/* * OpenEXR (.exr) image decoder * Copyright (c) 2009 Jimmy Christensen * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * OpenEXR decoder * @author Jimmy Christensen * * For more information on the OpenEXR format, visit: * http://openexr.com/ * * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger. * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner. */ #include <float.h> #include <zlib.h> #include "libavutil/imgutils.h" #include "libavutil/intfloat.h" #include "libavutil/opt.h" #include "avcodec.h" #include "bytestream.h" #include "get_bits.h" #include "internal.h" #include "mathops.h" #include "thread.h" enum ExrCompr { EXR_RAW, EXR_RLE, EXR_ZIP1, EXR_ZIP16, EXR_PIZ, EXR_PXR24, EXR_B44, EXR_B44A, EXR_UNKN, }; enum ExrPixelType { EXR_UINT, EXR_HALF, EXR_FLOAT, EXR_UNKNOWN, }; typedef struct EXRChannel { int xsub, ysub; enum ExrPixelType pixel_type; } EXRChannel; typedef struct EXRThreadData { uint8_t *uncompressed_data; int uncompressed_size; uint8_t *tmp; int tmp_size; uint8_t *bitmap; uint16_t *lut; } EXRThreadData; typedef struct EXRContext { AVClass *class; AVFrame *picture; AVCodecContext *avctx; enum ExrCompr compression; enum ExrPixelType pixel_type; int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha const AVPixFmtDescriptor *desc; int w, h; uint32_t xmax, xmin; uint32_t ymax, ymin; uint32_t xdelta, ydelta; int ysize; uint64_t scan_line_size; int scan_lines_per_block; GetByteContext gb; const uint8_t *buf; int buf_size; EXRChannel *channels; int nb_channels; EXRThreadData *thread_data; const char *layer; float gamma; uint16_t gamma_table[65536]; } EXRContext; /* -15 stored using a single precision bias of 127 */ #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000 /* max exponent value in single precision that will be converted * to Inf or Nan when stored as a half-float */ #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000 /* 255 is the max exponent biased value */ #define FLOAT_MAX_BIASED_EXP (0xFF << 23) #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10) /** * Convert a half float as a uint16_t into a full float. * * @param hf half float as uint16_t * * @return float value */ static union av_intfloat32 exr_half2float(uint16_t hf) { unsigned int sign = (unsigned int) (hf >> 15); unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1)); unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP); union av_intfloat32 f; if (exp == HALF_FLOAT_MAX_BIASED_EXP) { // we have a half-float NaN or Inf // half-float NaNs will be converted to a single precision NaN // half-float Infs will be converted to a single precision Inf exp = FLOAT_MAX_BIASED_EXP; if (mantissa) mantissa = (1 << 23) - 1; // set all bits to indicate a NaN } else if (exp == 0x0) { // convert half-float zero/denorm to single precision value if (mantissa) { mantissa <<= 1; exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP; // check for leading 1 in denorm mantissa while ((mantissa & (1 << 10))) { // for every leading 0, decrement single precision exponent by 1 // and shift half-float mantissa value to the left mantissa <<= 1; exp -= (1 << 23); } // clamp the mantissa to 10-bits mantissa &= ((1 << 10) - 1); // shift left to generate single-precision mantissa of 23-bits mantissa <<= 13; } } else { // shift left to generate single-precision mantissa of 23-bits mantissa <<= 13; // generate single precision biased exponent value exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP; } f.i = (sign << 31) | exp | mantissa; return f; } /** * Convert from 32-bit float as uint32_t to uint16_t. * * @param v 32-bit float * * @return normalized 16-bit unsigned int */ static inline uint16_t exr_flt2uint(uint32_t v) { unsigned int exp = v >> 23; // "HACK": negative values result in exp< 0, so clipping them to 0 // is also handled by this condition, avoids explicit check for sign bit. if (exp <= 127 + 7 - 24) // we would shift out all bits anyway return 0; if (exp >= 127) return 0xffff; v &= 0x007fffff; return (v + (1 << 23)) >> (127 + 7 - exp); } /** * Convert from 16-bit float as uint16_t to uint16_t. * * @param v 16-bit float * * @return normalized 16-bit unsigned int */ static inline uint16_t exr_halflt2uint(uint16_t v) { unsigned exp = 14 - (v >> 10); if (exp >= 14) { if (exp == 14) return (v >> 9) & 1; else return (v & 0x8000) ? 0 : 0xffff; } v <<= 6; return (v + (1 << 16)) >> (exp + 1); } static void predictor(uint8_t *src, int size) { uint8_t *t = src + 1; uint8_t *stop = src + size; while (t < stop) { int d = (int) t[-1] + (int) t[0] - 128; t[0] = d; ++t; } } static void reorder_pixels(uint8_t *src, uint8_t *dst, int size) { const int8_t *t1 = src; const int8_t *t2 = src + (size + 1) / 2; int8_t *s = dst; int8_t *stop = s + size; while (1) { if (s < stop) *(s++) = *(t1++); else break; if (s < stop) *(s++) = *(t2++); else break; } } static int zip_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { unsigned long dest_len = uncompressed_size; if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK || dest_len != uncompressed_size) return AVERROR_INVALIDDATA; predictor(td->tmp, uncompressed_size); reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size); return 0; } static int rle_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { uint8_t *d = td->tmp; const int8_t *s = src; int ssize = compressed_size; int dsize = uncompressed_size; uint8_t *dend = d + dsize; int count; while (ssize > 0) { count = *s++; if (count < 0) { count = -count; if ((dsize -= count) < 0 || (ssize -= count + 1) < 0) return AVERROR_INVALIDDATA; while (count--) *d++ = *s++; } else { count++; if ((dsize -= count) < 0 || (ssize -= 2) < 0) return AVERROR_INVALIDDATA; while (count--) *d++ = *s; s++; } } if (dend != d) return AVERROR_INVALIDDATA; predictor(td->tmp, uncompressed_size); reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size); return 0; } #define USHORT_RANGE (1 << 16) #define BITMAP_SIZE (1 << 13) static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut) { int i, k = 0; for (i = 0; i < USHORT_RANGE; i++) if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i; i = k - 1; memset(lut + k, 0, (USHORT_RANGE - k) * 2); return i; } static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize) { int i; for (i = 0; i < dsize; ++i) dst[i] = lut[dst[i]]; } #define HUF_ENCBITS 16 // literal (value) bit length #define HUF_DECBITS 14 // decoding bit size (>= 8) #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size #define HUF_DECMASK (HUF_DECSIZE - 1) typedef struct HufDec { int len; int lit; int *p; } HufDec; static void huf_canonical_code_table(uint64_t *hcode) { uint64_t c, n[59] = { 0 }; int i; for (i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1; c = 0; for (i = 58; i > 0; --i) { uint64_t nc = ((c + n[i]) >> 1); n[i] = c; c = nc; } for (i = 0; i < HUF_ENCSIZE; ++i) { int l = hcode[i]; if (l > 0) hcode[i] = l | (n[l]++ << 6); } } #define SHORT_ZEROCODE_RUN 59 #define LONG_ZEROCODE_RUN 63 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN) #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN) static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *hcode) { GetBitContext gbit; int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb)); if (ret < 0) return ret; for (; im <= iM; im++) { uint64_t l = hcode[im] = get_bits(&gbit, 6); if (l == LONG_ZEROCODE_RUN) { int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN; if (im + zerun > iM + 1) return AVERROR_INVALIDDATA; while (zerun--) hcode[im++] = 0; im--; } else if (l >= SHORT_ZEROCODE_RUN) { int zerun = l - SHORT_ZEROCODE_RUN + 2; if (im + zerun > iM + 1) return AVERROR_INVALIDDATA; while (zerun--) hcode[im++] = 0; im--; } } bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8); huf_canonical_code_table(hcode); return 0; } static int huf_build_dec_table(const uint64_t *hcode, int im, int iM, HufDec *hdecod) { for (; im <= iM; im++) { uint64_t c = hcode[im] >> 6; int i, l = hcode[im] & 63; if (c >> l) return AVERROR_INVALIDDATA; if (l > HUF_DECBITS) { HufDec *pl = hdecod + (c >> (l - HUF_DECBITS)); if (pl->len) return AVERROR_INVALIDDATA; pl->lit++; pl->p = av_realloc(pl->p, pl->lit * sizeof(int)); if (!pl->p) return AVERROR(ENOMEM); pl->p[pl->lit - 1] = im; } else if (l) { HufDec *pl = hdecod + (c << (HUF_DECBITS - l)); for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) { if (pl->len || pl->p) return AVERROR_INVALIDDATA; pl->len = l; pl->lit = im; } } } return 0; } #define get_char(c, lc, gb) \ { \ c = (c << 8) | bytestream2_get_byte(gb); \ lc += 8; \ } #define get_code(po, rlc, c, lc, gb, out, oe) \ { \ if (po == rlc) { \ if (lc < 8) \ get_char(c, lc, gb); \ lc -= 8; \ \ cs = c >> lc; \ \ if (out + cs > oe) \ return AVERROR_INVALIDDATA; \ \ s = out[-1]; \ \ while (cs-- > 0) \ *out++ = s; \ } else if (out < oe) { \ *out++ = po; \ } else { \ return AVERROR_INVALIDDATA; \ } \ } static int huf_decode(const uint64_t *hcode, const HufDec *hdecod, GetByteContext *gb, int nbits, int rlc, int no, uint16_t *out) { uint64_t c = 0; uint16_t *outb = out; uint16_t *oe = out + no; const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size uint8_t cs, s; int i, lc = 0; while (gb->buffer < ie) { get_char(c, lc, gb); while (lc >= HUF_DECBITS) { const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK]; if (pl.len) { lc -= pl.len; get_code(pl.lit, rlc, c, lc, gb, out, oe); } else { int j; if (!pl.p) return AVERROR_INVALIDDATA; for (j = 0; j < pl.lit; j++) { int l = hcode[pl.p[j]] & 63; while (lc < l && bytestream2_get_bytes_left(gb) > 0) get_char(c, lc, gb); if (lc >= l) { if ((hcode[pl.p[j]] >> 6) == ((c >> (lc - l)) & ((1LL << l) - 1))) { lc -= l; get_code(pl.p[j], rlc, c, lc, gb, out, oe); break; } } } if (j == pl.lit) return AVERROR_INVALIDDATA; } } } i = (8 - nbits) & 7; c >>= i; lc -= i; while (lc > 0) { const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK]; if (pl.len) { lc -= pl.len; get_code(pl.lit, rlc, c, lc, gb, out, oe); } else { return AVERROR_INVALIDDATA; } } if (out - outb != no) return AVERROR_INVALIDDATA; return 0; } static int huf_uncompress(GetByteContext *gb, uint16_t *dst, int dst_size) { int32_t src_size, im, iM; uint32_t nBits; uint64_t *freq; HufDec *hdec; int ret, i; src_size = bytestream2_get_le32(gb); im = bytestream2_get_le32(gb); iM = bytestream2_get_le32(gb); bytestream2_skip(gb, 4); nBits = bytestream2_get_le32(gb); if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE || src_size < 0) return AVERROR_INVALIDDATA; bytestream2_skip(gb, 4); freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq)); hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec)); if (!freq || !hdec) { ret = AVERROR(ENOMEM); goto fail; } if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0) goto fail; if (nBits > 8 * bytestream2_get_bytes_left(gb)) { ret = AVERROR_INVALIDDATA; goto fail; } if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0) goto fail; ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst); fail: for (i = 0; i < HUF_DECSIZE; i++) if (hdec) av_freep(&hdec[i].p); av_free(freq); av_free(hdec); return ret; } static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b) { int16_t ls = l; int16_t hs = h; int hi = hs; int ai = ls + (hi & 1) + (hi >> 1); int16_t as = ai; int16_t bs = ai - hi; *a = as; *b = bs; } #define NBITS 16 #define A_OFFSET (1 << (NBITS - 1)) #define MOD_MASK ((1 << NBITS) - 1) static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b) { int m = l; int d = h; int bb = (m - (d >> 1)) & MOD_MASK; int aa = (d + bb - A_OFFSET) & MOD_MASK; *b = bb; *a = aa; } static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx) { int w14 = (mx < (1 << 14)); int n = (nx > ny) ? ny : nx; int p = 1; int p2; while (p <= n) p <<= 1; p >>= 1; p2 = p; p >>= 1; while (p >= 1) { uint16_t *py = in; uint16_t *ey = in + oy * (ny - p2); uint16_t i00, i01, i10, i11; int oy1 = oy * p; int oy2 = oy * p2; int ox1 = ox * p; int ox2 = ox * p2; for (; py <= ey; py += oy2) { uint16_t *px = py; uint16_t *ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { uint16_t *p01 = px + ox1; uint16_t *p10 = px + oy1; uint16_t *p11 = p10 + ox1; if (w14) { wdec14(*px, *p10, &i00, &i10); wdec14(*p01, *p11, &i01, &i11); wdec14(i00, i01, px, p01); wdec14(i10, i11, p10, p11); } else { wdec16(*px, *p10, &i00, &i10); wdec16(*p01, *p11, &i01, &i11); wdec16(i00, i01, px, p01); wdec16(i10, i11, p10, p11); } } if (nx & p) { uint16_t *p10 = px + oy1; if (w14) wdec14(*px, *p10, &i00, p10); else wdec16(*px, *p10, &i00, p10); *px = i00; } } if (ny & p) { uint16_t *px = py; uint16_t *ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { uint16_t *p01 = px + ox1; if (w14) wdec14(*px, *p01, &i00, p01); else wdec16(*px, *p01, &i00, p01); *px = i00; } } p2 = p; p >>= 1; } } static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td) { GetByteContext gb; uint16_t maxval, min_non_zero, max_non_zero; uint16_t *ptr; uint16_t *tmp = (uint16_t *)td->tmp; uint8_t *out; int ret, i, j; if (!td->bitmap) td->bitmap = av_malloc(BITMAP_SIZE); if (!td->lut) td->lut = av_malloc(1 << 17); if (!td->bitmap || !td->lut) { av_freep(&td->bitmap); av_freep(&td->lut); return AVERROR(ENOMEM); } bytestream2_init(&gb, src, ssize); min_non_zero = bytestream2_get_le16(&gb); max_non_zero = bytestream2_get_le16(&gb); if (max_non_zero >= BITMAP_SIZE) return AVERROR_INVALIDDATA; memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE)); if (min_non_zero <= max_non_zero) bytestream2_get_buffer(&gb, td->bitmap + min_non_zero, max_non_zero - min_non_zero + 1); memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero); maxval = reverse_lut(td->bitmap, td->lut); ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t)); if (ret) return ret; ptr = tmp; for (i = 0; i < s->nb_channels; i++) { EXRChannel *channel = &s->channels[i]; int size = channel->pixel_type; for (j = 0; j < size; j++) wav_decode(ptr + j, s->xdelta, size, s->ysize, s->xdelta * size, maxval); ptr += s->xdelta * s->ysize * size; } apply_lut(td->lut, tmp, dsize / sizeof(uint16_t)); out = td->uncompressed_data; for (i = 0; i < s->ysize; i++) for (j = 0; j < s->nb_channels; j++) { uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta; memcpy(out, in, s->xdelta * 2); out += s->xdelta * 2; } return 0; } static int pxr24_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { unsigned long dest_len = uncompressed_size; const uint8_t *in = td->tmp; uint8_t *out; int c, i, j; if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK || dest_len != uncompressed_size) return AVERROR_INVALIDDATA; out = td->uncompressed_data; for (i = 0; i < s->ysize; i++) for (c = 0; c < s->nb_channels; c++) { EXRChannel *channel = &s->channels[c]; const uint8_t *ptr[4]; uint32_t pixel = 0; switch (channel->pixel_type) { case EXR_FLOAT: ptr[0] = in; ptr[1] = ptr[0] + s->xdelta; ptr[2] = ptr[1] + s->xdelta; in = ptr[2] + s->xdelta; for (j = 0; j < s->xdelta; ++j) { uint32_t diff = (*(ptr[0]++) << 24) | (*(ptr[1]++) << 16) | (*(ptr[2]++) << 8); pixel += diff; bytestream_put_le32(&out, pixel); } break; case EXR_HALF: ptr[0] = in; ptr[1] = ptr[0] + s->xdelta; in = ptr[1] + s->xdelta; for (j = 0; j < s->xdelta; j++) { uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++); pixel += diff; bytestream_put_le16(&out, pixel); } break; default: return AVERROR_INVALIDDATA; } } return 0; } static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { EXRContext *s = avctx->priv_data; AVFrame *const p = s->picture; EXRThreadData *td = &s->thread_data[threadnr]; const uint8_t *channel_buffer[4] = { 0 }; const uint8_t *buf = s->buf; uint64_t line_offset, uncompressed_size; uint32_t xdelta = s->xdelta; uint16_t *ptr_x; uint8_t *ptr; uint32_t data_size, line; const uint8_t *src; int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; int bxmin = s->xmin * 2 * s->desc->nb_components; int i, x, buf_size = s->buf_size; float one_gamma = 1.0f / s->gamma; int ret; line_offset = AV_RL64(s->gb.buffer + jobnr * 8); // Check if the buffer has the required bytes needed from the offset if (line_offset > buf_size - 8) return AVERROR_INVALIDDATA; src = buf + line_offset + 8; line = AV_RL32(src - 8); if (line < s->ymin || line > s->ymax) return AVERROR_INVALIDDATA; data_size = AV_RL32(src - 4); if (data_size <= 0 || data_size > buf_size) return AVERROR_INVALIDDATA; s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); uncompressed_size = s->scan_line_size * s->ysize; if ((s->compression == EXR_RAW && (data_size != uncompressed_size || line_offset > buf_size - uncompressed_size)) || (s->compression != EXR_RAW && (data_size > uncompressed_size || line_offset > buf_size - data_size))) { return AVERROR_INVALIDDATA; } if (data_size < uncompressed_size) { av_fast_padded_malloc(&td->uncompressed_data, &td->uncompressed_size, uncompressed_size); av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size); if (!td->uncompressed_data || !td->tmp) return AVERROR(ENOMEM); ret = AVERROR_INVALIDDATA; switch (s->compression) { case EXR_ZIP1: case EXR_ZIP16: ret = zip_uncompress(src, data_size, uncompressed_size, td); break; case EXR_PIZ: ret = piz_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_PXR24: ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_RLE: ret = rle_uncompress(src, data_size, uncompressed_size, td); } if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n"); return ret; } src = td->uncompressed_data; } channel_buffer[0] = src + xdelta * s->channel_offsets[0]; channel_buffer[1] = src + xdelta * s->channel_offsets[1]; channel_buffer[2] = src + xdelta * s->channel_offsets[2]; if (s->channel_offsets[3] >= 0) channel_buffer[3] = src + xdelta * s->channel_offsets[3]; ptr = p->data[0] + line * p->linesize[0]; for (i = 0; i < s->scan_lines_per_block && line + i <= s->ymax; i++, ptr += p->linesize[0]) { const uint8_t *r, *g, *b, *a; r = channel_buffer[0]; g = channel_buffer[1]; b = channel_buffer[2]; if (channel_buffer[3]) a = channel_buffer[3]; ptr_x = (uint16_t *) ptr; // Zero out the start if xmin is not 0 memset(ptr_x, 0, bxmin); ptr_x += s->xmin * s->desc->nb_components; if (s->pixel_type == EXR_FLOAT) { // 32-bit for (x = 0; x < xdelta; x++) { union av_intfloat32 t; t.i = bytestream_get_le32(&r); if (t.f > 0.0f) /* avoid negative values */ t.f = powf(t.f, one_gamma); *ptr_x++ = exr_flt2uint(t.i); t.i = bytestream_get_le32(&g); if (t.f > 0.0f) t.f = powf(t.f, one_gamma); *ptr_x++ = exr_flt2uint(t.i); t.i = bytestream_get_le32(&b); if (t.f > 0.0f) t.f = powf(t.f, one_gamma); *ptr_x++ = exr_flt2uint(t.i); if (channel_buffer[3]) *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a)); } } else { // 16-bit for (x = 0; x < xdelta; x++) { *ptr_x++ = s->gamma_table[bytestream_get_le16(&r)]; *ptr_x++ = s->gamma_table[bytestream_get_le16(&g)]; *ptr_x++ = s->gamma_table[bytestream_get_le16(&b)]; if (channel_buffer[3]) *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a)); } } // Zero out the end if xmax+1 is not w memset(ptr_x, 0, axmax); channel_buffer[0] += s->scan_line_size; channel_buffer[1] += s->scan_line_size; channel_buffer[2] += s->scan_line_size; if (channel_buffer[3]) channel_buffer[3] += s->scan_line_size; } return 0; } /** * Check if the variable name corresponds to its data type. * * @param s the EXRContext * @param value_name name of the variable to check * @param value_type type of the variable to check * @param minimum_length minimum length of the variable data * * @return bytes to read containing variable data * -1 if variable is not found * 0 if buffer ended prematurely */ static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length) { int var_size = -1; if (bytestream2_get_bytes_left(&s->gb) >= minimum_length && !strcmp(s->gb.buffer, value_name)) { // found value_name, jump to value_type (null terminated strings) s->gb.buffer += strlen(value_name) + 1; if (!strcmp(s->gb.buffer, value_type)) { s->gb.buffer += strlen(value_type) + 1; var_size = bytestream2_get_le32(&s->gb); // don't go read past boundaries if (var_size > bytestream2_get_bytes_left(&s->gb)) var_size = 0; } else { // value_type not found, reset the buffer s->gb.buffer -= strlen(value_name) + 1; av_log(s->avctx, AV_LOG_WARNING, "Unknown data type %s for header variable %s.\n", value_type, value_name); } } return var_size; } static int decode_header(EXRContext *s) { int current_channel_offset = 0; int magic_number, version, flags, i; s->xmin = ~0; s->xmax = ~0; s->ymin = ~0; s->ymax = ~0; s->xdelta = ~0; s->ydelta = ~0; s->channel_offsets[0] = -1; s->channel_offsets[1] = -1; s->channel_offsets[2] = -1; s->channel_offsets[3] = -1; s->pixel_type = EXR_UNKNOWN; s->compression = EXR_UNKN; s->nb_channels = 0; s->w = 0; s->h = 0; if (bytestream2_get_bytes_left(&s->gb) < 10) { av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n"); return AVERROR_INVALIDDATA; } magic_number = bytestream2_get_le32(&s->gb); if (magic_number != 20000630) { /* As per documentation of OpenEXR, it is supposed to be * int 20000630 little-endian */ av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number); return AVERROR_INVALIDDATA; } version = bytestream2_get_byte(&s->gb); if (version != 2) { avpriv_report_missing_feature(s->avctx, "Version %d", version); return AVERROR_PATCHWELCOME; } flags = bytestream2_get_le24(&s->gb); if (flags & 0x02) { avpriv_report_missing_feature(s->avctx, "Tile support"); return AVERROR_PATCHWELCOME; } // Parse the header while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) { int var_size; if ((var_size = check_header_variable(s, "channels", "chlist", 38)) >= 0) { GetByteContext ch_gb; if (!var_size) return AVERROR_INVALIDDATA; bytestream2_init(&ch_gb, s->gb.buffer, var_size); while (bytestream2_get_bytes_left(&ch_gb) >= 19) { EXRChannel *channel; enum ExrPixelType current_pixel_type; int channel_index = -1; int xsub, ysub; if (strcmp(s->layer, "") != 0) { if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) { ch_gb.buffer += strlen(s->layer); if (*ch_gb.buffer == '.') ch_gb.buffer++; /* skip dot if not given */ av_log(s->avctx, AV_LOG_INFO, "Layer %s.%s matched.\n", s->layer, ch_gb.buffer); } } if (!strcmp(ch_gb.buffer, "R") || !strcmp(ch_gb.buffer, "X") || !strcmp(ch_gb.buffer, "U")) channel_index = 0; else if (!strcmp(ch_gb.buffer, "G") || !strcmp(ch_gb.buffer, "Y") || !strcmp(ch_gb.buffer, "V")) channel_index = 1; else if (!strcmp(ch_gb.buffer, "B") || !strcmp(ch_gb.buffer, "Z") || !strcmp(ch_gb.buffer, "W")) channel_index = 2; else if (!strcmp(ch_gb.buffer, "A")) channel_index = 3; else av_log(s->avctx, AV_LOG_WARNING, "Unsupported channel %.256s.\n", ch_gb.buffer); /* skip until you get a 0 */ while (bytestream2_get_bytes_left(&ch_gb) > 0 && bytestream2_get_byte(&ch_gb)) continue; if (bytestream2_get_bytes_left(&ch_gb) < 4) { av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n"); return AVERROR_INVALIDDATA; } current_pixel_type = bytestream2_get_le32(&ch_gb); if (current_pixel_type >= EXR_UNKNOWN) { avpriv_report_missing_feature(s->avctx, "Pixel type %d.\n", current_pixel_type); return AVERROR_PATCHWELCOME; } bytestream2_skip(&ch_gb, 4); xsub = bytestream2_get_le32(&ch_gb); ysub = bytestream2_get_le32(&ch_gb); if (xsub != 1 || ysub != 1) { avpriv_report_missing_feature(s->avctx, "Subsampling %dx%d", xsub, ysub); return AVERROR_PATCHWELCOME; } if (channel_index >= 0) { if (s->pixel_type != EXR_UNKNOWN && s->pixel_type != current_pixel_type) { av_log(s->avctx, AV_LOG_ERROR, "RGB channels not of the same depth.\n"); return AVERROR_INVALIDDATA; } s->pixel_type = current_pixel_type; s->channel_offsets[channel_index] = current_channel_offset; } s->channels = av_realloc(s->channels, ++s->nb_channels * sizeof(EXRChannel)); if (!s->channels) return AVERROR(ENOMEM); channel = &s->channels[s->nb_channels - 1]; channel->pixel_type = current_pixel_type; channel->xsub = xsub; channel->ysub = ysub; current_channel_offset += 1 << current_pixel_type; } /* Check if all channels are set with an offset or if the channels * are causing an overflow */ if (FFMIN3(s->channel_offsets[0], s->channel_offsets[1], s->channel_offsets[2]) < 0) { if (s->channel_offsets[0] < 0) av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n"); if (s->channel_offsets[1] < 0) av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n"); if (s->channel_offsets[2] < 0) av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n"); return AVERROR_INVALIDDATA; } // skip one last byte and update main gb s->gb.buffer = ch_gb.buffer + 1; continue; } else if ((var_size = check_header_variable(s, "dataWindow", "box2i", 31)) >= 0) { if (!var_size) return AVERROR_INVALIDDATA; s->xmin = bytestream2_get_le32(&s->gb); s->ymin = bytestream2_get_le32(&s->gb); s->xmax = bytestream2_get_le32(&s->gb); s->ymax = bytestream2_get_le32(&s->gb); s->xdelta = (s->xmax - s->xmin) + 1; s->ydelta = (s->ymax - s->ymin) + 1; continue; } else if ((var_size = check_header_variable(s, "displayWindow", "box2i", 34)) >= 0) { if (!var_size) return AVERROR_INVALIDDATA; bytestream2_skip(&s->gb, 8); s->w = bytestream2_get_le32(&s->gb) + 1; s->h = bytestream2_get_le32(&s->gb) + 1; continue; } else if ((var_size = check_header_variable(s, "lineOrder", "lineOrder", 25)) >= 0) { int line_order; if (!var_size) return AVERROR_INVALIDDATA; line_order = bytestream2_get_byte(&s->gb); av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order); if (line_order > 2) { av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n"); return AVERROR_INVALIDDATA; } continue; } else if ((var_size = check_header_variable(s, "pixelAspectRatio", "float", 31)) >= 0) { if (!var_size) return AVERROR_INVALIDDATA; ff_set_sar(s->avctx, av_d2q(av_int2float(bytestream2_get_le32(&s->gb)), 255)); continue; } else if ((var_size = check_header_variable(s, "compression", "compression", 29)) >= 0) { if (!var_size) return AVERROR_INVALIDDATA; if (s->compression == EXR_UNKN) s->compression = bytestream2_get_byte(&s->gb); else av_log(s->avctx, AV_LOG_WARNING, "Found more than one compression attribute.\n"); continue; } // Check if there are enough bytes for a header if (bytestream2_get_bytes_left(&s->gb) <= 9) { av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } // Process unknown variables for (i = 0; i < 2; i++) // value_name and value_type while (bytestream2_get_byte(&s->gb) != 0); // Skip variable length bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb)); } if (s->compression == EXR_UNKN) { av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n"); return AVERROR_INVALIDDATA; } s->scan_line_size = s->xdelta * current_channel_offset; if (bytestream2_get_bytes_left(&s->gb) <= 0) { av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n"); return AVERROR_INVALIDDATA; } // aaand we are done bytestream2_skip(&s->gb, 1); return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { EXRContext *s = avctx->priv_data; ThreadFrame frame = { .f = data }; AVFrame *picture = data; uint8_t *ptr; int y, ret; int out_line_size; int scan_line_blocks; bytestream2_init(&s->gb, avpkt->data, avpkt->size); if ((ret = decode_header(s)) < 0) return ret; switch (s->pixel_type) { case EXR_FLOAT: case EXR_HALF: if (s->channel_offsets[3] >= 0) avctx->pix_fmt = AV_PIX_FMT_RGBA64; else avctx->pix_fmt = AV_PIX_FMT_RGB48; break; case EXR_UINT: avpriv_request_sample(avctx, "32-bit unsigned int"); return AVERROR_PATCHWELCOME; default: av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n"); return AVERROR_INVALIDDATA; } switch (s->compression) { case EXR_RAW: case EXR_RLE: case EXR_ZIP1: s->scan_lines_per_block = 1; break; case EXR_PXR24: case EXR_ZIP16: s->scan_lines_per_block = 16; break; case EXR_PIZ: s->scan_lines_per_block = 32; break; default: avpriv_report_missing_feature(avctx, "Compression %d", s->compression); return AVERROR_PATCHWELCOME; } /* Verify the xmin, xmax, ymin, ymax and xdelta before setting * the actual image size. */ if (s->xmin > s->xmax || s->ymin > s->ymax || s->xdelta != s->xmax - s->xmin + 1 || s->xmax >= s->w || s->ymax >= s->h) { av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n"); return AVERROR_INVALIDDATA; } if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0) return ret; s->desc = av_pix_fmt_desc_get(avctx->pix_fmt); if (!s->desc) return AVERROR_INVALIDDATA; out_line_size = avctx->width * 2 * s->desc->nb_components; scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) / s->scan_lines_per_block; if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; if (bytestream2_get_bytes_left(&s->gb) < scan_line_blocks * 8) return AVERROR_INVALIDDATA; // save pointer we are going to use in decode_block s->buf = avpkt->data; s->buf_size = avpkt->size; ptr = picture->data[0]; // Zero out the start if ymin is not 0 for (y = 0; y < s->ymin; y++) { memset(ptr, 0, out_line_size); ptr += picture->linesize[0]; } s->picture = picture; avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks); // Zero out the end if ymax+1 is not h for (y = s->ymax + 1; y < avctx->height; y++) { memset(ptr, 0, out_line_size); ptr += picture->linesize[0]; } picture->pict_type = AV_PICTURE_TYPE_I; *got_frame = 1; return avpkt->size; } static av_cold int decode_init(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; uint32_t i; union av_intfloat32 t; float one_gamma = 1.0f / s->gamma; s->avctx = avctx; if (one_gamma > 0.9999f && one_gamma < 1.0001f) { for (i = 0; i < 65536; ++i) s->gamma_table[i] = exr_halflt2uint(i); } else { for (i = 0; i < 65536; ++i) { t = exr_half2float(i); /* If negative value we reuse half value */ if (t.f <= 0.0f) { s->gamma_table[i] = exr_halflt2uint(i); } else { t.f = powf(t.f, one_gamma); s->gamma_table[i] = exr_flt2uint(t.i); } } } // allocate thread data, used for non EXR_RAW compreesion types s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData)); if (!s->thread_data) return AVERROR_INVALIDDATA; return 0; } static int decode_init_thread_copy(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; // allocate thread data, used for non EXR_RAW compreesion types s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData)); if (!s->thread_data) return AVERROR_INVALIDDATA; return 0; } static av_cold int decode_end(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; int i; for (i = 0; i < avctx->thread_count; i++) { EXRThreadData *td = &s->thread_data[i]; av_freep(&td->uncompressed_data); av_freep(&td->tmp); av_freep(&td->bitmap); av_freep(&td->lut); } av_freep(&s->thread_data); av_freep(&s->channels); return 0; } #define OFFSET(x) offsetof(EXRContext, x) #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM static const AVOption options[] = { { "layer", "Set the decoding layer", OFFSET(layer), AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD }, { "gamma", "Set the float gamma value when decoding", OFFSET(gamma), AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD }, { NULL }, }; static const AVClass exr_class = { .class_name = "EXR", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_exr_decoder = { .name = "exr", .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_EXR, .priv_data_size = sizeof(EXRContext), .init = decode_init, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS, .priv_class = &exr_class, };