/* * Texture block compression * Copyright (C) 2015 Vittorio Giovara <vittorio.giovara@gmail.com> * Based on public domain code by Fabian Giesen, Sean Barrett and Yann Collet. * * This file is part of Libav * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include <stddef.h> #include <stdint.h> #include "libavutil/attributes.h" #include "libavutil/common.h" #include "libavutil/intreadwrite.h" #include "texturedsp.h" static const uint8_t expand5[32] = { 0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255, }; static const uint8_t expand6[64] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, }; static const uint8_t match5[256][2] = { { 0, 0 }, { 0, 0 }, { 0, 1 }, { 0, 1 }, { 1, 0 }, { 1, 0 }, { 1, 0 }, { 1, 1 }, { 1, 1 }, { 2, 0 }, { 2, 0 }, { 0, 4 }, { 2, 1 }, { 2, 1 }, { 2, 1 }, { 3, 0 }, { 3, 0 }, { 3, 0 }, { 3, 1 }, { 1, 5 }, { 3, 2 }, { 3, 2 }, { 4, 0 }, { 4, 0 }, { 4, 1 }, { 4, 1 }, { 4, 2 }, { 4, 2 }, { 4, 2 }, { 3, 5 }, { 5, 1 }, { 5, 1 }, { 5, 2 }, { 4, 4 }, { 5, 3 }, { 5, 3 }, { 5, 3 }, { 6, 2 }, { 6, 2 }, { 6, 2 }, { 6, 3 }, { 5, 5 }, { 6, 4 }, { 6, 4 }, { 4, 8 }, { 7, 3 }, { 7, 3 }, { 7, 3 }, { 7, 4 }, { 7, 4 }, { 7, 4 }, { 7, 5 }, { 5, 9 }, { 7, 6 }, { 7, 6 }, { 8, 4 }, { 8, 4 }, { 8, 5 }, { 8, 5 }, { 8, 6 }, { 8, 6 }, { 8, 6 }, { 7, 9 }, { 9, 5 }, { 9, 5 }, { 9, 6 }, { 8, 8 }, { 9, 7 }, { 9, 7 }, { 9, 7 }, { 10, 6 }, { 10, 6 }, { 10, 6 }, { 10, 7 }, { 9, 9 }, { 10, 8 }, { 10, 8 }, { 8, 12 }, { 11, 7 }, { 11, 7 }, { 11, 7 }, { 11, 8 }, { 11, 8 }, { 11, 8 }, { 11, 9 }, { 9, 13 }, { 11, 10 }, { 11, 10 }, { 12, 8 }, { 12, 8 }, { 12, 9 }, { 12, 9 }, { 12, 10 }, { 12, 10 }, { 12, 10 }, { 11, 13 }, { 13, 9 }, { 13, 9 }, { 13, 10 }, { 12, 12 }, { 13, 11 }, { 13, 11 }, { 13, 11 }, { 14, 10 }, { 14, 10 }, { 14, 10 }, { 14, 11 }, { 13, 13 }, { 14, 12 }, { 14, 12 }, { 12, 16 }, { 15, 11 }, { 15, 11 }, { 15, 11 }, { 15, 12 }, { 15, 12 }, { 15, 12 }, { 15, 13 }, { 13, 17 }, { 15, 14 }, { 15, 14 }, { 16, 12 }, { 16, 12 }, { 16, 13 }, { 16, 13 }, { 16, 14 }, { 16, 14 }, { 16, 14 }, { 15, 17 }, { 17, 13 }, { 17, 13 }, { 17, 14 }, { 16, 16 }, { 17, 15 }, { 17, 15 }, { 17, 15 }, { 18, 14 }, { 18, 14 }, { 18, 14 }, { 18, 15 }, { 17, 17 }, { 18, 16 }, { 18, 16 }, { 16, 20 }, { 19, 15 }, { 19, 15 }, { 19, 15 }, { 19, 16 }, { 19, 16 }, { 19, 16 }, { 19, 17 }, { 17, 21 }, { 19, 18 }, { 19, 18 }, { 20, 16 }, { 20, 16 }, { 20, 17 }, { 20, 17 }, { 20, 18 }, { 20, 18 }, { 20, 18 }, { 19, 21 }, { 21, 17 }, { 21, 17 }, { 21, 18 }, { 20, 20 }, { 21, 19 }, { 21, 19 }, { 21, 19 }, { 22, 18 }, { 22, 18 }, { 22, 18 }, { 22, 19 }, { 21, 21 }, { 22, 20 }, { 22, 20 }, { 20, 24 }, { 23, 19 }, { 23, 19 }, { 23, 19 }, { 23, 20 }, { 23, 20 }, { 23, 20 }, { 23, 21 }, { 21, 25 }, { 23, 22 }, { 23, 22 }, { 24, 20 }, { 24, 20 }, { 24, 21 }, { 24, 21 }, { 24, 22 }, { 24, 22 }, { 24, 22 }, { 23, 25 }, { 25, 21 }, { 25, 21 }, { 25, 22 }, { 24, 24 }, { 25, 23 }, { 25, 23 }, { 25, 23 }, { 26, 22 }, { 26, 22 }, { 26, 22 }, { 26, 23 }, { 25, 25 }, { 26, 24 }, { 26, 24 }, { 24, 28 }, { 27, 23 }, { 27, 23 }, { 27, 23 }, { 27, 24 }, { 27, 24 }, { 27, 24 }, { 27, 25 }, { 25, 29 }, { 27, 26 }, { 27, 26 }, { 28, 24 }, { 28, 24 }, { 28, 25 }, { 28, 25 }, { 28, 26 }, { 28, 26 }, { 28, 26 }, { 27, 29 }, { 29, 25 }, { 29, 25 }, { 29, 26 }, { 28, 28 }, { 29, 27 }, { 29, 27 }, { 29, 27 }, { 30, 26 }, { 30, 26 }, { 30, 26 }, { 30, 27 }, { 29, 29 }, { 30, 28 }, { 30, 28 }, { 30, 28 }, { 31, 27 }, { 31, 27 }, { 31, 27 }, { 31, 28 }, { 31, 28 }, { 31, 28 }, { 31, 29 }, { 31, 29 }, { 31, 30 }, { 31, 30 }, { 31, 30 }, { 31, 31 }, { 31, 31 }, }; static const uint8_t match6[256][2] = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 0 }, { 1, 1 }, { 2, 0 }, { 2, 1 }, { 3, 0 }, { 3, 0 }, { 3, 1 }, { 4, 0 }, { 4, 0 }, { 4, 1 }, { 5, 0 }, { 5, 1 }, { 6, 0 }, { 6, 0 }, { 6, 1 }, { 7, 0 }, { 7, 0 }, { 7, 1 }, { 8, 0 }, { 8, 1 }, { 8, 1 }, { 8, 2 }, { 9, 1 }, { 9, 2 }, { 9, 2 }, { 9, 3 }, { 10, 2 }, { 10, 3 }, { 10, 3 }, { 10, 4 }, { 11, 3 }, { 11, 4 }, { 11, 4 }, { 11, 5 }, { 12, 4 }, { 12, 5 }, { 12, 5 }, { 12, 6 }, { 13, 5 }, { 13, 6 }, { 8, 16 }, { 13, 7 }, { 14, 6 }, { 14, 7 }, { 9, 17 }, { 14, 8 }, { 15, 7 }, { 15, 8 }, { 11, 16 }, { 15, 9 }, { 15, 10 }, { 16, 8 }, { 16, 9 }, { 16, 10 }, { 15, 13 }, { 17, 9 }, { 17, 10 }, { 17, 11 }, { 15, 16 }, { 18, 10 }, { 18, 11 }, { 18, 12 }, { 16, 16 }, { 19, 11 }, { 19, 12 }, { 19, 13 }, { 17, 17 }, { 20, 12 }, { 20, 13 }, { 20, 14 }, { 19, 16 }, { 21, 13 }, { 21, 14 }, { 21, 15 }, { 20, 17 }, { 22, 14 }, { 22, 15 }, { 25, 10 }, { 22, 16 }, { 23, 15 }, { 23, 16 }, { 26, 11 }, { 23, 17 }, { 24, 16 }, { 24, 17 }, { 27, 12 }, { 24, 18 }, { 25, 17 }, { 25, 18 }, { 28, 13 }, { 25, 19 }, { 26, 18 }, { 26, 19 }, { 29, 14 }, { 26, 20 }, { 27, 19 }, { 27, 20 }, { 30, 15 }, { 27, 21 }, { 28, 20 }, { 28, 21 }, { 28, 21 }, { 28, 22 }, { 29, 21 }, { 29, 22 }, { 24, 32 }, { 29, 23 }, { 30, 22 }, { 30, 23 }, { 25, 33 }, { 30, 24 }, { 31, 23 }, { 31, 24 }, { 27, 32 }, { 31, 25 }, { 31, 26 }, { 32, 24 }, { 32, 25 }, { 32, 26 }, { 31, 29 }, { 33, 25 }, { 33, 26 }, { 33, 27 }, { 31, 32 }, { 34, 26 }, { 34, 27 }, { 34, 28 }, { 32, 32 }, { 35, 27 }, { 35, 28 }, { 35, 29 }, { 33, 33 }, { 36, 28 }, { 36, 29 }, { 36, 30 }, { 35, 32 }, { 37, 29 }, { 37, 30 }, { 37, 31 }, { 36, 33 }, { 38, 30 }, { 38, 31 }, { 41, 26 }, { 38, 32 }, { 39, 31 }, { 39, 32 }, { 42, 27 }, { 39, 33 }, { 40, 32 }, { 40, 33 }, { 43, 28 }, { 40, 34 }, { 41, 33 }, { 41, 34 }, { 44, 29 }, { 41, 35 }, { 42, 34 }, { 42, 35 }, { 45, 30 }, { 42, 36 }, { 43, 35 }, { 43, 36 }, { 46, 31 }, { 43, 37 }, { 44, 36 }, { 44, 37 }, { 44, 37 }, { 44, 38 }, { 45, 37 }, { 45, 38 }, { 40, 48 }, { 45, 39 }, { 46, 38 }, { 46, 39 }, { 41, 49 }, { 46, 40 }, { 47, 39 }, { 47, 40 }, { 43, 48 }, { 47, 41 }, { 47, 42 }, { 48, 40 }, { 48, 41 }, { 48, 42 }, { 47, 45 }, { 49, 41 }, { 49, 42 }, { 49, 43 }, { 47, 48 }, { 50, 42 }, { 50, 43 }, { 50, 44 }, { 48, 48 }, { 51, 43 }, { 51, 44 }, { 51, 45 }, { 49, 49 }, { 52, 44 }, { 52, 45 }, { 52, 46 }, { 51, 48 }, { 53, 45 }, { 53, 46 }, { 53, 47 }, { 52, 49 }, { 54, 46 }, { 54, 47 }, { 57, 42 }, { 54, 48 }, { 55, 47 }, { 55, 48 }, { 58, 43 }, { 55, 49 }, { 56, 48 }, { 56, 49 }, { 59, 44 }, { 56, 50 }, { 57, 49 }, { 57, 50 }, { 60, 45 }, { 57, 51 }, { 58, 50 }, { 58, 51 }, { 61, 46 }, { 58, 52 }, { 59, 51 }, { 59, 52 }, { 62, 47 }, { 59, 53 }, { 60, 52 }, { 60, 53 }, { 60, 53 }, { 60, 54 }, { 61, 53 }, { 61, 54 }, { 61, 54 }, { 61, 55 }, { 62, 54 }, { 62, 55 }, { 62, 55 }, { 62, 56 }, { 63, 55 }, { 63, 56 }, { 63, 56 }, { 63, 57 }, { 63, 58 }, { 63, 59 }, { 63, 59 }, { 63, 60 }, { 63, 61 }, { 63, 62 }, { 63, 62 }, { 63, 63 }, }; /* Multiplication over 8 bit emulation */ #define mul8(a, b) (a * b + 128 + ((a * b + 128) >> 8)) >> 8 /* Conversion from rgb24 to rgb565 */ #define rgb2rgb565(r, g, b) \ (mul8(r, 31) << 11) | (mul8(g, 63) << 5) | (mul8(b, 31) << 0) /* Linear interpolation at 1/3 point between a and b */ #define lerp13(a, b) (2 * a + b) / 3 /* Linear interpolation on an RGB pixel */ static inline void lerp13rgb(uint8_t *out, uint8_t *p1, uint8_t *p2) { out[0] = lerp13(p1[0], p2[0]); out[1] = lerp13(p1[1], p2[1]); out[2] = lerp13(p1[2], p2[2]); } /* Conversion from rgb565 to rgb24 */ static inline void rgb5652rgb(uint8_t *out, uint16_t v) { int rv = (v & 0xf800) >> 11; int gv = (v & 0x07e0) >> 5; int bv = (v & 0x001f) >> 0; out[0] = expand5[rv]; out[1] = expand6[gv]; out[2] = expand5[bv]; out[3] = 0; } /* Color matching function */ static unsigned int match_colors(const uint8_t *block, ptrdiff_t stride, uint16_t c0, uint16_t c1) { uint32_t mask = 0; int dirr, dirg, dirb; int dots[16]; int stops[4]; int x, y, k = 0; int c0_point, half_point, c3_point; uint8_t color[16]; const int indexMap[8] = { 0 << 30, 2 << 30, 0 << 30, 2 << 30, 3 << 30, 3 << 30, 1 << 30, 1 << 30, }; /* Fill color and compute direction for each component */ rgb5652rgb(color + 0, c0); rgb5652rgb(color + 4, c1); lerp13rgb(color + 8, color + 0, color + 4); lerp13rgb(color + 12, color + 4, color + 0); dirr = color[0 * 4 + 0] - color[1 * 4 + 0]; dirg = color[0 * 4 + 1] - color[1 * 4 + 1]; dirb = color[0 * 4 + 2] - color[1 * 4 + 2]; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) dots[k++] = block[0 + x * 4 + y * stride] * dirr + block[1 + x * 4 + y * stride] * dirg + block[2 + x * 4 + y * stride] * dirb; stops[y] = color[0 + y * 4] * dirr + color[1 + y * 4] * dirg + color[2 + y * 4] * dirb; } /* Think of the colors as arranged on a line; project point onto that line, * then choose next color out of available ones. we compute the crossover * points for 'best color in top half'/'best in bottom half' and then * the same inside that subinterval. * * Relying on this 1d approximation isn't always optimal in terms of * euclidean distance, but it's very close and a lot faster. * * http://cbloomrants.blogspot.com/2008/12/12-08-08-dxtc-summary.html */ c0_point = (stops[1] + stops[3]) >> 1; half_point = (stops[3] + stops[2]) >> 1; c3_point = (stops[2] + stops[0]) >> 1; for (x = 0; x < 16; x++) { int dot = dots[x]; int bits = (dot < half_point ? 4 : 0) | (dot < c0_point ? 2 : 0) | (dot < c3_point ? 1 : 0); mask >>= 2; mask |= indexMap[bits]; } return mask; } /* Color optimization function */ static void optimize_colors(const uint8_t *block, ptrdiff_t stride, uint16_t *pmax16, uint16_t *pmin16) { const uint8_t *minp; const uint8_t *maxp; const int iter_power = 4; double magn; int v_r, v_g, v_b; float covf[6], vfr, vfg, vfb; int mind, maxd; int cov[6] = { 0 }; int mu[3], min[3], max[3]; int ch, iter, x, y; /* Determine color distribution */ for (ch = 0; ch < 3; ch++) { const uint8_t *bp = &block[ch]; int muv, minv, maxv; muv = minv = maxv = bp[0]; for (y = 0; y < 4; y++) { for (x = 4; x < 4; x += 4) { muv += bp[x * 4 + y * stride]; if (bp[x] < minv) minv = bp[x * 4 + y * stride]; else if (bp[x] > maxv) maxv = bp[x * 4 + y * stride]; } } mu[ch] = (muv + 8) >> 4; min[ch] = minv; max[ch] = maxv; } /* Determine covariance matrix */ for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { int r = block[x * 4 + stride * y + 0] - mu[0]; int g = block[x * 4 + stride * y + 1] - mu[1]; int b = block[x * 4 + stride * y + 2] - mu[2]; cov[0] += r * r; cov[1] += r * g; cov[2] += r * b; cov[3] += g * g; cov[4] += g * b; cov[5] += b * b; } } /* Convert covariance matrix to float, find principal axis via power iter */ for (x = 0; x < 6; x++) covf[x] = cov[x] / 255.0f; vfr = (float) (max[0] - min[0]); vfg = (float) (max[1] - min[1]); vfb = (float) (max[2] - min[2]); for (iter = 0; iter < iter_power; iter++) { float r = vfr * covf[0] + vfg * covf[1] + vfb * covf[2]; float g = vfr * covf[1] + vfg * covf[3] + vfb * covf[4]; float b = vfr * covf[2] + vfg * covf[4] + vfb * covf[5]; vfr = r; vfg = g; vfb = b; } magn = fabs(vfr); if (fabs(vfg) > magn) magn = fabs(vfg); if (fabs(vfb) > magn) magn = fabs(vfb); /* if magnitudo is too small, default to luminance */ if (magn < 4.0f) { /* JPEG YCbCr luma coefs, scaled by 1000 */ v_r = 299; v_g = 587; v_b = 114; } else { magn = 512.0 / magn; v_r = (int) (vfr * magn); v_g = (int) (vfg * magn); v_b = (int) (vfb * magn); } /* Pick colors at extreme points */ mind = maxd = block[0] * v_r + block[1] * v_g + block[2] * v_b; minp = maxp = block; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { int dot = block[x * 4 + y * stride + 0] * v_r + block[x * 4 + y * stride + 1] * v_g + block[x * 4 + y * stride + 2] * v_b; if (dot < mind) { mind = dot; minp = block + x * 4 + y * stride; } else if (dot > maxd) { maxd = dot; maxp = block + x * 4 + y * stride; } } } *pmax16 = rgb2rgb565(maxp[0], maxp[1], maxp[2]); *pmin16 = rgb2rgb565(minp[0], minp[1], minp[2]); } /* Try to optimize colors to suit block contents better, by solving * a least squares system via normal equations + Cramer's rule. */ static int refine_colors(const uint8_t *block, ptrdiff_t stride, uint16_t *pmax16, uint16_t *pmin16, uint32_t mask) { uint32_t cm = mask; uint16_t oldMin = *pmin16; uint16_t oldMax = *pmax16; uint16_t min16, max16; int x, y; /* Additional magic to save a lot of multiplies in the accumulating loop. * The tables contain precomputed products of weights for least squares * system, accumulated inside one 32-bit register */ const int w1tab[4] = { 3, 0, 2, 1 }; const int prods[4] = { 0x090000, 0x000900, 0x040102, 0x010402 }; /* Check if all pixels have the same index */ if ((mask ^ (mask << 2)) < 4) { /* If so, linear system would be singular; solve using optimal * single-color match on average color. */ int r = 8, g = 8, b = 8; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { r += block[0 + x * 4 + y * stride]; g += block[1 + x * 4 + y * stride]; b += block[2 + x * 4 + y * stride]; } } r >>= 4; g >>= 4; b >>= 4; max16 = (match5[r][0] << 11) | (match6[g][0] << 5) | match5[b][0]; min16 = (match5[r][1] << 11) | (match6[g][1] << 5) | match5[b][1]; } else { float fr, fg, fb; int at1_r = 0, at1_g = 0, at1_b = 0; int at2_r = 0, at2_g = 0, at2_b = 0; int akku = 0; int xx, xy, yy; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { int step = cm & 3; int w1 = w1tab[step]; int r = block[0 + x * 4 + y * stride]; int g = block[1 + x * 4 + y * stride]; int b = block[2 + x * 4 + y * stride]; akku += prods[step]; at1_r += w1 * r; at1_g += w1 * g; at1_b += w1 * b; at2_r += r; at2_g += g; at2_b += b; cm >>= 2; } } at2_r = 3 * at2_r - at1_r; at2_g = 3 * at2_g - at1_g; at2_b = 3 * at2_b - at1_b; /* Extract solutions and decide solvability */ xx = akku >> 16; yy = (akku >> 8) & 0xFF; xy = (akku >> 0) & 0xFF; fr = 3.0f * 31.0f / 255.0f / (xx * yy - xy * xy); fg = fr * 63.0f / 31.0f; fb = fr; /* Solve */ max16 = av_clip_uintp2((at1_r * yy - at2_r * xy) * fr + 0.5f, 5) << 11; max16 |= av_clip_uintp2((at1_g * yy - at2_g * xy) * fg + 0.5f, 6) << 5; max16 |= av_clip_uintp2((at1_b * yy - at2_b * xy) * fb + 0.5f, 5) << 0; min16 = av_clip_uintp2((at2_r * xx - at1_r * xy) * fr + 0.5f, 5) << 11; min16 |= av_clip_uintp2((at2_g * xx - at1_g * xy) * fg + 0.5f, 6) << 5; min16 |= av_clip_uintp2((at2_b * xx - at1_b * xy) * fb + 0.5f, 5) << 0; } *pmin16 = min16; *pmax16 = max16; return oldMin != min16 || oldMax != max16; } /* Check if input block is a constant color */ static int constant_color(const uint8_t *block, ptrdiff_t stride) { int x, y; uint32_t first = AV_RL32(block); for (y = 0; y < 4; y++) for (x = 0; x < 4; x++) if (first != AV_RL32(block + x * 4 + y * stride)) return 0; return 1; } /* Main color compression function */ static void compress_color(uint8_t *dst, ptrdiff_t stride, const uint8_t *block) { uint32_t mask; uint16_t max16, min16; int constant = constant_color(block, stride); /* Constant color will load values from tables */ if (constant) { int r = block[0]; int g = block[1]; int b = block[2]; mask = 0xAAAAAAAA; max16 = (match5[r][0] << 11) | (match6[g][0] << 5) | match5[b][0]; min16 = (match5[r][1] << 11) | (match6[g][1] << 5) | match5[b][1]; } else { int refine; /* Otherwise find pca and map along principal axis */ optimize_colors(block, stride, &max16, &min16); if (max16 != min16) mask = match_colors(block, stride, max16, min16); else mask = 0; /* One pass refinement */ refine = refine_colors(block, stride, &max16, &min16, mask); if (refine) { if (max16 != min16) mask = match_colors(block, stride, max16, min16); else mask = 0; } } /* Finally write the color block */ if (max16 < min16) { FFSWAP(uint16_t, min16, max16); mask ^= 0x55555555; } AV_WL16(dst + 0, max16); AV_WL16(dst + 2, min16); AV_WL32(dst + 4, mask); } /* Alpha compression function */ static void compress_alpha(uint8_t *dst, ptrdiff_t stride, const uint8_t *block) { int x, y; int dist, bias, dist4, dist2; int mn, mx; int bits = 0; int mask = 0; memset(dst, 0, 8); /* Find min/max color */ mn = mx = block[3]; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { int val = block[3 + x * 4 + y * stride]; if (val < mn) mn = val; else if (val > mx) mx = val; } } /* Encode them */ dst[0] = (uint8_t) mx; dst[1] = (uint8_t) mn; dst += 2; /* Mono-alpha shortcut */ if (mn == mx) return; /* Determine bias and emit color indices. * Given the choice of mx/mn, these indices are optimal: * fgiesen.wordpress.com/2009/12/15/dxt5-alpha-block-index-determination */ dist = mx - mn; dist4 = dist * 4; dist2 = dist * 2; if (dist < 8) bias = dist - 1 - mn * 7; else bias = dist / 2 + 2 - mn * 7; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { int alp = block[3 + x * 4 + y * stride] * 7 + bias; int ind, tmp; /* This is a "linear scale" lerp factor between 0 (val=min) * and 7 (val=max) to select index. */ tmp = (alp >= dist4) ? -1 : 0; ind = tmp & 4; alp -= dist4 & tmp; tmp = (alp >= dist2) ? -1 : 0; ind += tmp & 2; alp -= dist2 & tmp; ind += (alp >= dist); /* Turn linear scale into DXT index (0/1 are extreme points) */ ind = -ind & 7; ind ^= (2 > ind); /* Write index */ mask |= ind << bits; bits += 3; if (bits >= 8) { *dst++ = mask; mask >>= 8; bits -= 8; } } } } /** * Convert a RGBA buffer to unscaled YCoCg. * Scale is usually introduced to avoid banding over a certain range of colors, * but this version of the algorithm does not introduce it as much as other * implementations, allowing for a simpler and faster conversion. */ static void rgba2ycocg(uint8_t *dst, const uint8_t *pixel) { int r = pixel[0]; int g = (pixel[1] + 1) >> 1; int b = pixel[2]; int t = (2 + r + b) >> 2; dst[0] = av_clip_uint8(128 + ((r - b + 1) >> 1)); /* Co */ dst[1] = av_clip_uint8(128 + g - t); /* Cg */ dst[2] = 0; dst[3] = av_clip_uint8(g + t); /* Y */ } /** * Compress one block of RGBA pixels in a DXT1 texture and store the * resulting bytes in 'dst'. Alpha is not preserved. * * @param dst output buffer. * @param stride scanline in bytes. * @param block block to compress. * @return how much texture data has been written. */ static int dxt1_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block) { compress_color(dst, stride, block); return 8; } /** * Compress one block of RGBA pixels in a DXT5 texture and store the * resulting bytes in 'dst'. Alpha is preserved. * * @param dst output buffer. * @param stride scanline in bytes. * @param block block to compress. * @return how much texture data has been written. */ static int dxt5_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block) { compress_alpha(dst, stride, block); compress_color(dst + 8, stride, block); return 16; } /** * Compress one block of RGBA pixels in a DXT5-YCoCg texture and store the * resulting bytes in 'dst'. Alpha is not preserved. * * @param dst output buffer. * @param stride scanline in bytes. * @param block block to compress. * @return how much texture data has been written. */ static int dxt5ys_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block) { int x, y; uint8_t reorder[64]; /* Reorder the components and then run a normal DXT5 compression. */ for (y = 0; y < 4; y++) for (x = 0; x < 4; x++) rgba2ycocg(reorder + x * 4 + y * 16, block + x * 4 + y * stride); compress_alpha(dst + 0, 16, reorder); compress_color(dst + 8, 16, reorder); return 16; } av_cold void ff_texturedspenc_init(TextureDSPContext *c) { c->dxt1_block = dxt1_block; c->dxt5_block = dxt5_block; c->dxt5ys_block = dxt5ys_block; }