/* * Fraps FPS1 decoder * Copyright (c) 2005 Roine Gustafsson * Copyright (c) 2006 Konstantin Shishkov * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Lossless Fraps 'FPS1' decoder * @author Roine Gustafsson (roine at users sf net) * @author Konstantin Shishkov * * Codec algorithm for version 0 is taken from Transcode <www.transcoding.org> * * Version 2 files support by Konstantin Shishkov */ #include "avcodec.h" #include "bitstream.h" #include "huffman.h" #include "bytestream.h" #include "bswapdsp.h" #include "internal.h" #define FPS_TAG MKTAG('F', 'P', 'S', 'x') #define VLC_BITS 11 /** * local variable storage */ typedef struct FrapsContext { AVCodecContext *avctx; BswapDSPContext bdsp; AVFrame *frame; uint8_t *tmpbuf; int tmpbuf_size; } FrapsContext; /** * initializes decoder * @param avctx codec context * @return 0 on success or negative if fails */ static av_cold int decode_init(AVCodecContext *avctx) { FrapsContext * const s = avctx->priv_data; avctx->pix_fmt = AV_PIX_FMT_NONE; /* set in decode_frame */ s->avctx = avctx; s->tmpbuf = NULL; s->frame = av_frame_alloc(); if (!s->frame) return AVERROR(ENOMEM); ff_bswapdsp_init(&s->bdsp); return 0; } /** * Comparator - our nodes should ascend by count * but with preserved symbol order */ static int huff_cmp(const void *va, const void *vb) { const Node *a = va, *b = vb; return (a->count - b->count)*256 + a->sym - b->sym; } /** * decode Fraps v2 packed plane */ static int fraps2_decode_plane(FrapsContext *s, uint8_t *dst, int stride, int w, int h, const uint8_t *src, int size, int Uoff, const int step) { int i, j, ret; BitstreamContext bc; VLC vlc; Node nodes[512]; for (i = 0; i < 256; i++) nodes[i].count = bytestream_get_le32(&src); size -= 1024; if ((ret = ff_huff_build_tree(s->avctx, &vlc, 256, VLC_BITS, nodes, huff_cmp, FF_HUFFMAN_FLAG_ZERO_COUNT)) < 0) return ret; /* we have built Huffman table and are ready to decode plane */ /* convert bits so they may be used by standard bitreader */ s->bdsp.bswap_buf((uint32_t *) s->tmpbuf, (const uint32_t *) src, size >> 2); bitstream_init(&bc, s->tmpbuf, size * 8); for (j = 0; j < h; j++) { for (i = 0; i < w*step; i += step) { dst[i] = bitstream_read_vlc(&bc, vlc.table, VLC_BITS, 3); /* lines are stored as deltas between previous lines * and we need to add 0x80 to the first lines of chroma planes */ if (j) dst[i] += dst[i - stride]; else if (Uoff) dst[i] += 0x80; if (bitstream_bits_left(&bc) < 0) { ff_free_vlc(&vlc); return AVERROR_INVALIDDATA; } } dst += stride; } ff_free_vlc(&vlc); return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { FrapsContext * const s = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; AVFrame *frame = data; AVFrame * const f = s->frame; uint32_t header; unsigned int version,header_size; unsigned int x, y; const uint32_t *buf32; uint32_t *luma1,*luma2,*cb,*cr; uint32_t offs[4]; int i, j, ret, is_chroma, planes; enum AVPixelFormat pix_fmt; int prev_pic_bit, expected_size; if (buf_size < 4) { av_log(avctx, AV_LOG_ERROR, "Packet is too short\n"); return AVERROR_INVALIDDATA; } header = AV_RL32(buf); version = header & 0xff; header_size = (header & (1<<30))? 8 : 4; /* bit 30 means pad to 8 bytes */ prev_pic_bit = header & (1U << 31); /* bit 31 means same as previous pic */ if (version > 5) { avpriv_report_missing_feature(avctx, "Fraps version %u", version); return AVERROR_PATCHWELCOME; } buf += 4; if (header_size == 8) buf += 4; pix_fmt = version & 1 ? AV_PIX_FMT_BGR24 : AV_PIX_FMT_YUVJ420P; if (avctx->pix_fmt != pix_fmt && f->data[0]) { av_frame_unref(f); } avctx->pix_fmt = pix_fmt; avctx->color_range = version & 1 ? AVCOL_RANGE_UNSPECIFIED : AVCOL_RANGE_JPEG; expected_size = header_size; switch (version) { case 0: default: /* Fraps v0 is a reordered YUV420 */ if (!prev_pic_bit) expected_size += avctx->width * avctx->height * 3 / 2; if (buf_size != expected_size) { av_log(avctx, AV_LOG_ERROR, "Invalid frame length %d (should be %d)\n", buf_size, expected_size); return AVERROR_INVALIDDATA; } if (((avctx->width % 8) != 0) || ((avctx->height % 2) != 0)) { av_log(avctx, AV_LOG_ERROR, "Invalid frame size %dx%d\n", avctx->width, avctx->height); return AVERROR_INVALIDDATA; } if ((ret = ff_reget_buffer(avctx, f)) < 0) { av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n"); return ret; } f->pict_type = prev_pic_bit ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I; f->key_frame = f->pict_type == AV_PICTURE_TYPE_I; if (f->pict_type == AV_PICTURE_TYPE_I) { buf32 = (const uint32_t*)buf; for (y = 0; y < avctx->height / 2; y++) { luma1 = (uint32_t*)&f->data[0][ y * 2 * f->linesize[0]]; luma2 = (uint32_t*)&f->data[0][(y * 2 + 1) * f->linesize[0]]; cr = (uint32_t*)&f->data[1][ y * f->linesize[1]]; cb = (uint32_t*)&f->data[2][ y * f->linesize[2]]; for (x = 0; x < avctx->width; x += 8) { *(luma1++) = *(buf32++); *(luma1++) = *(buf32++); *(luma2++) = *(buf32++); *(luma2++) = *(buf32++); *(cr++) = *(buf32++); *(cb++) = *(buf32++); } } } break; case 1: /* Fraps v1 is an upside-down BGR24 */ if (!prev_pic_bit) expected_size += avctx->width * avctx->height * 3; if (buf_size != expected_size) { av_log(avctx, AV_LOG_ERROR, "Invalid frame length %d (should be %d)\n", buf_size, expected_size); return AVERROR_INVALIDDATA; } if ((ret = ff_reget_buffer(avctx, f)) < 0) { av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n"); return ret; } f->pict_type = prev_pic_bit ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I; f->key_frame = f->pict_type == AV_PICTURE_TYPE_I; if (f->pict_type == AV_PICTURE_TYPE_I) { for (y = 0; y<avctx->height; y++) memcpy(&f->data[0][(avctx->height - y - 1) * f->linesize[0]], &buf[y * avctx->width * 3], 3 * avctx->width); } break; case 2: case 4: /** * Fraps v2 is Huffman-coded YUV420 planes * Fraps v4 is virtually the same */ planes = 3; if ((ret = ff_reget_buffer(avctx, f)) < 0) { av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n"); return ret; } /* skip frame */ if (buf_size == 8) { f->pict_type = AV_PICTURE_TYPE_P; f->key_frame = 0; break; } f->pict_type = AV_PICTURE_TYPE_I; f->key_frame = 1; if ((AV_RL32(buf) != FPS_TAG) || (buf_size < (planes * 1024 + 24))) { av_log(avctx, AV_LOG_ERROR, "Fraps: error in data stream\n"); return AVERROR_INVALIDDATA; } for (i = 0; i < planes; i++) { offs[i] = AV_RL32(buf + 4 + i * 4); if (offs[i] >= buf_size || (i && offs[i] <= offs[i - 1] + 1024)) { av_log(avctx, AV_LOG_ERROR, "Fraps: plane %i offset is out of bounds\n", i); return AVERROR_INVALIDDATA; } } offs[planes] = buf_size; for (i = 0; i < planes; i++) { is_chroma = !!i; av_fast_padded_malloc(&s->tmpbuf, &s->tmpbuf_size, offs[i + 1] - offs[i] - 1024); if (!s->tmpbuf) return AVERROR(ENOMEM); if ((ret = fraps2_decode_plane(s, f->data[i], f->linesize[i], avctx->width >> is_chroma, avctx->height >> is_chroma, buf + offs[i], offs[i + 1] - offs[i], is_chroma, 1)) < 0) { av_log(avctx, AV_LOG_ERROR, "Error decoding plane %i\n", i); return ret; } } break; case 3: case 5: /* Virtually the same as version 4, but is for RGB24 */ planes = 3; if ((ret = ff_reget_buffer(avctx, f)) < 0) { av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n"); return ret; } /* skip frame */ if (buf_size == 8) { f->pict_type = AV_PICTURE_TYPE_P; f->key_frame = 0; break; } f->pict_type = AV_PICTURE_TYPE_I; f->key_frame = 1; if ((AV_RL32(buf) != FPS_TAG)||(buf_size < (planes*1024 + 24))) { av_log(avctx, AV_LOG_ERROR, "Fraps: error in data stream\n"); return AVERROR_INVALIDDATA; } for (i = 0; i < planes; i++) { offs[i] = AV_RL32(buf + 4 + i * 4); if (offs[i] >= buf_size || (i && offs[i] <= offs[i - 1] + 1024)) { av_log(avctx, AV_LOG_ERROR, "Fraps: plane %i offset is out of bounds\n", i); return AVERROR_INVALIDDATA; } } offs[planes] = buf_size; for (i = 0; i < planes; i++) { av_fast_padded_malloc(&s->tmpbuf, &s->tmpbuf_size, offs[i + 1] - offs[i] - 1024); if (!s->tmpbuf) return AVERROR(ENOMEM); if ((ret = fraps2_decode_plane(s, f->data[0] + i + (f->linesize[0] * (avctx->height - 1)), -f->linesize[0], avctx->width, avctx->height, buf + offs[i], offs[i + 1] - offs[i], 0, 3)) < 0) { av_log(avctx, AV_LOG_ERROR, "Error decoding plane %i\n", i); return ret; } } // convert pseudo-YUV into real RGB for (j = 0; j < avctx->height; j++) { for (i = 0; i < avctx->width; i++) { f->data[0][0 + i*3 + j*f->linesize[0]] += f->data[0][1 + i*3 + j*f->linesize[0]]; f->data[0][2 + i*3 + j*f->linesize[0]] += f->data[0][1 + i*3 + j*f->linesize[0]]; } } break; } if ((ret = av_frame_ref(frame, f)) < 0) return ret; *got_frame = 1; return buf_size; } /** * closes decoder * @param avctx codec context * @return 0 on success or negative if fails */ static av_cold int decode_end(AVCodecContext *avctx) { FrapsContext *s = (FrapsContext*)avctx->priv_data; av_frame_free(&s->frame); av_freep(&s->tmpbuf); return 0; } AVCodec ff_fraps_decoder = { .name = "fraps", .long_name = NULL_IF_CONFIG_SMALL("Fraps"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_FRAPS, .priv_data_size = sizeof(FrapsContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = AV_CODEC_CAP_DR1, };