, sizeof(tempData->codebooks.usedCB4)); memset(tempData->codebooks.usedCB2, 0, sizeof(tempData->codebooks.usedCB2)); goto retry_encode; } remap_codebooks(enc, tempData); write_codebooks(enc, tempData); reconstruct_and_encode_image(enc, tempData, enc->width, enc->height, enc->width*enc->height/64); /* Rotate frame history */ FFSWAP(AVFrame *, enc->current_frame, enc->last_frame); FFSWAP(motion_vect *, enc->last_motion4, enc->this_motion4); FFSWAP(motion_vect *, enc->last_motion8, enc->this_motion8); av_free(tempData->cel_evals); av_free(tempData->closest_cb2); enc->framesSinceKeyframe++; return 0; } static av_cold int roq_encode_end(AVCodecContext *avctx) { RoqContext *enc = avctx->priv_data; av_frame_free(&enc->current_frame); av_frame_free(&enc->last_frame); av_free(enc->tmpData); av_free(enc->this_motion4); av_free(enc->last_motion4); av_free(enc->this_motion8); av_free(enc->last_motion8); return 0; } static av_cold int roq_encode_init(AVCodecContext *avctx) { RoqContext *enc = avctx->priv_data; av_lfg_init(&enc->randctx, 1); enc->avctx = avctx; enc->framesSinceKeyframe = 0; if ((avctx->width & 0xf) || (avctx->height & 0xf)) { av_log(avctx, AV_LOG_ERROR, "Dimensions must be divisible by 16\n"); return -1; } if (((avctx->width)&(avctx->width-1))||((avctx->height)&(avctx->height-1))) av_log(avctx, AV_LOG_ERROR, "Warning: dimensions not power of two\n"); enc->width = avctx->width; enc->height = avctx->height; enc->framesSinceKeyframe = 0; enc->first_frame = 1; enc->last_frame = av_frame_alloc(); enc->current_frame = av_frame_alloc(); if (!enc->last_frame || !enc->current_frame) { roq_encode_end(avctx); return AVERROR(ENOMEM); } enc->tmpData = av_malloc(sizeof(RoqTempdata)); enc->this_motion4 = av_mallocz((enc->width*enc->height/16)*sizeof(motion_vect)); enc->last_motion4 = av_malloc ((enc->width*enc->height/16)*sizeof(motion_vect)); enc->this_motion8 = av_mallocz((enc->width*enc->height/64)*sizeof(motion_vect)); enc->last_motion8 = av_malloc ((enc->width*enc->height/64)*sizeof(motion_vect)); return 0; } static void roq_write_video_info_chunk(RoqContext *enc) { /* ROQ info chunk */ bytestream_put_le16(&enc->out_buf, RoQ_INFO); /* Size: 8 bytes */ bytestream_put_le32(&enc->out_buf, 8); /* Unused argument */ bytestream_put_byte(&enc->out_buf, 0x00); bytestream_put_byte(&enc->out_buf, 0x00); /* Width */ bytestream_put_le16(&enc->out_buf, enc->width); /* Height */ bytestream_put_le16(&enc->out_buf, enc->height); /* Unused in Quake 3, mimics the output of the real encoder */ bytestream_put_byte(&enc->out_buf, 0x08); bytestream_put_byte(&enc->out_buf, 0x00); bytestream_put_byte(&enc->out_buf, 0x04); bytestream_put_byte(&enc->out_buf, 0x00); } static int roq_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { RoqContext *enc = avctx->priv_data; int size, ret; enc->avctx = avctx; enc->frame_to_enc = frame; if (frame->quality) enc->lambda = frame->quality - 1; else enc->lambda = 2*ROQ_LAMBDA_SCALE; /* 138 bits max per 8x8 block + * 256 codebooks*(6 bytes 2x2 + 4 bytes 4x4) + 8 bytes frame header */ size = ((enc->width * enc->height / 64) * 138 + 7) / 8 + 256 * (6 + 4) + 8; if ((ret = ff_alloc_packet(pkt, size)) < 0) { av_log(avctx, AV_LOG_ERROR, "Error getting output packet with size %d.\n", size); return ret; } enc->out_buf = pkt->data; /* Check for I frame */ if (enc->framesSinceKeyframe == avctx->gop_size) enc->framesSinceKeyframe = 0; if (enc->first_frame) { /* Alloc memory for the reconstruction data (we must know the stride for that) */ if (ff_get_buffer(avctx, enc->current_frame, 0) || ff_get_buffer(avctx, enc->last_frame, 0)) { av_log(avctx, AV_LOG_ERROR, " RoQ: get_buffer() failed\n"); return -1; } /* Before the first video frame, write a "video info" chunk */ roq_write_video_info_chunk(enc); enc->first_frame = 0; } /* Encode the actual frame */ ret = roq_encode_video(enc); if (ret < 0) return ret; pkt->size = enc->out_buf - pkt->data; if (enc->framesSinceKeyframe == 1) pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; return 0; } AVCodec ff_roq_encoder = { .name = "roqvideo", .long_name = NULL_IF_CONFIG_SMALL("id RoQ video"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_ROQ, .priv_data_size = sizeof(RoqContext), .init = roq_encode_init, .encode2 = roq_encode_frame, .close = roq_encode_end, .supported_framerates = (const AVRational[]){ {30,1}, {0,0} }, .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV444P, AV_PIX_FMT_NONE }, };