/* * Copyright 2005 Balatoni Denes * Copyright 2006 Loren Merritt * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include "attributes.h" #include "float_dsp.h" #include "mem.h" static void vector_fmul_c(float *dst, const float *src0, const float *src1, int len) { int i; for (i = 0; i < len; i++) dst[i] = src0[i] * src1[i]; } static void vector_fmac_scalar_c(float *dst, const float *src, float mul, int len) { int i; for (i = 0; i < len; i++) dst[i] += src[i] * mul; } static void vector_fmul_scalar_c(float *dst, const float *src, float mul, int len) { int i; for (i = 0; i < len; i++) dst[i] = src[i] * mul; } static void vector_dmul_scalar_c(double *dst, const double *src, double mul, int len) { int i; for (i = 0; i < len; i++) dst[i] = src[i] * mul; } static void vector_fmul_window_c(float *dst, const float *src0, const float *src1, const float *win, int len) { int i, j; dst += len; win += len; src0 += len; for (i = -len, j = len - 1; i < 0; i++, j--) { float s0 = src0[i]; float s1 = src1[j]; float wi = win[i]; float wj = win[j]; dst[i] = s0 * wj - s1 * wi; dst[j] = s0 * wi + s1 * wj; } } static void vector_fmul_add_c(float *dst, const float *src0, const float *src1, const float *src2, int len){ int i; for (i = 0; i < len; i++) dst[i] = src0[i] * src1[i] + src2[i]; } static void vector_fmul_reverse_c(float *dst, const float *src0, const float *src1, int len) { int i; src1 += len-1; for (i = 0; i < len; i++) dst[i] = src0[i] * src1[-i]; } static void butterflies_float_c(float *av_restrict v1, float *av_restrict v2, int len) { int i; for (i = 0; i < len; i++) { float t = v1[i] - v2[i]; v1[i] += v2[i]; v2[i] = t; } } float avpriv_scalarproduct_float_c(const float *v1, const float *v2, int len) { float p = 0.0; int i; for (i = 0; i < len; i++) p += v1[i] * v2[i]; return p; } av_cold AVFloatDSPContext *avpriv_float_dsp_alloc(int bit_exact) { AVFloatDSPContext *fdsp = av_mallocz(sizeof(AVFloatDSPContext)); if (!fdsp) return NULL; fdsp->vector_fmul = vector_fmul_c; fdsp->vector_fmac_scalar = vector_fmac_scalar_c; fdsp->vector_fmul_scalar = vector_fmul_scalar_c; fdsp->vector_dmul_scalar = vector_dmul_scalar_c; fdsp->vector_fmul_window = vector_fmul_window_c; fdsp->vector_fmul_add = vector_fmul_add_c; fdsp->vector_fmul_reverse = vector_fmul_reverse_c; fdsp->butterflies_float = butterflies_float_c; fdsp->scalarproduct_float = avpriv_scalarproduct_float_c; if (ARCH_AARCH64) ff_float_dsp_init_aarch64(fdsp); if (ARCH_ARM) ff_float_dsp_init_arm(fdsp); if (ARCH_PPC) ff_float_dsp_init_ppc(fdsp, bit_exact); if (ARCH_X86) ff_float_dsp_init_x86(fdsp); if (ARCH_MIPS) ff_float_dsp_init_mips(fdsp); return fdsp; } #ifdef TEST #include <float.h> #include <math.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #if HAVE_UNISTD_H #include <unistd.h> /* for getopt */ #endif #if !HAVE_GETOPT #include "compat/getopt.c" #endif #include "common.h" #include "cpu.h" #include "internal.h" #include "lfg.h" #include "log.h" #include "random_seed.h" #define LEN 240 static void fill_float_array(AVLFG *lfg, float *a, int len) { int i; double bmg[2], stddev = 10.0, mean = 0.0; for (i = 0; i < len; i += 2) { av_bmg_get(lfg, bmg); a[i] = bmg[0] * stddev + mean; a[i + 1] = bmg[1] * stddev + mean; } } static int compare_floats(const float *a, const float *b, int len, float max_diff) { int i; for (i = 0; i < len; i++) { if (fabsf(a[i] - b[i]) > max_diff) { av_log(NULL, AV_LOG_ERROR, "%d: %- .12f - %- .12f = % .12g\n", i, a[i], b[i], a[i] - b[i]); return -1; } } return 0; } static void fill_double_array(AVLFG *lfg, double *a, int len) { int i; double bmg[2], stddev = 10.0, mean = 0.0; for (i = 0; i < len; i += 2) { av_bmg_get(lfg, bmg); a[i] = bmg[0] * stddev + mean; a[i + 1] = bmg[1] * stddev + mean; } } static int compare_doubles(const double *a, const double *b, int len, double max_diff) { int i; for (i = 0; i < len; i++) { if (fabs(a[i] - b[i]) > max_diff) { av_log(NULL, AV_LOG_ERROR, "%d: %- .12f - %- .12f = % .12g\n", i, a[i], b[i], a[i] - b[i]); return -1; } } return 0; } static int test_vector_fmul(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp, const float *v1, const float *v2) { LOCAL_ALIGNED(32, float, cdst, [LEN]); LOCAL_ALIGNED(32, float, odst, [LEN]); int ret; cdsp->vector_fmul(cdst, v1, v2, LEN); fdsp->vector_fmul(odst, v1, v2, LEN); if (ret = compare_floats(cdst, odst, LEN, FLT_EPSILON)) av_log(NULL, AV_LOG_ERROR, "vector_fmul failed\n"); return ret; } #define ARBITRARY_FMAC_SCALAR_CONST 0.005 static int test_vector_fmac_scalar(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp, const float *v1, const float *src0, float scale) { LOCAL_ALIGNED(32, float, cdst, [LEN]); LOCAL_ALIGNED(32, float, odst, [LEN]); int ret; memcpy(cdst, v1, LEN * sizeof(*v1)); memcpy(odst, v1, LEN * sizeof(*v1)); cdsp->vector_fmac_scalar(cdst, src0, scale, LEN); fdsp->vector_fmac_scalar(odst, src0, scale, LEN); if (ret = compare_floats(cdst, odst, LEN, ARBITRARY_FMAC_SCALAR_CONST)) av_log(NULL, AV_LOG_ERROR, "vector_fmac_scalar failed\n"); return ret; } static int test_vector_fmul_scalar(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp, const float *v1, float scale) { LOCAL_ALIGNED(32, float, cdst, [LEN]); LOCAL_ALIGNED(32, float, odst, [LEN]); int ret; cdsp->vector_fmul_scalar(cdst, v1, scale, LEN); fdsp->vector_fmul_scalar(odst, v1, scale, LEN); if (ret = compare_floats(cdst, odst, LEN, FLT_EPSILON)) av_log(NULL, AV_LOG_ERROR, "vector_fmul_scalar failed\n"); return ret; } static int test_vector_dmul_scalar(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp, const double *v1, double scale) { LOCAL_ALIGNED(32, double, cdst, [LEN]); LOCAL_ALIGNED(32, double, odst, [LEN]); int ret; cdsp->vector_dmul_scalar(cdst, v1, scale, LEN); fdsp->vector_dmul_scalar(odst, v1, scale, LEN); if (ret = compare_doubles(cdst, odst, LEN, DBL_EPSILON)) av_log(NULL, AV_LOG_ERROR, "vector_dmul_scalar failed\n"); return ret; } #define ARBITRARY_FMUL_WINDOW_CONST 0.008 static int test_vector_fmul_window(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp, const float *v1, const float *v2, const float *v3) { LOCAL_ALIGNED(32, float, cdst, [LEN]); LOCAL_ALIGNED(32, float, odst, [LEN]); int ret; cdsp->vector_fmul_window(cdst, v1, v2, v3, LEN / 2); fdsp->vector_fmul_window(odst, v1, v2, v3, LEN / 2); if (ret = compare_floats(cdst, odst, LEN, ARBITRARY_FMUL_WINDOW_CONST)) av_log(NULL, AV_LOG_ERROR, "vector_fmul_window failed\n"); return ret; } #define ARBITRARY_FMUL_ADD_CONST 0.005 static int test_vector_fmul_add(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp, const float *v1, const float *v2, const float *v3) { LOCAL_ALIGNED(32, float, cdst, [LEN]); LOCAL_ALIGNED(32, float, odst, [LEN]); int ret; cdsp->vector_fmul_add(cdst, v1, v2, v3, LEN); fdsp->vector_fmul_add(odst, v1, v2, v3, LEN); if (ret = compare_floats(cdst, odst, LEN, ARBITRARY_FMUL_ADD_CONST)) av_log(NULL, AV_LOG_ERROR, "vector_fmul_add failed\n"); return ret; } static int test_vector_fmul_reverse(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp, const float *v1, const float *v2) { LOCAL_ALIGNED(32, float, cdst, [LEN]); LOCAL_ALIGNED(32, float, odst, [LEN]); int ret; cdsp->vector_fmul_reverse(cdst, v1, v2, LEN); fdsp->vector_fmul_reverse(odst, v1, v2, LEN); if (ret = compare_floats(cdst, odst, LEN, FLT_EPSILON)) av_log(NULL, AV_LOG_ERROR, "vector_fmul_reverse failed\n"); return ret; } static int test_butterflies_float(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp, const float *v1, const float *v2) { LOCAL_ALIGNED(32, float, cv1, [LEN]); LOCAL_ALIGNED(32, float, cv2, [LEN]); LOCAL_ALIGNED(32, float, ov1, [LEN]); LOCAL_ALIGNED(32, float, ov2, [LEN]); int ret; memcpy(cv1, v1, LEN * sizeof(*v1)); memcpy(cv2, v2, LEN * sizeof(*v2)); memcpy(ov1, v1, LEN * sizeof(*v1)); memcpy(ov2, v2, LEN * sizeof(*v2)); cdsp->butterflies_float(cv1, cv2, LEN); fdsp->butterflies_float(ov1, ov2, LEN); if ((ret = compare_floats(cv1, ov1, LEN, FLT_EPSILON)) || (ret = compare_floats(cv2, ov2, LEN, FLT_EPSILON))) av_log(NULL, AV_LOG_ERROR, "butterflies_float failed\n"); return ret; } #define ARBITRARY_SCALARPRODUCT_CONST 0.2 static int test_scalarproduct_float(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp, const float *v1, const float *v2) { float cprod, oprod; int ret; cprod = cdsp->scalarproduct_float(v1, v2, LEN); oprod = fdsp->scalarproduct_float(v1, v2, LEN); if (ret = compare_floats(&cprod, &oprod, 1, ARBITRARY_SCALARPRODUCT_CONST)) av_log(NULL, AV_LOG_ERROR, "scalarproduct_float failed\n"); return ret; } int main(int argc, char **argv) { int ret = 0, seeded = 0; uint32_t seed; AVFloatDSPContext *fdsp, *cdsp; AVLFG lfg; LOCAL_ALIGNED(32, float, src0, [LEN]); LOCAL_ALIGNED(32, float, src1, [LEN]); LOCAL_ALIGNED(32, float, src2, [LEN]); LOCAL_ALIGNED(32, double, dbl_src0, [LEN]); LOCAL_ALIGNED(32, double, dbl_src1, [LEN]); for (;;) { int arg = getopt(argc, argv, "s:c:"); if (arg == -1) break; switch (arg) { case 's': seed = strtoul(optarg, NULL, 10); seeded = 1; break; case 'c': { int cpuflags = av_get_cpu_flags(); if (av_parse_cpu_caps(&cpuflags, optarg) < 0) return 1; av_force_cpu_flags(cpuflags); break; } } } if (!seeded) seed = av_get_random_seed(); av_log(NULL, AV_LOG_INFO, "float_dsp-test: %s %u\n", seeded ? "seed" : "random seed", seed); fdsp = avpriv_float_dsp_alloc(1); av_force_cpu_flags(0); cdsp = avpriv_float_dsp_alloc(1); if (!fdsp || !cdsp) { ret = 1; goto end; } av_lfg_init(&lfg, seed); fill_float_array(&lfg, src0, LEN); fill_float_array(&lfg, src1, LEN); fill_float_array(&lfg, src2, LEN); fill_double_array(&lfg, dbl_src0, LEN); fill_double_array(&lfg, dbl_src1, LEN); if (test_vector_fmul(fdsp, cdsp, src0, src1)) ret -= 1 << 0; if (test_vector_fmac_scalar(fdsp, cdsp, src2, src0, src1[0])) ret -= 1 << 1; if (test_vector_fmul_scalar(fdsp, cdsp, src0, src1[0])) ret -= 1 << 2; if (test_vector_fmul_window(fdsp, cdsp, src0, src1, src2)) ret -= 1 << 3; if (test_vector_fmul_add(fdsp, cdsp, src0, src1, src2)) ret -= 1 << 4; if (test_vector_fmul_reverse(fdsp, cdsp, src0, src1)) ret -= 1 << 5; if (test_butterflies_float(fdsp, cdsp, src0, src1)) ret -= 1 << 6; if (test_scalarproduct_float(fdsp, cdsp, src0, src1)) ret -= 1 << 7; if (test_vector_dmul_scalar(fdsp, cdsp, dbl_src0, dbl_src1[0])) ret -= 1 << 8; end: av_freep(&fdsp); av_freep(&cdsp); return ret; } #endif /* TEST */